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Electron Acoustic Waves (EAW) with a phase velocity less than twice the plasma thermal velocity
are observed on pure ion plasma columns. At low excitation amplitudes, the EAW frequencies agree
with theory; but at moderate excitation the EAW is more frequency-variable than typical Langmuir
waves, and at large excitations resonance is observed over a broad range. Laser Induced Fluorescence
measurements of the wave-coherent ion velocity distribution show phase-reversals and wave-particle
trapping plateaux at ±vph, as expected, and corroborate the unusual role of kinetic pressure in the
EAW.

Electron Acoustic Waves (EAW) are electrostatic
plasma waves with unusually small phase velocity com-
pared to Langmuir waves. They have been extensively
studied theoretically [1, 2] and numerically [3], gener-
ally in the weakly non-linear limit where a small flat-
tening of the particle distribution at vph eliminates the
otherwise strong Landau damping. Simulations, the-
ory, and pure electron plasma experiments [4] corrobo-
rated the low frequencies predicted for small-amplitude
EAWs. Recently, EAW modes have been identified as
contributing to back-scatter light in laser-foil experi-
ments [5, 6]; and simulations [7, 8] and analysis [9]
of electromagnetic-electrostatic mode couplings in these
bounded, relativistic plasmas support the EAW inter-
pretation. Simpler Vlasov-Poisson simulations [10] have
probed the highly non-linear amplitude regime, suggest-
ing that EAW-like modes with strong harmonic content
(called KEEN waves) can be excited over a wide range
of frequencies.

In this letter we characterize misleadingly named EAW
frequencies and wave-particle interactions in trapped
pure ion plasma columns, in the small- and large-
amplitude regimes. The ion plasma EAWs are directly
analogous to EAWs in neutral plasmas or pure elec-
tron plasmas, since only one species participates in the
wave. The measurements verify the dispersion relation
predicted for small amplitude EAWs, and demonstrate
the strong frequency variability of large amplitude waves.
The LIF measurements directly image the velocity-space
trapping, and elucidate the unusual negative dynamical
compressibility which produces the low EAW frequencies.

The ion plasma trap consists of a series of hollow con-
ducting cylinders of radius Rw = 2.86 cm contained in
ultrahigh vacuum at P ≈ 10−10 Torr, with a uniform
axial magnetic field of B = 3 Tesla. The plasma is
singly-ionized magnesium (79% 24Mg+, 10% 25Mg+, 11%
26Mg+), with total density is n ∼ 1.5 × 107cm−3, over
a radius Rp ∼ 0.45 cm, with length Lp ≃ 9 cm centered
around z = 0. The quiescent plasma has a Maxwellian
velocity distribution, with temperature controlled over
the range 0.3 < T < 1.5 eV. These parameters give
Debye length 0.1 < λD < 0.24 cm, thermal velocities
110. < v̄ ≡

√

T/m < 245. cm/ms, ion-ion collision rates

8 > νii > 0.7 sec−1, and plasma frequency fp = 165 kHz.
The plasma is held in steady state with a weak “rotating
wall” electric field [11], which is turned off for the 200 ms
of each wave measurement .

We excite standing EAWs and higher-frequency Lang-
muir waves (denoted Trivelpiece-Gould waves in bounded
cylindrical geometry). Both waves are azimuthally sym-
metric (mθ = 0), with longest possible axial wavelength
(mz = 1) λ ≈ 2Lp, and with lowest radial mode num-
bers (mr = 1). The waves are excited by an amplitude-
rounded burst of ∼ 100 cycles at chosen frequency fexc

and amplitude Aexc, applied to a cylinder of z-extent
(2.9 → 8.7cm). The subsequent wave-induced wall volt-
age Vw(t) is recorded from a separate cylinder of z-extent
(−2.9 → 0cm), and is fit in overlapping time segments as

Vw(t) = Aw(t) cos(θw(t)) (1)

giving θw(t), with slowly damping Aw(t) and fw(t) ≡
dθw/2πdt.

When the amplitude is turned down sufficiently
(Aexc ∼ 50 mV), the waves are observed only at their res-
onant frequencies, plotted in Fig. 1 as dots (EAW) and
squares (TG wave) for different temperatures. These dots
agree well with the near linear theory fEAW(T ) of Refs.
1 and 3. At temperatures above 1.3 eV no waves are
observed at comparably low excitation amplitude. The
EAWs are observed to damp exponentially at these small
amplitudes, with 30 < γ < 3000s−1; and this is about
10× faster than TG waves in this regime. However at
larger amplitude, the waves are excited over a range of
different frequencies and furthermore they ring at fre-
quencies different than fEAW or fexc because the excita-
tion has significantly modified the distribution function.
Excitation of EAW modes requires about 10× greater
amplitude and/or duration compared to TG waves. With
insufficient excitation, the EAW damps within a few cy-
cles, because the requisite distribution flattening near vph

has not been effected.
The predicted EAW and Langmuir dispersion would be

a distinctive “thumb” shape [1] for unbounded plasmas,
with the fast Langmuir f(kz) rising gently from fp, and
the slow acoustic EAW f(kz) meeting it at ktotλD ∼ 1

2
.

In these radially bounded plasmas, the fast (TG) branch
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is also acoustic [12], with frequency fTG = fp kz/ktot plus
thermal corrections, with k2

tot ≡ k2
z + k2

⊥
, k⊥ ≡ xr/Rp,

and x2
r ≈ 2/ ln(Rw/Rp) ∼ 1.4. The predicted EAW dis-

persion [3] is always acoustic, with fEAW = αv̄kz/2π; for
unbounded plasmas theory predicts normalized phase ve-
locity α ≡ vph/v̄ ≡ 2πf/kzv̄ ∼ 1.3, and for our bounded
plasmas we find 1.4 < α < 2.1. The theory curve
(dashed) of Fig. 1 is obtained from the prescription of
Ref. [3], giving α = 1.7 at T = 0.7eV.

However, we find that EAW-like modes can be read-
ily excited over a range of frequencies around the small-
amplitude resonant frequencies, using only “moderate”
amplitude drives. An off-resonant drive at fexc readily
modifies the velocity distribution F (v) so as to make the
mode resonant, continuing to ring at fw = fexc; and
this occurs for fexc above or below the near-linear fEAW.
Adjustment to resonance for fexc > fEAW could be ex-
plained by simple heating; but adjustment to resonance
for fexc < fEAW requires a more subtle re-arrangement
of F (v). The bar at T = 0.8 eV in Fig. 1 represents the
range of frequencies over which a 100 cycle burst with
Aexc = 300 mV resulted in a wave with fw = fexc con-
tinuing for hundreds to thousands of cycles, i.e. with
γ/f . 10−2. Similarly, EAW-like waves can be excited
at high temperatures where no near-linear solution exists:
Aexc = 200 mV for 100 cycles on a T = 1.4 eV plasma re-
sulted in robust modes in the band of frequencies shown
in Fig. 1.

The distinctive features of these EAW-like modes arise
because vph lies in the body of the velocity distribu-
tion F0(v). For a single travelling wave with potential
δφ1(z, t) = A1exp{ikz(z − vpht)}, linear theory predicts
velocity perturbations from the wave potential, as

δF1(v) = (qδφ1/m)
∂F0/∂v

v − vph

. (2)

The density perturbation from particles moving faster
than vph partially cancels the (opposite-sign) density per-
turbation from the slower bulk particles; and the negative
pressure from particles with v > vph will be seen to be
dominant.

Here, we measure δF (v) for a standing EAW by
performing Laser Induced Fluorescence Doppler spec-
troscopy correlated with the phase θw of the received
wave similar to Fig. 4 of Ref. [13]. The plasma near
radial center is illuminated with a laser beam resonant
with ions having z-velocity vℓ; and individual fluorescent
photons received at z =0 are detected, giving a “rate”
P (vℓ, t) at which photons are detected, represented by a
series of delta-functions. The correlation integral

δF (vℓ) ≡

∫ t2

t1

dt
P (vℓ, t)

t2 − t1
cos[(θw(t) − θw(0)] (3)

is then calculated, with (t1, t2) encompassing ∼ 103 pho-
tons over ∼ 100 wave cycles after excitation. Repeating

this process for 250 velocities vℓ (on the same plasma,
each after 5 seconds of re-equilibration) then gives δF (v),
here in units of photons/ms for 1 mW of illumination.

Figure 2(a) displays the coherent δF (v) (dots) for a
standing EAW excited to moderate amplitude at f =
10.7 kHz (▽ in Fig. 1), compared to the prediction
(curve) from a “two wave trapping” model described be-
low. The sign-change at v = 0 comes from ∂F0/∂v, and
sign-changes are observed at vph = ±208 cm/ms from the
two counter-propagating waves, as expected from Eq. (2).
The measured vph gives wavelength 1

2
λ = vph/2f =

9.7cm, i.e. about 10% larger than Lp, as is typical of
waves in these traps [14].

A similar wave-coherent LIF technique gives the full
ion velocity distribution F (v, θj) for each of 8 wave phase-
bins θj = 2π(j/8), again only at z=0. Figure 2(b) shows
5 of these 8 phase-bins, plus the phase-averaged distri-
bution 〈F (v)〉 before, during, and after the wave. Be-
fore the wave, 〈F 〉 closely matches a Maxwellian with
T = 0.31 eV; during the initial 10 ms of the wave,
〈F 〉 shows a bulge which is flat only locally at ±vph;
and 100 ms after excitation, the wave has damped and
〈F 〉 is a barely distorted Maxwellian approximated by
T = 0.44 eV. (The persistent glitches just to the left
of v=0 and the 10% left-right sensitivity differences are
laser-cooling artifacts.) In contrast, the phase-coherent
F (v, θj) curves show the two broadly flattened trapping
regions around ±vph, of maximal extent for phases j=1
and j = 5. These wave-trapped particles propagate in
the wave troughs past the photon detector at z = 0, and
then reflect at the plasma ends, remaining trapped dur-
ing hundreds of end reflections.

The curves of Fig. 2 represent a simple standing
wave model of phase-space, superimposing 2 phase-locked

waves of amplitude A1 with opposite vph, each per-
turbing and trapping particles in separate Maxwellian
distributions. The model distributions conserve energy
ε = 1

2
mw2 + qδφ1(z) separately in each wave frame de-

fined by w ≡ v± vph. A smooth transition from trapped
(t) to untrapped (u) particles is modelled by [15]

Ft(ε)=exp
{

−(qA1+ 1
2
mv2

ph)/T
}

for ε<qA1

Fu(ε)=exp
{

−(ε+ 1
2
mv2

ph ± vphu(ε))/T
}

for ε>qA1,(4)

with ± representing w > 0 and w < 0, u(ε) ≡
∫ ε

qφ1

dε′/I(ε′) , and I(ε) ≡
∫ Lp

0
(dz/Lp)[2ε − 2qφ(z)]1/2.

Finally, the model is smoothed to the spatial and velocity
definition of the experiment, with δz/Lp and δv/2v̄ about
1/20. Although simplistic in some details, this model
contains the essence of particle trapping and 2-wave su-
perposition required to interpret the measurements. For
example, Eq. (2) suggests singularities at ±vph, but this
is mitigated by the trapping width ∆vT setting a lower
limit for v − vph, by the presence of 2 waves, and by the
experimental resolution.

In Figure 3, the EAW data (and modeling) of Figure 2
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is presented as a phase-space-like image of F (v, θw). Two
wave characteristics clearly visible in Figs. 2 and 3 are
the oscillating shift δv0 of the distribution peak, and full
wave-trapping plateaux widths 2∆vT . These are quanti-
tatively determined by the photon data. For the standing
wave model, these are predicted to be of magnitude

δv0vph = 2q A1/m

(∆vT )2 = 4qA1/m. (5)

Figure 4 shows the measured δv0 and ∆vT during the
damping of two separate standing EAWs, parameterized
by the received wall voltage amplitude Aw2. The open
symbols (⋄, �) show the wave of Figs. 2 and 3; and
the solid symbols show a more strongly excited wave at
f = 13.8 kHz on a T = 0.66 eV plasma. The Aw2 error
bars span the received amplitude during 5 ms time bins,
and the trapping width ∆vT is a visual estimate from
F (v, θj). The dashed lines represent Eqs. (5), using a
wall-voltage to 1-wave potential calibration Aw2 = (1.2×
10−3) 2A1. The oscillating body velocity δv0 decreases as
δv0 ∝ Aw2 for both waves, as expected.

The trapping width ∆vT of the smaller wave is ob-
served to decrease “immediately” during wave damping,

as ∆vT ∝ A
1/2
w2 . Flat wave-frame “cat’s-eye” regions in

F (v, z) do not imply a flat lab-frame F (v) anywhere ex-
cept possibly ±vph, and so no collisions are required to
decrease the observed ∆vT . For the largest trapping re-
gions, collisional smoothing would be expected at a rate
νs ∼ νiiv̄

2/∆v2
T ∼ 16 sec−1, i.e. in a time comparable

to the total evolution of the waves; and smaller regions
would be smoothed faster. In contrast, the larger wave
develops non-oscillating DC plateaux at ±vph which per-
sist even after the wave has largely damped. This larger
wave exhibits “fully nonlinear” effects of strong phase-
locked harmonic content at 2f in the received wall signal.
These two waves are represented by the △’s and ▽’s of
Fig. 1, showing the initial and final plasma temperatures
and wave frequencies.

From a fluid perspective, the low frequency of the
EAW arises because of an unusual negative dynamical
compressibility: the pressure oscillations are 180◦ out of
phase from the density oscillations, almost fully canceling
the electrostatic restoring force. We consider the oscillat-
ing density δn ≡

∫

dvδF , fluid velocity δVf ≡
∫

dv v δF ,
and pressure δP ≡

∫

dv(v − Vf )2δF . The first two mo-
ments of the Vlasov equation give

Vf/vph = δn/n,

δVf vph = 2(qδφ1/m+δP/nm)≡(2q δφ1/m)(1+χ).(6)

Here, χ−1 is the scaled dynamical compressibility given
by χ−1 ≡ (δn/δP )(mω2

p/k2
tot), where we have used Pois-

son’s equation k2
totδφ1 = 4πeδn. Combining Poisson’s

equation with Eqs. (6) gives χ in terms of (kz , k⊥) and
wave frequency f ; and simple low temperature limits can

be obtained from kinetic theory, giving

χ =
k2
tot

k2
z

f2

f2
p

− 1 TG
−→

3k2
⊥
λ2

D

EAW
−→

− 1 + α2k2
⊥

λ2
D. (7)

The values of χ obtained from the experimental parame-
ters are consistent with the theory perspective of Eq. (7).
For the TG mode at T = 0.3 eV with vph ≫ v̄, the pres-
sure is small and χ ∼ 0.29; the electrostatic restoring
force predominantly determines the frequency and vph.
For the corresponding EAW mode, χ ∼ −0.65; the neg-
ative pressure from v > vph particles in Eq. (2) almost
cancels the electrostatic restoring force, with the small
thermal term determining the (low) frequency. From
this perspective, it is not surprising that nonlinear effects
which modify 〈F (v)〉 can readily change the frequency of
these low-phase-velocity EAWs.

It is worth noting that the mode frequencies observed
here are well approximated by the Dorning theoretical
approach, even for the large amplitude case. For exam-
ple, utilizing one of the measured velocity distributions
of Fig. 2(b), one obtains vph/v̄ = 1.85 compared to the
coherently measured vph/v̄ = 1.86 [16]. However, the
driver strength, duration, and coupling characteristics
determine the initial transients and strongly affect 〈F 〉,
so predicting plasma response and mode couplings from
the initial F (v) remains difficult.
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FIG. 1: (color online) Measured small-amplitude wave disper-
sion and theory (dashed) for EAW and TG modes. Stronger
drive gives any frequency waves (gray bars).

FIG. 2: (color online) (a) Measured coherent δF (v); (b) Mea-
sured phase-binned F (v, θj) for 5 of 8 bins, and average 〈F (v)〉
before, during and after the wave; all compared to standing-
wave model (curves).
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FIG. 3: (color online) Measured phase-space-like F (v, θw, z=
0) image for the EAW of Fig. 2 represented by color contours;
the lines represent the standing wave model.

FIG. 4: Measured δv0 and ∆vT during decay of two EAWs.
Dashed lines are prediction of Eqns. (5).


