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Experiments and theory characterize a novel type of spatial Landau damping, caused by a flux of
particles through the wave or rotation resonance (critical) layer. Pure electron plasma experiments
demonstrate that a steady flux of particles causes algebraic damping of diocotron mode amplitudes for
azimuthal modesm ¼ 1 andm ¼ 2, and a simple model of dynamics in the nonlinear cat’s eye clarifies the
observations. This flux-driven algebraic damping is related to, but distinct from, the exponential decay
characteristic of Landau damping. This flux-driven damping applies also to Kelvin waves on 2D vortices,
and so may be broadly relevant to plasmas and geophysical flows.
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Diocotron modes with azimuthal mode numbers
m ¼ 1; 2;… are dominant features in the dynamics of
non-neutral plasmas in cylindrical [1–10] and toroidal [11]
magnetic traps. Moreover, diocotron modes are directly
analogous to Kelvin waves on fluid vortices, since the (r, θ)
flow of the plasma approximates an inviscid, incompress-
ible column of fluid vorticity [1,2]. In the m ¼ 1 diocotron
mode, the entire plasma column E × B drifts around the
trap axis due to image charges on the wall, and this
corresponds to a vortex “walking” along a wall. This
fundamental dynamical motion [3] can be autoresonantly
controlled [4], and is now used for “parking” antimatter at
desired locations [5,12]. The m ¼ 2 diocotron mode
[2,6,13] is an elliptical distortion of the charge column,
corresponding to a Kelvin wave on a vortex [14].
Spatial Landau damping (or instability) is the idealized

resonant interaction between a mode at frequency fm and
the equilibrium plasma rotation fEðrÞ, at the critical radius
Rcm where fm ¼ mfEðRcmÞ [1,13–16]; this is mathemati-
cally analogous to velocity-space Landau damping at
velocity v given byωk ¼ kv [1,17]. This inviscid resonance
causes exponential mode damping or exponential mode
growth, depending on the magnitude and slope of the initial
density (or vorticity) at Rcm. The exponential growth is
commonly observed in hollow beams and plasmas [1,2],
and the analogous Kelvin-Helmholtz shear-flow instability
is ubiquitous in fluids.
Exponential Landau damping is widely observed in

plasmas [1,6,13,15] and geophysical flows [14,18,19].
The early-time reversibility of inviscid Landau damping
is demonstrated by observation of “fluid echoes” [20], but
the time asymptotics of the Cauchy initial-value problem
involves subtle mathematical questions [13,14,16,21]. For
moderate initial wave amplitudes, damping typically ceases
when the density at the critical layer is trapped in a
nonlinear “cat’s eye” flow structure [6,13], and these
time-invariant multipole states have been constructed for
a variety of geophysical models [22]. Large amplitude

excitation commonly extends the core density into the
critical layer, making the damping process visible as spiral
arms, and nonlinear interactions at the beat-wave critical
layer may cause rapid energy transfer between two modes
in astrophysical [7] and geophysical [18] flows.
Weak nonideal processes may also cause exponential

damping. In plasmas, damping has been observed from
rotational pumping of bulk viscosity [9,11] and from
z-velocity dissipation on a separatrix [23]. In fluids,
viscosity causes spreading of vorticity through critical
layers, often combined with other effects [24].
Here, we demonstrate that a weak nonideal “mobility”

flux of particles outward through the critical layer causes
strong algebraic damping of diocotron modes, completely
symmetrizing the plasma. This is the first demonstration of
a new aspect of wave-fluid interactions at the critical layer,
broadly relevant to plasmas and geophysical flows. We also
present a sketch of nascent theory which characterizes the
fundamentals of the process.
We find that the weak outward flux changes the temporal

character of the damping, since it is now a driven evolution.
Landau damping describes filamentation and phase mixing
of the initial density, with resulting outward transport of
particles. In contrast, the novel flux-driven damping is
determined by the present magnitudes of the wave and
outward flux.
Experimentally, the nonideal outward flux is caused by

trap θ asymmetries, and can be controlled in magnitude.
The flux has no significant effect on the mode until the
flux reaches the critical radius, at which time strong
damping begins. Since weak nonideal particle fluxes are
endemic to plasma traps, but are difficult to detect or
control, this flux-driven damping may occur commonly.
Also, it is generally presumed that Landau damping is zero
for them ¼ 1mode because the critical radius is at the wall
where the density is zero, but here, the commonly observed
radial particle loss is shown to cause unexpected m ¼ 1
mode damping.
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The experiments are performed on quiescent, pure
electron plasma columns, where the (r, θ) drift dynamics
approximates an incompressible fluid [2,11], with electron-
electron collisions causing “viscous” relaxation [25] cor-
responding to a fluid Reynolds number Re ∼ 105. The
electrons are confined radially by a uniform magnetic field
B ¼ 12 kG ẑ, and are confined axially by negative voltages
on the ends of the cylindrical wall (Rw ¼ 35 mm), with
axial column length Lp ∼ 48 cm. Axial variations are
averaged out by rapid bouncing of individual electrons
(T ∼ 0.05 → 0.5 eV in the core and halo), and the (r, θ)
evolution is predominantly determined by the drift-Poisson
equations [1,2]. The electron column has monotonically
decreasing density profile nðrÞ, with total line density
NLðRwÞ≡

R
r dr dθ nðr; θÞ ∼ 6 × 107 cm−1, and Poisson’s

equation then gives a monotonically decreasing E × B drift
rotation profile fEðrÞ ¼ ðc=2πBrÞ∂ϕ=∂r.
The z-averaged electron density nðr; θ; tÞ is measured

(destructively) by dumping the plasma onto a phosphor
screen, giving images such as Fig. 1. Here, an m ¼ 2 mode
on the central plasma is being damped by density trans-
ported out past the critical radius. The θ-averaged profiles
of fEðrÞ and nðr; tÞ at 7 times are shown in Fig. 2(a).
The weak outward particle flux is generated by

θ-asymmetric fields applied to the trap, which exert a
weak drag on the rotating plasma. We apply a magnetic tilt
of angle ϵB [milliradians] or a z-localized quadrupole wall
voltage ϵV [Volts], or both. This results in a diffuse “halo”
of electrons ðnh ≳ 105 cm−3Þ expanding outward with
velocity vh ≳ 0.2 mm=s, giving flux F ¼ nhvh ≳ 2×
103=cm2 s.
The small-amplitude diocotron modes are surface waves,

corresponding to Kelvin waves on the surface of a vortex.

For a “top-hat” density profile of radius Rp, the plasma
edge would be at Rp þDm cosðmθ − 2πfmtÞ, with mode
frequency fm ¼ fE½ðm − 1Þ þ ðRp=RwÞ2m�. At large
amplitudes, the low-frequency m ¼ 1 mode is better
described as a center-of-mass displacement orbiting the
trap center [3]. For the nonuniform nðrÞ of Figs. 1 and 2, we
calculate the mean square radius hr2i1=2, giving Rp≡ffiffiffi
2

p hr2i1=2 ¼ 13.4 mm, and the wave quadrupole moment
is q2 ¼ hr2 cosð2θÞi=hr2i ¼ 0.064, giving effective edge
displacement D2 ≡ q2Rp=2 ¼ 0.43 mm. The time evolu-
tion of these wave amplitudes DmðtÞ is obtained non-
destructively from digitized wall signals, calibrated by the
image analysis.
The outward flux of particles causes strong diocotron

mode damping when the particles reach the wave or
rotation critical layer at Rcm. Figure 3 shows time evolu-
tions of the m ¼ 2 wave amplitude d2 ≡D2=Rp, for
various fluxes controlled by ϵB. The waves are nominally
stable, with the visible 10% growth over the first 10 sec
caused by effective wall resistance in the amplifier circuits.
Beginning at time t� when the halo flux reaches
Rc2 ¼ 19 mm, there is strong algebraic damping, as

d2ðtÞ ¼ d2ðt�Þ − γ2ðt − t�Þ; (1)

with γ2 larger when the outward flux is made larger.
For the ϵB ¼ 0 case the halo flux reaches Rc2 at

t� ≃ 20 sec. Figure 2(b) shows the corresponding
θ-averaged nðr; tÞ at t ¼ 20 and 35, with and without
the launched wave. These radial profiles clearly show the
wave transporting density across the resonant structure,
with consequent damping of the wave itself.

FIG. 1 (color online). Camera image of nðr; θÞ at 25 sec,
showing elliptical wave amplitude D2 ¼ 0.4 mm after excitation
to D2 ∼ 0.8 mm at t ¼ 0. Superimposed contours show calcu-
lated wave-frame potential (stream function) Φðr; θÞ with “cat’s
eye” trapping regions.

FIG. 2 (color online). (a) Measured θ-averaged electron density
(vorticity) nðrÞ and calculated rotation frequency fEðrÞ at times
10 → 70 sec, showing a weak “halo” flux propagating outward.
(b) Measured density near the wave-fluid resonance layer Rc2 at
t ¼ 20 and 35, with and without wave excitation.
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Similarly, the m ¼ 1 diocotron mode shows algebraic
damping after the halo flux reaches the resonant radius, at
Rc1 ¼ Rw. Figure 4 shows the time evolutions of mode
amplitudes d1 ≡D1=Rw, with halo flux rates controlled by
applied voltage asymmetries ϵV in addition to ϵB ¼ 1.
When the halo flux reaches Rc1 (at times t� ¼ 15 →
50 sec), there is immediate damping of the wave
amplitude, as

d1ðtÞ ¼ d1ðt�Þ − γ1ðt − t�Þ; (2)

with γ1 increasing with increasing flux.
We characterize the outward flux at the critical radius

Rcm by a normalized “expansion rate” Em, defined as

Em ¼ −
_NLðRcmÞ
NLðRcmÞ

¼
R
dθ _~NLðRcm; θÞ
NLðRcmÞ

; (3)

where the · represents d=dt. The expansion rate Em is
measured with no waves excited, but waves may change

the rates somewhat, and the notation _~NLðr; θÞ includes the
possibility of θ-dependent injection of particles into the
cat’s eye, as discussed below. We have measured
EmðϵB; ϵVÞ for the various applied asymmetries ϵB and
ϵV , both by analyzing halo profiles such as Fig. 2, and by
analyzing test wave frequency changes at the 0.1% level.
We find that E1 ≈ E2 once the outward flux is fully
developed.
Data such as Figs. 3 and 4 then give Fig. 5, showing

algebraic damping rates γm versus halo expansion rates Em.
For both m ¼ 1 and m ¼ 2, the algebraic damping is
proportional to the number of particles reaching the critical
radius. The dashed lines in Fig. 5 show

γ1 ¼ ð1.5� 0.3ÞE1;

γ2 ¼ ð3.8� 1.5ÞE2: (4)

Here, the stated error bars reflect both shot-to-shot varia-
tions and systematic uncertainties (most visible in γ2) in
calculating E, which may itself be modified by wave
asymmetries.
We now sketch an analytic model under development,

which agrees qualitatively with the observed t1 (algebraic)
damping form ¼ 1, but suggests a possibly discrepant time
scaling for m ¼ 2. The model posits a θ-uniform outward
particle flux superimposed on the wave dynamics, with
particles entering the inner edge of the cat’s eye, and then
being swept around and outward by the wave, as sketched
in Fig. 6. This increase in particle angular momentum is
balanced by a decrease in wave angular momentum, i.e.,
damping of the wave.
For m ¼ 1, displacing the column off axis by −D1ŷ

results in a cat’s eye potential structure just inside the wall.
The wave-frame Φ ¼ 0 contour is inside the wall a distance
ρ, with ρ ¼ 2D1 sinðθÞ for 0 < θ < π, and ρ ≈ 0 for

FIG. 3 (color online). Time evolutions of wave amplitude d2ðtÞ
with 4 levels of asymmetry-induced halo flux, showing algebraic
damping after the flux reaches the critical radius r2. The cross
corresponds to Fig. 1.

FIG. 4 (color online). Time evolutions of m ¼ 1 amplitude
d1ðtÞ with 5 levels of induced flux, showing algebraic damping
after the flux reaches r1 ¼ Rw.

FIG. 5 (color online). Algebraic damping rates γ1 and γ2 versus
halo flux rate E, from evolutions as in Figs. 3 and 4.
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π < θ < 2π. With uniform outward flow superimposed
on the wave-frame dynamics, a particle that enters
the cat’s eye at some angle θ0 is swept around to larger
θ and back to θ0, then exits at the same θ0, having
gained angular momentum. The particle angular momen-
tum (divided by eB=2c) is merely r2, so the single-
particle change is ΔP1 ¼ 2rδr ¼ 2Rw2D1 sinðθ0Þ, and
the total rate of particle angular momentum change is _PN ¼
4RwD1

R
dθ0

_~NLðRw; θ0Þ sinðθ0Þ, where the θ integral is
over the cat’s eye region of 0 < θ0 < π only. This causes an
equal but opposite change in the normalized wave angular
momentum, _Pw ¼ d=dtðNLD2

1Þ ≈ NL2D1
_D1. Equating the

particle and wave momenta gives

γðthÞ1 ≡ _d1 ≡
_D1

Rw
¼

�
2

π

�
E1; (5)

integrating to Eq. (2). Alternately, the same damping rate
has been obtained from a more mechanistic analysis,
wherein the electric field of the (θ-dependent) scrape-off
layer causes a radial E × B drift of the main plasma,
damping the mode.
For m ¼ 2, the cat’s eye is centered at Rc2 ≈

ffiffiffi
2

p
Rp,

and has a full width around Rc2 varying as ρ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffi
D2Rp

p j sinðθÞj. Particles swept outward by the cat’s

eye then gain momentum as _PN ¼ 4
ffiffiffi
2

p
Rp

ffiffiffiffiffiffiffiffiffiffiffiffi
D2Rp

p
×R

dθ0
_~NLðRc2; θ0Þj sin θ0j. The normalized wave angular

momentum is NLD2
2, so equating wave and particle

momentum gives

γðthÞ2 ≡ _d2 ≡
_D2

Rp
¼

�
4

ffiffiffi
2

p

π

�
d−1=22 E2; (6)

which integrates to

d2ðtÞ ¼
�
d3=22i −

3

2

�
4

ffiffiffi
2

p

π

�
E2t

�2=3
: (7)

For γ1, the measured damping [Eq. (4)] is about twice as
large as the model estimate of Eq. (5). This suggests that the

outward flux _~NLðRw; θÞ preferentially enters the 0 < θ < π
cat’s eye, rather than entering the wall at π < θ < 2π. This
is plausible, since idealized E × B drift velocities are
always parallel to the wall.
For γ2, the measured damping is about half as large as the

Eq. (6) estimate for initial d2 magnitudes, and no time
signature of the 2=3 exponent is seen experimentally. Both
effects suggest that the simplemodel needs to incorporate the
outward radial velocity vc of the inner cat’s eye edge during
damping. Damping causes the width ρ to decrease, so the
inner edgemoves outward towardsRc2 at velocity vc ¼ _ρ=2.
For Fig. 3 with γ2 ∼ 7 × 10−3=s at t≳ t�, we estimate
vc ∼ 0.2 mm=s, which equals the halo velocity vh. Thus,
a factor-of-two reduction in γ2 could easily result, and the
“accelerated” d−1=22 damping prediction of Eq. (6) at small d2
would be mitigated. Of course, the relative magnitudes of nh
and vh at any given flux nhvh depend on the specifics of the
nonideal flux-inducing process. In simulations, we also find
that plasma diffusion can affect the late-time evolution.
We note that this flux-induced damping proceeds alge-

braically as −γt only if the flux is constant in time. That is,
Eq. (5) could also be written δD1 ¼ ð2Rw=πNLÞδNL, with
no rates at all; in this sense, the damping is analogous to the
more visible “spiral arm” damping [13] which results when
large amplitude m ¼ 2 excitation causes the major axis of
the ellipse to “inject” particles into the trapping region. In
both cases, the damping results from the backreaction as the
wave moves particles (vorticity) across the nonlinear
trapping region.
This flux-induced damping may be dominant in non-

neutral plasmas with nonzero expansion rates [10], and
may be important in techniques where precision diocotron
mode control is required [5,12]. Moreover, the plasma
effects of mobility, diffusion, and viscosity have analogues
in nonideal fluid flow. Fluid viscosity causes diffusion of
vorticity, and so causes rapid spreading of sharp vorticity
edges, and 3D end effects and geostrophic effects may
cause outward vorticity fluxes. Thus, this novel flux-driven
form of resonant damping may be broadly relevant to both
plasmas and geophysical fluids.
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