
 

Plasma Heating due to Cyclic Diffusion across a Separatrix
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We observe plasma heating due to collisional diffusion across a separatrix when a magnesium ion
column in a Penning-Malmberg trap is cyclically pushed back and forth across a partial trapping barrier.
The barrier is an externally applied axisymmetric “squeeze” potential, which creates a velocity separatrix
between trapped and passing particles. Weak ion-ion collisions then cause separatrix crossings, leading to
irreversible heating. The heating rate scales as the square root of the oscillation rate times the collision
frequency and thus can be dominant for low-collisionality plasmas. The particle velocity distribution
function is measured with coherent laser induced fluorescence and shows passing and trapped particles
having an out-of-phase response to the forced plasma oscillations.
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Electric and magnetic field inhomogeneities in plasmas
can create collisional boundary layers between trapped and
passing particles. These boundary layers are predicted to
enhance plasma transport [1,2], dissipate poloidal rotation
[3], and damp waves [4,5]. Experiments, numerical sim-
ulations, and theories on tokamaks [6,7], stellarators [8,9],
and pure electron plasmas [10–14] have shown increased
transport and wave damping resulting from applied field
inhomogeneities. However, prior experiments have not
directly observed the signature

ffiffiffiffiffiffiffiffiffiffi
νcfsl

p
scaling of these

boundary layer analyses, where νc is the collisionality and
fsl is the frequency at which the particles are cyclically
pushed across the separatrix.
A heating rate proportional to

ffiffiffiffiffiffiffiffiffiffi
νcfsl

p
is similar to the

viscous heating of a sheared fluid caused by an oscillating
plate [15,16]. Here, oscillating untrapped plasma takes the
place of the plate, transferring energy and momentum
diffusively into the trapped plasma through a boundary
layer of width proportional to

ffiffiffiffiffiffiffiffiffiffiffiffi
νc=fsl

p
, as in the classic

fluid problem.
In this Letter, we present quantitative measurements of

the particle dynamics in the presence of a velocity sepa-
ratrix and of the resulting plasma heating induced by
collisional diffusion across this separatrix. Trapped and
passing particle populations are created by applying a
cylindrically symmetric electrostatic squeeze near the
middle of a pure ion plasma column. When the plasma
is cyclically pushed through this potential barrier, the
trapped and passing particles experience different dynam-
ics, forming a collisional boundary layer. The particle
dynamics are directly measured using a coherent laser
induced fluorescence technique, and the trapped (passing)
particles are observed to move in (out of) phase with the
applied forcing, in quantitative agreement with a recent
collisionless adiabatic invariant analysis [17].

Ion-ion collisions cause velocity diffusion and separatrix
crossings, which leads to irreversible heating scaling as
_T=T ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νcfslðeφsÞ2

p
δL2, where δL is the amplitude of the

forced oscillation through the separatrix potential eφs
created by the externally applied Vsqz. This heating is in
quantitative agreement with recent theory [17]. The cyclic
nature of the oscillation, effectively restarts the diffusion
process at each cycle, resulting in “cyclic diffusion” of
particles across the separatrix.
These experiments for the first time confirm the sig-

nature
ffiffiffiffiffiffiffiffiffiffi
νcfsl

p
scaling of the collisional separatrix heating,

by changing the rate fsl at which the plasma is oscillated
through the squeeze and by changing ion-ion collisionality
νc over a range of 100× in νcfsl.
A Penning-Malmberg trap with a wall radius RW ¼

2.86 cm is used to confine un-neutralized magnesium ions
in a magnetic field of B ¼ 3 T [18], as shown in Fig. 1.
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FIG. 1. Pure ion plasma in a Penning-Malmberg trap forced
through squeeze with oscillating voltage Vsl. The figure shows the
plasma pushed to the right, defined as phase 0°. The top curve
sketchespotential along themagnetic field at the laser radial position.

PHYSICAL REVIEW LETTERS 123, 105002 (2019)

0031-9007=19=123(10)=105002(5) 105002-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.105002&domain=pdf&date_stamp=2019-09-06
https://doi.org/10.1103/PhysRevLett.123.105002
https://doi.org/10.1103/PhysRevLett.123.105002
https://doi.org/10.1103/PhysRevLett.123.105002
https://doi.org/10.1103/PhysRevLett.123.105002


These traps can contain the same charged particles in steady
state for weeks [19], by using weak “rotating-wall” electric
potentials [20]. Using laser induced fluorescence diagno-
stics on the ground state of Mgþ (λ ≃ 280 nm), the plasma
radial density profile nðr; zLÞ and temperature Tðr; zLÞ are
measured at the laser location zL, and the 2D density nðr; zÞ
is then calculated using a Boltzmann-Poisson solver [21].
A typical plasma, axially confined with Vconf ¼ 100 V, has
a length Lp ≃ 11 cm and a radially uniform density n0 ≃
2 × 107 cm−3 out to Rp ≃ 0.5 cm, resulting in an almost
rigid E × B plasma rotation at a frequency fE×B ≃ 10 kHz.
The ions cool toward 0.04 eV from collision with neutral
H2 at pressure P ≃ 10−8 torr and applied weak cyclotron
heating on the 24Mgþ ions controls the plasma temperature
over the range 0.04 < T < 1 eV. Initial radial temperature
profiles are uniform within 10% inside most of the plasma
and typically 25% warmer on the edge (see, e.g., Ref. [22]).
The temperature is presumed to be uniform in z.
For these experiments, a velocity separatrix is created by

applying a squeeze potential Vsqz to an annular electrode
as shown in Fig. 1. The cyclic axial plasma flow (sloshing)
is formed by adding nominally sinusoidal voltages
�Vsl cosð2πfsltÞ to the end confinement voltagesVconf , with
theþ (−) referring to the left (right) end. Typically, the slosh
frequency fsl ¼ 500 Hz, and the slosh amplitude Vsl ≃ 50

Vp effectively displaces each end a distance �δL ≈ 0.5 cm.
To test recent theory [17], these experiments are

performed in the “superbanana” regime defined by
νc ≪ 2πfsl ≪ 2πfb [8,17]. Here the axial bounce fre-
quency is fb ¼ v̄=2Lp ≃ 10 kHzð10 cm=LpÞðT=1 eVÞ1=2
with v̄ ¼ 2 × 105ðT=1 eVÞ1=2 cm=s. The classical ion-
ion collision rate given by νc ≡ 4

3

ffiffiffi
π

p
nv̄b2 ln ðrc=bÞ≃

1.0 s−1ðn=107 cm−3ÞðT=1 eVÞ−3=2. In this temperature
regime, bulk viscous heating (scaling as νc=fsl) is sub-
stantially weaker [23] than the separatrix heating. Also
fsl < fb, so that the (νc-independent) heating due to
excitation of bounce resonances is minimized [23].
The particle dynamics is measured using a coherent laser

induced fluorescence (LIF) technique [24], which measures
the parallel velocity distribution function Fðv; zLÞ coherent
with the phase θðtÞ of the forced plasma sloshing.
Reference [18] describes the ground state Mgþ LIF scheme
at 280 nm, while Ref. [24] describes the coherent LIF
technique. The laser wavelength is set to be resonant with a
Mgþ ion moving at velocity v. The plasma is then sinus-
oidally forced back and forth through the separatrix φs for
500 ms (250 cycles at 500 Hz) and the time of arrival of
each fluorescent photon is recorded along with the phase
of the slosh. The plasma is then allowed to reequilibrate
for 10 s, and the process is repeated for 100 different laser
wavelengths, encompassing the entire particle velocity
distribution.
Postprocessing of the data assigns each photon from

each wavelength (velocity) into 16 phase bins θj ¼ j2π=16

corresponding to the slosh phase at the photon time, and
the entire phase-coherent distribution is reconstructed as
Fðv; θj; zLÞ. Because of the finite size of the laser beam and
viewing volume, these measurements are convolved over
a 0.2 cm diameter, 0.3 cm long cylinder centered at zL.
The beam diameter was selected to optimize the signal to
noise and minimize nonlinear distortion of the distribution
function.
Figure 2(a) shows the coherent Fðv; θj; zLÞ, obtained

during 125 slosh cycles, at two phases corresponding to the
right (phase 0°) and left (phase 180°) slosh extremes. For
phase 0° (red dots), the plasma is being forced to the right as
shown in Fig. 1. Therefore, the trapped particles at the laser
location zL are compressed, giving a larger density at low
velocity. In contrast, the density of passing particles at zL
decreases to equalize the potential along a given field line.
For phase 180° (blue triangles), the plasma is forced to the
left, and the density changes are reversed. The dotted line
of Fig. 2(a) is the Maxwellian distribution FMðvÞ before
sloshing, and the two vertical gray dashed lines indicate the
minimum particle velocity vLsep at the laser location required
to cross the separatrix. The asymmetries in the measured
FðvÞ are due to small fractions of magnesium isotope 25
and 26.

(b)

(a)

FIG. 2. (a) Measured velocity distribution shown for phase 0°
(plasma pushed to the right) and phase 180° (plasma pushed to
the left). (b) Symmetric coherent response of the velocity
distribution. Measurements are shown with squares, and the
solid line is the theory prediction averaged over the 0.1 cm radius
of the laser beam. Horizontal axes are normalized particle
velocity.
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We also observe that the entire distribution of particles
is sloshing at a low velocity. For the data presented in
Fig. 2(a), vsl ≃ 5000 cm=s ≃ 0.03v̄ is measurable, but too
small to be visible on this plot. Assuming a forced
sinusoidal oscillation of the plasma, the in phase [25]
coherent change of the distribution is

δFcohðvÞ≡X15

j¼0

Fðv; θjÞ × cos θj: ð1Þ

Changes in the plasma density and temperature appear in
the v-symmetric response given by

δFcoh
symðvÞ≡ 1

2FMð0Þ
½δFcohðvÞ þ δFcohð−vÞ�; ð2Þ

where FM is the initial Maxwellian distribution. The
analogous v-antisymmetric response yields the fluid veloc-
ity of the particles.
The symmetric coherent response δFcoh

symðv; zLÞ is plotted
in Fig. 2(b). The horizontal axis is the measured particle
velocity at zL, normalized to the initial thermal velocity
v̄ ¼ 1.6 × 105 cm=s from temperature T ¼ 0.65 eV. Each
symbol corresponds to measurements performed at two
wavelengths of the laser, corresponding to �v. The
collision rate is νc ¼ 3.8 s−1, so a thermal ion experiences
about two collisions during the 250 slosh cycles. The
symmetric response δFcoh

symðvÞ clearly shows that the
trapped particles (v < 1.05v̄, at this measurement radius,
rL ¼ 0.4 cm) are in-phase with the forcing, whereas the
passing particles (v > 1.05v̄) are out of phase. At phase 0°
(sloshed right), the left-trapped density increases, while the
passing particle in the left density decreases. The velocity
where δFcoh

symðvÞ ¼ 0 is the measured separatrix velocity
vLsep at the laser location.
The curves of Fig. 2(b) are the predicted δFcoh

symðv; zL; rLÞ
from the theory of Ref. [17]. This theory first evaluates the
collisionless adiabatic response to the cosð2πfsltÞ oscil-
lation in the external potential. Assuming the variations are
small, so that linear theory can be applied, the perturbed
distribution is

δFðz;vz;r;tÞ¼−cosð2πfsltÞ
eδφðz;rÞ−ehδφiðr;EÞ

T
: ð3Þ

Here Eðz; vz; rÞ ¼ eφþ 1
2
mv2z is the energy of a particle,

δφðz; rÞ cosð2πfsltÞ is the perturbed electrostatic potential,
and the angle brackets indicate a “bounce average” over a
collisionless particle orbit, The particle dynamics is at fixed
r, but the potentials φðz; rÞ and δφðr; zÞ are determined by a
self-consistent solution of Poisson’s equation with the wall
boundary conditions. Thus, the separatrix energy Esepðz; rÞ
depends strongly on r, and passing particles will “shield”
the potential from trapped particles at other radii.

The long dashed line of Fig. 2(b) is the collisionless
theory prediction of δFcoh

symðvÞ for r ¼ 0.4 cm, showing a
sharp discontinuity at the separatrix. The discontinuity is
due to the bounce average of δφ being different for trapped
and passing particles. The short dashed lines are the theory
predictions for r ¼ 0.3 and 0.5 cm corresponding to the
edges of the laser beam. The solid line is the prediction of
δFcoh

symðvÞ averaged over the laser beam, predicting a smooth
measured distribution. Data with an increased beam size
(not shown) corroborate the effect of spatial averaging.
The particle kinetic energy required to pass through the

squeeze is a function of z position and radius in the plasma,
and we determine EL

sepðzL; rLÞ≡ 1
2
m½vLsepðzL; rLÞ�2 by

detecting the change of sign in the symmetric response
of δFcoh

symðvÞ occurring at vLsep, as shown in Fig. 2(b). Note
that the LIF measures the kinetic energy of particles only at
z ¼ zL, so particles with energy less than φðzL; rÞ are
not detected, since they do not have enough energy to
reach the diagnostic location. On axis r ¼ 0, at zmin, the
potential with respect to the trap wall is eφðzmin; r ¼ 0Þ ¼
14.89 eV, at the laser location is eφðzL; r ¼ 0Þ ¼
14.98 eV, and eφðzsep; r ¼ 0Þ ¼ 15.11 eV; this gives
a separatrix energy relative to the laser position of
EL
sep ≡ eφðzsep; r ¼ 0Þ − eφðzL; r ¼ 0Þ ¼ 0.13 eV. These

potentials are calculated from the Poisson-Boltzmann
equilibrium [21]. The estimated absolute accuracy is
�0.1 V due to uncertainty in the total number of ions,
and the estimated relative accuracy at various locations
is �0.02 V.
Figure 3(a) compares the LIF-determined EL

sep (squares)
to that calculated from the Boltzmann-Poisson equilibrium
eφðz; rÞ (open circles), as a function of radius. This
corroborates the interpretation of vsepL on Fig. 2(b).
Figure 3(a) shows that EL

sep is reduced by Debye shielding
in the center. Measurements at all seven radial locations are
performed on the same plasma, but due to repeated sloshing
through the squeeze potential some particles on the outside
edge of the plasma are lost. The plasma radius evolves from
0.64 to 0.57 cm over the course of the measurement. The
data are collected at “interlaced” radii to avoid systematic
drift. The theory predictions of Fig. 3 are calculated at each
specific radius for the measured experimental conditions.
The lines on Fig. 3 are merely to guide the eye.
Integrating δFcoh

symðv; rÞ gives the density perturbation
δncohðrÞ plotted versus radius in Fig. 3(b) (triangles), with
the theory prediction from integrating Eq. (2) (open
circles). At large radii most particles are trapped and
δncoh > 0, because the trapped density increases as the
trapped plasma is compressed. In contrast, at small radii
δncoh < 0, because most particles are passing and can move
to shield out trapped particle density charges.
The second half of this Letter focuses on the plasma

heating caused by collisions acting on this particle dyna-
mics. As the trapped particles are compressed or expanded
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by the slosh, they undergo an adiabatic change in temper-
ature δT ¼ �2TðδL=LÞ2 every period of the slosh oscil-
lation, where the � indicates that δT reverses sign across
the separatrix. Collisions then cause particles with energy
near the separatrix energy eφs to make a trapped or passing
transition before the slosh perturbation reverses; this
defines a collisional boundary layer of energy width ΔE ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Teφsνc=ð2πfslÞ

p
around the separatrix. For the case

presented in Fig. 2(b), the width of the boundary layer
is small with ΔE ¼ 0.02 eV.
Collisions make the adiabatic heating of the trapped

particles irreversible, which leads to plasma heating scaling
as fslðeφsÞ2ðδL=LÞ2αBL, where αBL is the fraction of
particles in the boundary layer. For a Maxwellian distri-
bution, αBL ∼ ðΔE= ffiffiffiffiffiffiffiffiffiffiffi

Teφs
p Þ expð−eφs=TÞ, so the heating

rate is

_T
T
∼

ffiffiffiffiffiffiffiffiffiffi
νcfsl

p
ðeφs=TÞ2ðδL=LÞ2 expð−eφs=TÞ: ð4Þ

The exact expression for the heating rate can be found in
Eq. (51) of Ref. [17] and was used to calculate the open
circles of Fig. 3(c) for each radius. Theory and experiment
are in quantitative agreement at each radius and show that
the maximum heating occurs where about half the particles

are trapped. Note that theory generally describes the
heating per cycle scaling as

ffiffiffiffiffiffiffiffiffiffiffiffi
νc=fsl

p
. Experimentally,

we measure the heating rate (per unit of time) that scales
as fsl

ffiffiffiffiffiffiffiffiffiffiffiffi
νc=fsl

p ¼ ffiffiffiffiffiffiffiffiffiffi
νcfsl

p
. The temperature is measured

before and after the multicycle slosh through a squeeze
at which times the distributions are close to Maxwellian.
We vary Vsqz to change the separatrix energy eφs.

In these experiments, we observe a heating rate with the
ðeφsÞ2 expð−eφs=TÞ δL2 scaling of Eq. (4) over the range
3 < Vsqz < 15 V and 0.35 < δL < 1.8 cm.
We also for the first time observe the

ffiffiffiffiffiffiffiffiffiffi
νcfsl

p
heating rate

characteristic of boundary layer analysis. Figure 4 displays
the measured heating rate for a wide range of plasma
parameters, confirming the

ffiffiffiffiffiffiffiffiffiffi
νcfsl

p
scaling over a factor of

100 in νcfsl. Here, the four different symbols represent νc
and fsl values as shown. The heating rate _T=T is scaled as
expected theoretically for the ðδL=LÞ2 amplitude of the
displacement, for the ðeφs=TÞ2 ratio of potential to thermal
energies, and for the expð−eφs=TÞ dependence of the
number of particles at the separatrix energy. The squares
are the normalized heating rate for the low-collisionality
plasma (νc ≃ 3.8 s−1) of Figs. 2 and 3 at rL ¼ 0.3 and
0.4 cm. The dot is from a plasma with νc ¼ 7.8 s−1. The
blue symbols are for νc ≃ 210 s−1, the triangles are for
δL ¼ 1 cm, diamonds are for δL ¼ 1.8 cm, and sloshing
frequencies are 50 < fsl < 1200 Hz. The symbols of Fig. 4
cover a range of 55 in collisionality νc and 24 in frequency
fsl. The solid line is the heating rate predicted by theory
with no adjustable parameter from Eq. (51) of Ref. [17].
To control the temperature and therefore the ion-ion

collision rate, we typically keep the hydrogen pressure
fixed and change the amount of cyclotron heating. We have
used other combinations of hydrogen pressure and cyclo-
tron heating to obtain the same temperature. The heating
due to separatrix crossings is caused by ion-ion collisions,
and we observe the same separatrix heating rate for
other combinations of pressure and cyclotron heating.
The (slower) cooling collisions with neutral H2 molecules
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are not essential to the observed heating due to separatrix
crossing.
Experimentally, it is worth noting that oscillating the

plasma in the absence of a separatrix produces negligible
heating. Furthermore, applying a negative squeeze voltage
does not produce separatrix heating, since it does not create
a separatrix between separate trapped populations. For
example, applying Vsqz ¼ −15 V on a plasma similar to
the one used in Figs. 2 and 3 results in a negligible heating
rate _T ≃ 0.02 eV=s at rL ¼ 0.4 cm.
Other mechanisms can also heat the plasma, albeit at a

much slower rate when νc ≪ 2πfsl. For instance, cyclic
plasma compressions and expansions causes bulk viscous
heating of order νcTðδL=LÞ2 [23], and our “slosh” pro-
cedure also compress and expands the trapped particles.
For the plasma data of Fig. 3, this bulk viscous heating is
maximum at r ¼ 0.42 cm, where _Tvis ¼ 0.009 eV=s about
100 times smaller than the heating attributed to separatrix
dissipation, as shown by the dotted line at the bottom of
the graph. For the large collisionality data νc ¼ 210 s−1 of
Fig. 4, bulk viscous heating is about 15 times smaller that
the heating attributed to separatrix dissipation.
To summarize, we have used external electrodes to create

a controlled velocity space separatrix and have forced the
plasma to oscillate through it at frequencies in the super-
banana regime νc ≪ 2πfsl ≪ 2πfb. We experimentally
identify passing and trapped particles and have observed
directly the coherent particle response in quantitative
agreement with newly developed theory. Furthermore,
these experiments for the first time confirm plasma heating
scaling as

ffiffiffiffiffiffiffiffiffiffi
νcfsl

p
, in quantitative agreement with super-

banana heating due to particle diffusively crossing an
energy separatrix. This heating mechanism is relatively
large for low-collisionality plasma and can be significant
for fusion plasma.
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