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EXPERIMENTS ON NEOCLASSICAL ASYMMETRIC SUPERBANANA
RIPPLE TRANSPORT IN ELECTRON PLASMA
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Ripples in magnetic or electrostatic confinement fields give rise to trapping separatrices, and the conventional
neoclassical helical ripple transport describes phenomena coming from the collisional trapping/detrapping of particles
in the helical ripple wells. Our experiments and novel theory have now characterized a new kind of neoclassical
transport processes arising from chaotic (collisionless) separatrix crossings, which occur due to equilibrium E×B
plasma rotation along poloidally asymmetric (ruffled) separatrices, and due to wave-induced separatrix modulations.
PACS: 52.25.Fi, 52.27.Aj

1. INTRODUCTION

Neoclassical transport due to axial asymmetries is
ubiquitous in magnetic fusion plasma confinement. These
plasmas typically have several helically trapped particle
(superbanana) populations, either by natural design
(stellarators) or due to the finite number of toroidal field
coils (tokamaks), partitioned by separatrices from one
another and from toroidally trapped (banana) particle
trajectories. The drift orbits for particles trapped in the
two toroidally separate regions are displaced radially from
one another, leading to the conventional neoclassical
superbanana ripple transport as particles collisionally
change (at rate ν ) from helically trapped to toroidally
trapped and back. Neoclassical ripple transport theory
analyzes the particle transport and wave effects arising
from collisional scattering across the ripple separatrix in a
variety of geometries [1-4], and experimental
corroboration has been obtained in some regimes of
strong collisions [5, 6].

This situation is dramatically modified when the
ripple separatrix is itself poloidally asymmetric (ruffled),
or when it fluctuates due to waves in the plasma. In such a
case the particles see a time-varying separatrix barrier,
and without needing collisions they can chaotically transit
between helically and toroidally trapped populations. This
mechanism can substantially modify particle transport in
low collisionality regimes associated with fusion plasmas,
though it has previously been considered to be ineffective
due to a presumed symmetry of such transitions [7].

In our experiments with θ-ruffled separatrix these
chaotic crossings lead to considerably enhanced (or
noticeably suppressed, for that matter) neoclassical ripple
transport, depending on the relative phase α between the
toroidal tilt and the separatrix ruffle asymmetries. The
experiments utilize externally controlled electrostatic
ruffles or fluctuations on the separatrix, and can thus
identify the novel chaotic neoclassical ripple transport
scaling as ν0B−1sin2α, and thus distinct from collisional
neoclassical ripple transport scaling as ν1/2B−1/2.

2. EXPERIMENTAL SETUP

The experiments utilize a cylindrical Penning-
Malmberg trap to confine quiescent, low-collisionality

pure electron plasmas [8-10]. Electrons are confined
radially by a nominally uniform axial magnetic field
0.04 < B < 2 T; and are confined axially by voltages Vc =
−100 V on end cylinders of radius Rw = 0.035 m. The
electron columns have length Lp = 0.49 m, and radial
density profile n (r) with central density n0 ≈ 1.6×1013 m-3

and line density NL = πRp
2n0 ≈ 6.1×109 m-1. The

unneutralized charge results in an equilibrium potential
energy Φe (r) with Φe0 ≈ +28 eV at r = 0 (here, all Φ 's are
in energy units). This gives an E×B rotation frequency
fE (r) which decreases monotonically from fE0 ≈
230 kHz×(B/1kG)−1. The bulk electrons have a near-
Maxwellian velocity distribution with thermal energy
T ≤ 1eV, giving axial bounce frequency fb ≈ 430 kHz and
rigidity parameter Rg ≡ fb /fE ≈ 2BkG.

−100V −100Vcos( )
or

sq mV V m
B B

θ
δ

+ ∆

trapped e−
passing

trapped
e−

+

squeeze
sectors

+

-

-

zB tiltε
B

Fig. 1. Schematic of electron plasma with tilt εB  and a
trapping barrier in a cylindrical Penning-Malmberg trap

As a helical ripple substitute, an electrostatic trapping
barrier φs (r, θ) is created by a “squeeze" wall voltage Vsq

(see Fig.1) with adjustable θ-sector voltages ±∆Vm. This
gives controllable interior separatrix energy φs (r, θ ) =
φs0 (r) + ∆φm cos[m(θ - θm)]. Here we focus mostly on
m = 2 ruffles, created by voltages ±∆V2 applied to four
60° sectors, extending over ∆ z = 3.8 cm near the z = 0
center. At every radius, low energy particles are trapped
in either the left or right end, whereas higher energy
passing particles transit the entire length of the column.
Ruffles spread the characteristic separatrix energy by
∆φm (r) ~ ∆Vm (r/Rw)m, somewhat reduced  by plasma
shielding.
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Particles change from ripple trapped to passing (and
vice versa) due to binary collisions at rate ν, due to drift-
rotation across θ-ruffle variations ∆φm, or due to temporal
fluctuations ∆φ (t) in the separatrix energy. The electron-
electron collisionality in the present experiments is
relatively low (ν ~ 100/s), and collisions acting for a drift-
rotation period spread the separatrix by an energy width
∆Wc ≡ T(ν/2πfE )1/2(φs0 /T)1/2 ≈ 0.02eV×(B/1kG)1/2. Thus,
the chaotic (de)trapping processes will be important when
∆φm (r) ≥ ∆Wc , or when ∆φ (t) ≥ ∆Wc .

We diagnose the bulk expansion rate ν<r2> defined as
2
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Fortunately, it can be accurately and readily obtained
from the continuous frequency shift f2 (t) of a small
amplitude m = 2 diocotron mode, as ν<r2> = (1/f2) df2 /dt.
The bulk expansion rate ν<r2>  is an integral measure of
the full radial flux that includes both mobility and
diffusive contributions, both being proportional to the
radial diffusion coefficient Dr (r).

3. ASYMMETRY-INDUCED TRANSPORT

Radial particle transport is conveniently driven by a
global (toroidal) magnetic tilt asymmetry with controlled
magnitude εB ≡ B⊥ /Bz ≤ 0.001 and gradually chosen tilt
direction θB ≡ tan−1 (By /Bx). This tilt is equivalent to
applying z-antisymmetric wall voltages Va (Rw, θ, z) =
εB z (2eNL /Rw) cos(θ − θB), which causes interior Debye-
shielded z-asymmetric potentials δφa (r, z). For large B
fields, giving rigidity Rg ?  1, simple z-bounce-averaged
theory suffices to describe the separatrix-induced
transport and wave-damping. The tilt-induced z-
asymmetric error field δφa (r, z) has bounce averages
values δφL and δφR for left- and right-end trapped
particles near the separatrix energy, with passing particles
experiencing zero bounce-average error field. The drift
orbits then for left- and right-end superbanana trajectories
differ radially by

( ) .L R er rδφ δφ∆ = − ∂Φ ∂  (0.2)

Random transitions between trapped and passing
populations are caused by collisions (c); by drift rotation
along the cos(mθ ) separatrix ruffles (m); and by temporal
fluctuations in the separatrix energy (t). If the fraction of
particles transitioning in a rotation period is η , the radial
diffusion coefficient is expected to be

2~ .r ED f rη ∆ (0.3)
For collisions, conventional neoclassical ripple transport
gives ηc = ∆Wc FM (φs0) ∝ ν1/2B1/2, where FM is  the
Maxwellian distribution of energies, whereas ruffle ηm

and temporal ηt  are independent of ν and B.
A detailed analysis of random transitions between

equal trapping regions driven by rotation across separatrix
ruffles gives neoclassical asymmetric superbanana radial
diffusion coefficient
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Both the collisional bounce-Averaged transport
coefficient DcA and the m = 2 ruffle coefficient D2A are
shown in Fig. 2, calculated in [11] as functions of the
normalized ruffle strength ∆φ2 /∆Wc . While the ruffle-
induced transport coefficient D2A is nearly independent of
∆φ2 /∆Wc , the collisional coefficient DcA shows a fast
decline as chaotic particle transitions become the
dominant ones and smooth out the discontinuity of FM. In
the case of properly aligned asymmetries (sin2α ≈ 0), this
could enable some suppression of collisional neoclassical
ripple transport, until bounce-resonant transport processes
become significant.
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Fig. 2. Calculated collisional DcA and ruffle induced D2A
coefficients versus the normalized ruffle strength

z < 0
z > 0

B

θ

trapped

0α =

z < 0

z > 0

B

trapped

passing

0α ≠

passing

a) b)

r∆
sur

                               a                                                b
Fig. 3. Sketch of split E×B drift orbits near the m = 2

ruffled separatrix. a) α = 0. b) α ≠ 0. For the magnetic
tilt asymmetry the trapped portions of the orbits are

partial circles shifted along the tilt direction

Prior theory [7] considered only α = 0 or π, in which
case the phase-dependent part of the diffusion coefficient
is zero. The reason for this can be qualitatively
understood from Fig. 3,a, which shows a sketch of split
E×B drift orbits near the m = 2 ruffled separatrix. From
the magnetic tilt asymmetry the trapped portions of the
drift orbits are partial circles shifted along the tilt
direction. If this direction coincides with the zero phase of
separatrix ruffle, the left-right symmetry implies particles
transit from trapped to passing and back at the same
radius, so the drift orbit is closed and there is no net radial
step. However, when α ≠ 0, the symmetry is broken and
particle orbits are trapped and detrapped at different radii,
leading to radial steps ∆r ≠ 0 (Fig. 3,b). Of course, for
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α = 0 or π the diffusion does not completely vanish;
collisional effects not kept in the above analysis yield
finite diffusion consistent with the one obtained in [7].

Fig. 4 shows the predicted transition from
predominantly collisional neoclassical diffusion to the
chaotic regime (ruffle dominated, Dr ∝ ∆φ2 D2A). For
comparisons with the experiments it can be rather
conveniently approximated as
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Fig. 4. Combined neoclassical ripple transport coefficient
D* versus the normalized ruffle strength. The dashed line

shows derived approximation

Fig. 5 shows the measured expansion rate ν<r2> for
the case sin2α = 1 as a function of ruffle voltages ± ∆V2 at
the wall. It has essentially the same fitting function as in
Fig.4, giving the normalized “radially averaged” ruffle
strength as 〈∆ φ2 /∆Wc〉r ≈ (4/3)∆V2 /1V, which is close to
its calculated value. Thus, at B = 6 kG and ∆V2 = 3V the
effective ruffle width ∆ φ2 ≈ 4∆Wc, and the transport rate
has changed by 4× accordingly.
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Fig.5. Measured expansion rate as a function of the ruffle
voltage ∆V2 at the wall
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Fig. 6. Measured expansion rate ν<r2> at fixed ∆V2 = 1.1V
showing chaotic part of neoclassical transport varying as
εB

2sin2α, and α-independent collisional ripple transport
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Fig.7. Measured expansion rate ν<r2> at fixed εB = 0.001,
showing chaotic part of neoclassical transport varying as
∆V2 sin2α, and α-independent collisional ripple transport

Fig. 6 is a plot of measured expansion rate ν<r2> ,
taken during step-by-step rotation of the magnetic tilt
orientation angle θB, for various tilt strengths εB  at the
fixed wall ruffle ∆V2 = 1.1V. The ruffled-induced part
shows an unambiguous sin2α dependence on relative
angle α ≡ θB − θ2, (here, θ2 ≈ π /4) with magnitude
proportional to εB

2 ; and varying θ2 in steps of π /2 (not
shown) verifies the dependence on relative angle only.

Fig. 7 is a plot of measured expansion rate ν<r2>

versus magnetic tilt orientation angle θB , for various
applied wall ruffle strengths ∆V2 , now at the fixed tilt
strength εB = 0.001. Once again, the ruffled-induced part
shows unambiguous sin2α signature, but now with
magnitude proportional to ∆V2 .
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The distinctive εB
2 sin2α signature, together with

separate control of ∆V2 and εB, enables experimental iden-
tification of neoclassical transport processes separately
from z-kinetic processes. We model the full transport as
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where CcA and C2A represent the radial integrals of
Eqn. (1.4); CcK1 and CcK2 represent collisional Kinetic
(bounce-resonant) transport driven by εB

2 and ∆V2
2 as

z−dependent “error" fields [12-14]; and small ν<r2>
(bkg)

arises from uncontrolled background tilts, separatrices,
and omnipresent ruffles. Here, for dimensional simplicity,
εB ≡ εB /(1mRad) and ∆V2 ≡ ∆V2 /(1Volt).
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neoclassical helical ripple transport terms at B = 6 kG.
Every marker here (not shown for CcA (0)) is the result of

(a + b sin2α)  fit as those shown in Fig. 6

C2A and CcA (∆V2) are readily obtained from the sin2α
dependences as those shown in Figs.6 and 7, and varying
εB gives the expected εB

2 scaling, as the one shown in
Fig. 8 for ∆V2 = 1.1 V and B = 6 kG (C2A ≈ 0.056/s). Data
taken with ∆V2 = 0 define CcA (0) ≈ 0.033/s; and just by
comparing it to CcA (1.1V) ≈ 0.019/s and using the
DcA (∆φ2 /∆Wc ) data from Fig. 2, one can get another
estimate on the “radially averaged” ruffle strength as
〈∆φ2 /∆Wc〉r ≈ (4/3)∆V2 /1V, which is consistent with the
previous conclusion based on the results in Figs. 4 and 5.

Data taken with εB =  0  show a ν<r2>
(bkg) offset and a

parabolic dependence on a varied ∆V2 , giving CcK2 .
Varying εB then selects CcA and CcK1 ; these terms are
distinguished by their B-scaling (discussed next), and by
the fact that the z-antisymmetric bounce-averages in CcA
require the separatrix, whereas the kinetic CcK1 depends
only weakly on the applied squeeze voltage. In Fig. 7,
CcK2 (4kG) ≈ 0.03, giving elevated sin2α minima for large
∆V2; the depressed minima for ∆V2 = 0.33 are from ruffle-
suppression of DcA (see Fig. 2);  and ν<r2>

(bkg) ≈ 0.007/s.
Fig. 9 shows the measured transport rates C2A , CcA

and CcK1 versus magnetic field with empirical scalings

(dashed), compared to theory (solid lines). At high B, the
chaotic and collisional separatrix transport processes
agree closely with theory, scaling as B−1 and B−1/2

respectively. Here the accuracy of comparison is limited
by temperature uncertainty, sensitivity to edge density
gradients, and induced modification of FM (φs0). At low B,
the kinetic transport labeled CcK1 is observed to depend
strongly on field (∝ B−2.7 ), but no simple power law is
expected theoretically as bounce-rotation resonances
become dominant. Prior scaling experiments have been
confused by the presence of uncontrolled separatrices and
ruffles, as well as by overlapping transport regimes [8].
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Similar enhanced particle transport is observed when
there are temporal variations in the separatrix energy.
Fig. 10 illustrates the immediate increase in radial
expansion rate induced when white noise (VRMS = 0.2 V,
fE < f < 20 MHz) is applied to the θ-symmetric ripple
(squeeze) ring, driving randomly enhanced collisionless
separatrix crossings.
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The 3× increase in (d/dt)〈r2〉 rate observed here is
consistent with a collisional separatrix layer width
∆Wc ≈  0.07 eV fluctuating by ∆φ (t) ≈  0.2 eV.
Presumably, any noise- or wave-induced fluctuations
which change particle kinetic energies relative to the
separatrix energy would be equally effective in enhancing
neoclassical helical ripple transport.

4. CONCLUSIONS
Most plasma confinement devices have trapping
separatrices (ripples), arising from variations in magnetic
field strength or external potentials. These separatrices are
never perfectly symmetric, or perfectly aligned with other
asymmetries. If the separatrix itself is asymmetric or
temporally perturbed, the drifting particles collisionlessly
change from trapped to passing and back, leading in the
case of low collisionality (ν / fE = 1) to enhanced
asymmetric superbanana ripple transport (∝ ν0B−1) in
comparison to the standard neoclassical ripple transport
(∝ ν1/2B−1/2). When the separatrix layer collisional width
is less than its θ-asymmetry or temporal perturbations,
this new loss mechanism becomes the dominant bulk
transport process in our non-neutral plasma experiments,
and it could have important implications for similar low
collisionality regimes in other magnetic conferment
experiments.
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