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A simple 1D model is presented for the heating caused by cylindrically-symmetric
plasma waves in a non-neutral plasma column due to the addition of a symmetric
squeeze potential applied to the center of the column. We study this model by using
analytical techniques and by using a numerical grids method solution, and we compare
the results of this model to previous work (Ashourvan and Dubin (2014)). squeeze
divides the plasma into passing and trapped particles; the latter cannot pass over the
squeeze potential. In collisionless theory, enhanced heating is caused by additional
bounce harmonics induced by the squeeze in the particle distribution, leading to
Landau resonances at energies En for which the bounce frequency ωb(E) and wave
frequency ωm satisfy ωm = nωb(En). As a result, heating is substantially higher than
the case with no squeeze, even when ωm is much greater than the thermal bounce
frequency ωb(T ). Adding collisions to the theory creates a boundary layer at the
separatrix between trapped and passing particles that further enhances the heating
at small ωm/kmvs , where km is the axial wavenumber and vs is the velocity at the
separatrix. However, at large ωm/vs , the heating from the separatrix boundary layer
is only a small correction to the heating from collisionless resonances in the trapped
particle distribution function.

1. Introduction
Trivelpiece–Gould (TG) modes are electrostatic normal modes of a cylindrical

plasma column [Trivelpiece and Gould (1959)]. In this paper, we study the plasma
heating (and associated wave damping) caused by cylindrically-symmetric Trivelpiece–
Gould modes with frequency ωm and axial wave number km, after applying a
cylindrically-symmetric ‘squeeze’ potential to the plasma equilibrium. Without the
squeeze, the heating is caused by Landau damping of the wave energy, due to
resonant particles with axial velocity v equal to the wave phase velocity ωm/km. With
the squeeze, the heating is enhanced because new resonances appear in the velocity
distribution. The new resonances occur because the squeeze potential changes the
particle orbits, creating a non-sinusoidal time-dependence for the wave as seen in the
particle frame, which induces new resonances at harmonics of the particle bounce
frequency ωb, i.e. where ωm = nωb(E) for integer n (where E is the particle kinetic
energy).

This effect was studied in a previous paper (Ashourvan and Dubin 2014), where it
was shown that the enhanced heating scales as the square of the applied squeeze
potential ϕs for small squeeze, provided that the wave phase velocity is large
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compared to the thermal speed vT =
√

T/m. Otherwise, the wave damping is
dominated by standard Landau damping and is largely independent of squeeze
for small squeeze; see Fig. 3 of the reference. However, in order to formulate a
general theory that fully accounts for the effects of radial inhomogeneity in the
plasma, several simplifying approximations were made. First, collisional effects on
the mode damping were neglected. Second, the squeeze potential, while allowed to
have a general functional form in radius and axial position, was treated as a small
perturbation, and consequently particles trapped by the squeeze were neglected. A
squeeze potential with maximum magnitude ϕs traps particles to the left and right
of the squeeze if their velocities satisfy |v| < vs, where the separatrix velocity vs is
defined as

ϕs =
1

2
mqv

2
s . (1)

The resulting theory was tested against collisionless numerical simulations that
kept trapped particle effects and finite squeeze amplitude (but neglected radial
inhomogeneity for simplicity), and good agreement between the simulations and
theory for both the damping rate and the frequency shift to the modes was found for
small applied squeeze potentials, ϕs/T < 1.

However, in this paper we show that trapped particle effects on the enhanced mode
damping due to applied squeeze can be significant, and we describe the conditions
under which they can be neglected. We include collisional and trapped particle effects
on the squeeze damping of TG modes via a simplified 1D model of the system. For
simplicity the model neglects radial inhomogeneity as well as collective shielding of
the potentials, but includes enough physics in order to provide some insight into the
contributions of trapped particles and collisions to the wave damping. The model
treats the squeeze as an infinitesimally narrow reflecting potential that partitions low
energy particles on the left and right side of the plasma, without assuming that the
magnitude of the potential is a small perturbation. The model includes the effect of
weak collisions via a Fokker–Planck collision operator.

We find that, for small squeeze and large phase velocity, this model yields enhanced
wave damping due to squeeze with the same square dependence on the applied
squeeze potential as in Ashourvan and Dubin (2014). However, trapped particles
dominate the squeeze damping as opposed to the results obtained in Ashourvan and
Dubin (2014). We estimate under what conditions trapped particles can be neglected
when evaluating the enhanced damping caused by squeeze, and we find that these
conditions were satisfied in the examples studied in Ashourvan and Dubin (2014).

Finally, the model shows that collisions can further enhance the wave damping
due to a boundary layer at the separatrix between passing and trapped particles
that is created by the partition squeeze. Trapped particles respond differently to
the drive potential than passing particles and consequently a discontinuity in the
particle distribution function develops at the separatrix velocity. Collisions smooth
out the discontinuity, creating a boundary layer of width proportional to

√
ν where

ν is the collision frequency, and causing heating proportional to
√

ν. This enhanced
collisional boundary layer heating has been shown to lead to strongly enhanced
damping and particle transport for various types of waves (Hilsabeck and O’Neil
2003; Kabantsev and Driscoll 2006; Dubin and Tsidulko 2011; Driscoll et al. 2013).
For small ν/ωm the boundary layer damping effect is much larger than viscous
damping due to collisions (Anderson and O’Neil 2007) which scales like ν rather
than

√
ν.



Collisionless and collisional effects 3

Surprisingly, however, we find that this boundary layer collisional enhancement
effect is only important for low phase velocities, ωm/kmvs < 1. In the opposite regime
ωm/kmvs > 1 (the regime of interest in most TG wave damping experiments) we find
that the discontinuity between trapped and passing particles becomes small, and thus
the collisional heating becomes negligible. The discontinuity vanishes at large phase
velocities because the particle response to a wave of high-frequency compared to
the bounce frequency becomes independent of whether the particles are trapped or
passing.

In Sec. 2, we introduce our 1D slab geometry plasma model. We apply a small
standing sinusoidal (in both space and time) drive potential with angular frequency ωm

to the plasma and obtain the linear distribution function of a collisionless plasma in
response to the drive potential. In Sec. 3, we evaluate the resonant plasma heating. We
find that the trapped particles moving in z experience a non-sinusoidal mode potential
caused by the squeeze, producing high-frequency harmonics that can resonate with the
wave frequency to cause Landau damping and satisfy the condition ωb(En) = ωm/n,
where ωb(E) is the frequency of axial bounce motion of particles with energy E, even
when the mode phase velocity is large compared to the thermal velocity. We will see
that these added resonances cause an enhancement to the plasma heating rate that
has a |ϕs |2 dependence.

In Sec. 4, we add weak collisions to the system in the form of a Fokker–Planck
collision operator. Due to the discontinuities at the separatrix, the velocity derivatives
of this collision operator are large in this region. Using the boundary layer method we
obtain a local solution to the distribution function at the separatrix which has a width
proportional to

√
D, where D is the velocity diffusion coefficient (proportional to the

collision frequency). The boundary layer connects and smooths out the discontinuities
present in the collisionless theory. We evaluate the heating in the separatrix layer and
compare our analytical results to the heating evaluated from the numerical grids
method.

2. 1D model
In the plasma model presented here, we neglect radial variation for simplicity, we

assume the plasma ends are flat, and that particles undergo specular reflection at the
ends, z = ±L/2 where L is the length of the plasma column. We also assume that the
squeeze potential is symmetric in z with respect to the center of plasma. This is not
necessarily the case in the experiments, however this added symmetry simplifies the
problem. To further simplify the analysis we also assume that the squeeze potential
is narrow in z, taking it to be non-zero only at z = 0. Thus particles with velocities
satisfying |v| < vs undergo specular reflection from the squeeze, whereas particles
with |v| > vs are unaffected by it.

In our 1D model, collisionless plasma dynamics is described by the time evolution
of the 1D Vlasov equation

∂f

∂t
+ v

∂f

∂z
− 1

mq

∂δϕ

∂z

∂f

∂v
= 0 , (2)

where f (z, v, t) is the particle distribution function, δϕ(z, t) is the wave potential.
Due to the reflective boundary conditions, the distribution function must satisfy the
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following conditions:

f (±L/2, v) = f (±L/2, −v) at the plasma ends, (3)

f (0, v) = f (0, −v) at the squeeze, for trapped particles only. (4)

For a long thin plasma to the lowest order in ωm/ωp � 1, the boundary conditions
on the wave potential at the axial ends of plasma are ∂zδφ(±L/2) ≈ 0 (Prasad and
O’Neil 1983). Therefore, we take the wave potential δϕ(z, t) to be in the form of a
standing wave as follows:

δϕ(z, t) = |δφ| cos[km(z + L/2)] cos[ωmt − α0] (5)

= δφ(z)e−iωmt + δφ∗(z)eiωmt , (6)

where km ≡ πm/L,

δφ(z) = 1
2
δφ cos[km(z + L/2)], (7)

and δφ = |δφ|eiα0 . Note that this single-mode spatial form for the wave potential
does not include self-consistent effects produced by the squeeze: in a self-consistent
approach the squeeze potential changes the spatial form of the normal modes. This
effect was considered in Ref. Ashourvan and Dubin (2014), where it was shown to
produce an extra collisionless heating term. We neglect this self-consistent effect here
for simplicity, as we are interested in resonance and collisional effects unrelated to
the self-consistent potential terms.

For a small amplitude wave in the linear approximation the particle distribution is
given by

f (z, v, t) = n0(F0(v) + δf(z, v, t)) . (8)

Here, n0 is the density of a uniform neutralizing background charge (provided by
rotation at a given frequency through the uniform magnetic field in the actual plasma
system). The term n0F0(z, v) is the equilibrium distribution function and δf is the
perturbed distribution function due to the presence of the wave. The perturbed
distribution has the following form:

δf(z, v, t) = δf (z, v)e−iωmt + δf ∗(z, v)eiωmt . (9)

We choose the equilibrium distribution to be of the Boltzmann type:

F0(v) =
exp [−mqv

2/2T ]√
2πT/mq

, (10)

normalized such that ∫ ∞

−∞

∫ L/2

−L/2

F0dvdz = 1 . (11)

The presence of the squeeze is implicit in the (10): the function does not show a spatial
(z) dependence, however the squeeze potential is built into the distribution function
and particles with velocities |v| < vs are trapped and have different unperturbed
orbits than the passing particles. Thus δf must be solved separately for trapped and
passing particles. For a small amplitude perturbation we linearize the Vlasov equation
to obtain:

∂δf

∂t
+ v

∂δf

∂z
+ v

∂δϕ

∂z

F0

T
= 0 , (12)
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Figure 1. Plots of the potentials experienced by a left-trapped (Fig. 1(a)) and a passing
(Fig. 1(b)) particle along their unperturbed orbits.

where we used ∂vF0 = −mqvF0/T . We want to use Fourier series expansion to solve
for δf, however all the boundaries are of the reflective type. For a mode with odd
mode number m [see (5)] we see that trapped particles experience a non-sinusoidal
potential. Figures 1(a) and (b), respectively depict the potential experienced by a
left-trapped and a passing particle along their unperturbed orbit. Here z(t) is the
position of a particle as a function of time, moving at a constant speed |v| (in its
unperturbed orbit). The potential for passing particles is a cosine and the particle’s
bounce orbiting motion is identical to the motion of a particle moving at a constant
velocity, along an extended coordinate, under a periodic cosine potential. For trapped
particles this is obviously not the case and the potential (for odd m) as seen by the
particle is not of a cosine form.

We can convert these specular reflection boundary conditions into periodic
boundary conditions by even periodic extension of the phase space. This is done
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Figure 2. A schematic description of extension of the phase space. The sinusoidal curve at
the bottom of the figure is the wave potential. The solid part of the plot is inside the original
system and the dashed part is a portion of the extended region.

by removing the reflecting walls and replacing them with the mirror image of half
of the phase space with respect to that wall. A schematic description of this method
is given in Fig. 2. An arbitrary passing particle would travel along orbit o1 in
phase space, along which it would reflect off of the right wall and instantly go to
negative velocity space and then moves in the negative direction. Now with the new
boundary conditions, where there are no walls and the wave potential has been
extended (an even periodic extension) and phase space is periodically extended as
well, that specific passing particle will move to the right side of z = L/2 where the
right wall used to be, and it will move along until it reaches z = L. At this point
it will disappear and reappear at z = −L. In the extended part of phase space
particle will see the same potential as it would have originally, in the infinite wall
case.

A particle in the right trap would travel to the right along orbit o2, reflect off of
the wall at z = L/2 and move to left in the negative velocity space until it hits the
squeeze and reflects again and moves to right in positive velocity space. Now with the
periodic boundary condition, trapped particle moves to the right side of z = L/2 until
it reaches the image of the squeeze at z = L, there it disappears and Then reappears
at the position of the actual squeeze at z = 0 and again moves to the right. Notice
that with this type of boundary conditions, a particle’s velocity does not change sign
and particles keep moving in the same direction. Hence the new boundary conditions
on δf are

δf (z + 2L, v) = δf (z, v), passing (13)

δf (z + L, v) = δf (z, v), left trap (14)

δf (z + L, v) = δf (z, v), right trap (15)
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Similarly, the potential has periodic extensions. For passing particles the extended
potential is defined on −L � z � L, has period 2L, and is sinusoidal:

δϕp(z, t) = δφp(z)e−iωmt + (δφp(z))∗eiωmt (16)

δφp(z) = 1
2
δφ cos[km(z + L/2)], −L � z � L; δφp(z + 2L) = δφp(z)

δφp(z) = δφp
meikm(z+L/2) + δφp

−me−ikm(z+L/2), δφp
m =

1

4
δφ. (17)

For the left trap the potential is defined over −L � z � 0 and its periodic extension
is periodic with period L:

δϕl(z, t) = e−iωmt δφl(z) + eiωmt (δφl(z))∗, (18)

where

δφl(z) = 1
2
δφ cos[km(z + L/2)], −L � z � 0; δφl(z + L) = δφl(z). (19)

For the right trap the potential is defined over 0 � z � L and its periodic extension
is also periodic with period L:

δϕr (z, t) = e−iωmt δφr (z) + eiωmt (δφr (z))∗ (20)

δφr (z) = 1
2
δφ cos[km(z + L/2)], 0 � z � L; δφr (z + L) = δφr (z). (21)

The trapped potentials can be expanded as a Fourier series with periodicity L. For
the left potential,

δφl(z) =

∞∑
n=−∞

δφl
ne

ik2nz (22)

δφl
n = 1

2
δφCl

n, Cl
n =

1

δφL

∫ 0

−L

δφl(z)e−ik2nzdz, (23)

while for the right potential (assuming m is odd),

δφr (z) = −δφl(z). (24)

Using (19) and (23) the coefficients Cl
n can be evaluated:

Cl
n =

2km

k2
m − k2

2n

sin [ km

2
] (25)

Cr
n = −Cl

n (26)

We can use these extensions to solve the linearized Vlasov equation, (12 ). For
the passing particles, the solution compatible with boundary conditions (13) and the
potential given by (16) and (17) is of the form

δfp(z, v, t) = e−iωmt δf p(z, v) + c.c. (27)

δf p(z, v) = δf p
m (v)eikm(z+L/2) + δf p

−m(v)e−ikm(z+L/2). (28)

Substituting in (12) we obtain,

−iωmδf p
m + ivkmδf p

m + ikmvδφp
m

F0

T
= 0. (29)

Solving for δf p
m yields

δf p
m =

vδφp
mF0/T

ωm/km − v
. (30)
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The position and velocity dependence of the distribution function is then given by:

δf p(z, v) =
vδφp

mF0/T

ωm/km − v
eikm(z+L/2) +

vδφ
p
−mF0/T

−ωm/km − v
e−ikm(z+L/2). (31)

On the other hand, for the trapped particles the distribution function compatible with
(14) or (15) and potentials (22) or (24) are

δfl(r)(z, v, t) = e−iωmt δf l(r)(z, v) + c.c. (32)

δf l(r)(z, v) =

∞∑
n=−∞

δf l(r)
n (v)eik2nz (33)

In the above sums the n = 0 term is excluded, since in linear theory the average
density in the left trap and right trap does not change. For left trapped particles the
linearized Vlasov (12) then implies that

δf l
n =

vδφl
nF0/T

ωm/k2n − v
(34)

The position and velocity dependence of the trapped distribution function is given
by:

δf l(r)(z, v) =

∞∑
n=−∞

vδφl(r)
n F0/T

ωm/k2n − v
eik2nz (35)

Figure 3 depicts the position and velocity dependence of the perturbed distribution
function for trapped and passing particles at the separatrix velocity (v = vs), evaluated
from (31) and (35) respectively. The plotted function (δf/δφ)/(F0/T ) is a function of
the dimensionless parameter ωm/k1vs . The distribution function δf is discontinuous
at the separatrix. This discontinuity is unphysical and is an artifact of treating the
plasma as a collisionless system. Adding collisions to the system will allow particle
interchange between the trapped and passing regions and as a result, the solutions
for δf at the separatrix will connect and smooth out. In the next section we will add
a weak collison operator and solve for the distribution function of the collisional
system at the separatrix region.

Furthermore, in Fig. 4 we can see many singularities present in the trapped region.
These singularities are located in velocities v = ωm/k2n, in the trapped region of
phase space (−vs < v < vs), corresponding to velocities in resonance with the drive
potential. The distribution of the resonant particles can be obtained by adding a
small collision term to the Vlasov equation (−νδf), and applying the Plemelj formula
to the relations (30) for passing particles and (34) for the trapped particles:

lim
ν→0

δf l(r)
n = P

vδφl(r)
n F0/T

ωm/k2n − v
− iπδ(v − ωm/k2n)vδφl(r)

n F0/T (36)

lim
ν→0

δf p
m = P

vδφp
mF0/T

ωm/km − v
− iπδ(v − ωm/km)vδφp

mF0/T (37)

This treatment is equivalent to integrating along the Landau contour, i.e. dropping
below the poles (Krall and Trivelpiece 1986). In (36) and (37) the first term gives the
distribution of the non-resonant particles and ‘P’ represents the principal value of the
argument. The imaginary parts give the distribution of the resonant population, which
in the collisionless theory has zero width and is given by the Dirac delta function.
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Figure 3. Plots of δf as a function of z for the trapped (solid) and passing (dashed) particles
at the separatrix (v = vs), using (31) and (35) respectively.

The drive potential performs work on the resonant particles which will result in the
heating of the plasma.

3. Collisionless heating
The wave performs work on particles as they move along their (unperturbed) orbits.

The time averaged heating of particles over one period of external force is obtained
by integrating over the whole phase space accessible to particles, which is〈

dE

dt

〉
t

= n0

ω

2π

∫ 2π/ω

0

dt

∫ L/2

−L/2

∫ ∞

−∞
dzvdvδf(z, v, t) (−∂zδϕ(z, t))

= −n0

∫ L/2

−L/2

∫ ∞

−∞
dzvdv

[
δf (z, v)∂z (δφ(z))∗ + δf ∗(z, v)∂zδφ(z)

]
(38)
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Figure 4. Real part of the perturbed distribution function versus velocity using (31) and (35)
respectively, for the drive frequency ωm/k1vs = 0.9, at z = −L/2.

We break the integration over the entire phase space to integrations over the passing
and trapped regions:〈

dE

dt

〉
t

=

− n0

∫ L/2

−L/2

(∫ ∞

vs

+

∫ −vs

−∞

)
dzvdv

[
δf p(z, v)∂z (δφp(z))∗ + (δf p(z, v))∗∂zδφ

p(z)
]

− n0

∫ 0

−L/2

∫ vs

−vs

dzvdv
[
δf l(z, v)∂z

(
δφl(z)

)∗
+ (δf l(z, v))∗∂zδφ

l(z)
]

− n0

∫ L/2

0

∫ vs

−vs

dzvdv
[
δf r (z, v)∂z (δφr (z))∗ + (δf r (z, v))∗∂zδφ

r (z)
]

Using (28), (33), (22) and (17) in (39), only the resonant particles are heated and have
a non-zero contribution to

〈
dE
dt

〉
t
which results in:〈

dE

dt

〉
t

= πLn0

|δφ|2
T

(
km

4
Θ[ωm/km − vs]v

2F0(v)|v= ω
km

+

∞∑
n=nmin

k2n|Cl
n|2v2F0(v)|v= ω

k2n

)
, nmin = 
 ω

k2vs
�. (39)

In the above equation Θ[x] is the step function defined as

Θ[x] = 1, x > 0, (40)

= 0, x � 0.

Furthermore, 
x� is the ceiling function, defined as the greater integer between two
integers which are the closest to the real number x. In (39), the first term on the right-
hand side corresponds to the average work per unit time, performed on the passing
particles in resonance with the drive potential. There is only a single resonance related
to the passing particles and this resonance only can exist for frequencies ω > kmvs .

The second term on the right-hand side of (39) corresponds to the average work
per unit time performed on all the trapped particles. Because of the symmetry of the
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Figure 5. Heating power of a collisionless plasma from (39) for large phase velocities
ωm/k1vT = 8 and ωm/k1vT = 32, for mode m = 1. The straight dashed line depicts an
arbitrary v4

s /v
4
T dependence, for comparison. The dashed curves on top of the solid lines are

approximate solutions given by (A 8).

wave potential and the squeeze, left trap and right trap heating has the same average
value. The sum is over all the resonances between the trapped particles and the wave
potential. The reason for the presence of a series of resonances is that the potential
as seen by the particles is non-sinusoidal and contains a series of harmonics which
are at resonance with the wave potential at the velocities

vn =
ω

k2n

, n = 1, 2, . . . (41)

This equation implies that the higher the number n of the resonance, the lower is
the velocity of the particles in that resonance. Moreover, the nth resonance cannot
exist for vn > vs , which is reflected in the plot of the heating versus vs/vT in Fig. 5:
lowering vs at a constant ωm results in instant, discontinuous drops of heating, which
happens each time a trapped resonance disappears at the separatrix. The lower bound
of the sum is given by the highest velocity in the trapped region which is in resonance
with the drive potential and is located at the velocity

vnmin
=

ω

k2nmin

. (42)

To facilitate comparison with previous work on damping of TG modes, we note
that the mode damping rate γm can be obtained from the heating rate via the equation
(Stix 1962)

γm =

〈
dE

dt

〉
t

/2Em, (43)

where Em is the mode energy. The total energy in an electrostatic plasma normal
mode is also found in Ref. Stix (1962):

Em =
1

16πq2

∫
dz ∇δφ∗ ·

(
∂

∂ωm

(ωmKh)

)
· ∇δφ, (44)

where Kh is the Hermitian part of the dielectric tensor associated with the waves (and
we note that our perturbed potential has units of energy not voltage). The dielectric
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tensor for TG modes in a 1D Maxwellian plasma is given by the expression

K = 1 − ẑẑωp√
2πkmλD

∫
dv

ve−v2/2

ωm − kmvT v
. (45)

After some work, assuming uniform density and using (5) for the mode potential, this
allows us to write the mode energy as

Em =
Ln0

8
√

2π

|δφ|2
T

ωm

kmvT

P

∫
ve−v2/2

(ωm/kmvT − v)2
dv. (46)

In the high phase velocity regime of weak wave damping ωm/kmvT  1 , the energy
simplifies to

Em =
Ln0k

2
m

4mqω2
m

|δφ|2. (47)

Using (43) and (47), the first term in (39) leads to the usual Landau damping rate
for an unsqueezed plasma column; see for example (4) of Danielson and Anderegg
2004. This expression also agrees with the unsqueezed rate γ0 derived in Ashourvan
and Dubin 2014. The second term in (39) is due to particles trapped by the squeeze
interacting with the wave potential. This effect is not included in Ashourvan and
Dubin 2014, which neglects trapped particles. If Eq. (106) of Ashourvan and Dubin
2014 is evaluated for a partition squeeze of the type considered here, the squeeze
damping rate γ2 due to passing particles vanishes because all Fourier components
of the squeeze vanish (a partition squeeze is a type of singular function that has no
Fourier representation). This agrees with (39), which also shows passing particles do
not contribute to the squeeze damping for a partition squeeze.

For low phase velocities such that ωm/km < vs and nmin = 1, the heating equation
will have the following functional form:〈

dE

dt

〉
t

= πLn0

|δφ|2
T

∞∑
n=1

k2n|Cm
n |2v2F0(v)|v= ω

k2n
. (48)

Therefore, in this small phase velocity limit the collisionless plasma heating is
independent of the size of the squeeze (vs).

On the other hand, in the high phase velocity regime ωm/kmvT  1, the heating
due to the passing resonance becomes exponentially small, because of the F0 term
in (39). However, heating of the trapped particles consists of many resonances for
which F0 is not exponentially small. As a result, trapped particle heating is finite
even for ωm/kmvT  1. The functional form of the heating due to trapped particles
depends on vs/vT . As we can see from the Fig. 5 for vs/vT  1 the plasma heating
is independent of vs/vT , since plasma is practically cut in half and further raising
vs is not going to change the plasma configuration. On the other hand, in the limit
vs/vT � 1, the sum of the large number of resonances results in a v4

s dependence for
the plasma heating. We have derived these functional forms in Appendix A, which
yielded the following results:

dEt

dt
=

2n0|δφ|2
mq

√
2

π

vT

(ωm/km)2
, ωm

kmvT
 vs

vT
 1 (49)

=
n0|δφ|2
4mq

√
2

π

v4
s

(ωm/km)2v3
T

, ωm

kmvT
 1  vs

vT
(50)
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The small squeeze form of the heating given by (50), when combined with (43) and
(47), yields a mode damping rate that has the same scaling with squeeze potential (i.e.
proportional to ϕ2

s ) as was found in (106) of Ashourvan and Dubin 2014. However,
this trapped particle term was not included in Ashourvan and Dubin (2014), which
includes only passing particles. Furthermore, in Ashourvan and Dubin (2014) a
comparison of the damping calculation to simulations that kept trapped particles
showed good agreement over a range of squeeze amplitudes (see Fig. 3 of that paper),
so evidently trapped particles were not important in the mode damping, in seeming
contradiction to the damping predicted by (50).

We will now show that (50), derived for an arbitrarily narrow partition squeeze,
does not apply to the types of ‘smooth’ squeezes employed in Ashourvan and Dubin
(2014). Rather than present a full theory of wave heating due to trapped particles in
a smooth squeeze, we will find that useful results can be obtained from the following
estimates.

A comparison of the second term in (39) (from which (50) is derived) and (106)
of Ashourvan and Dubin (2014) shows a similar form for squeeze heating due to
trapped and passing particles respectively, with the smooth squeeze passing particle
Fourier coefficient αn

m in Ashourvan and Dubin (2014) taking the place of the trapped
particle coefficient Cl

n used here. The former coefficient αn
m involves angle variable

integrations (integrations over ψ) of the form
∫ 2π

0
dψcos[kmz[ψ]]exp[inψ], while the

latter involves integrations only in position z (see (23)); but this difference arises only
because the passing coefficient αn

m is defined for squeezes with general functional forms
in z where action-angle variables are required. We will take as a given that the theory
of trapped particle heating in a general smooth squeeze potential also involves an
angle variable Fourier coefficient similar to αm

n . Then a theorem of Fourier analysis
for smooth functions (see, for example, Boyd (1994)) implies that for large n the
Fourier coefficient falls off exponentially, making a negligibly small contribution to
the trapped particle heating sum in (39). This is as opposed to the behavior of the
coefficients in a partition-type squeeze where Cl

n ≈ −m/4n2 for large n(see (A 2)). The
exponential fall-off will occur roughly when n becomes larger than the spectral width
of the function cos[kmz(ψ)]. Furthermore, for m of order unity we can estimate this
spectral width to be of order L/2π where  is the axial length scale of the squeeze;
i.e. the Fourier coefficients of this function approach zero for n � L/2π, assuming
that  � L. This follows because high n components of z(ψ) arise from the rapid
variation of the squeeze potential along the particle orbit. (The factor of 2π is an
estimate obtained from examination of Fourier coefficients in squeeze potentials of
various forms; somewhat different numerical coefficients can be obtained depending
on exactly how one defines the spectral width. )

Now, the lower bound nmin on the sum in (39) is roughly nmin ≈ Lωm/2πvs . This
bound is required simply in order for the resonances to fall in the trapped particle
regime. However, when combined with the previous estimate of spectral width this
implies that if Lωm/vs � L/, no terms in the sum contribute except those which are
exponentially small and hence negligible. This is as opposed to the passing particle
sum (see (106) of Ashourvan and Dubin (2014)) where the lower bound on the sum
is m. This in turn implies that if the axial length scale  of the squeeze potential
satisfies

 � vs/ωm, (51)
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trapped particle effects on the squeeze damping can be completely neglected, assuming
that  � L. While this is merely an estimate obtained from fairly crude scaling
arguments, it does imply that for sufficiently small sufficiently smooth squeezes, the
effect of trapped particles is not important to the squeeze damping. In particular, for
Fig. 3 of Ashourvan and Dubin (2014) where  = 0.1L and ϕs < T , the inequality
 > vs/ωm is satisfied over the entire range of the figure. This explains why theory
based only on passing particles was sufficient to explain the simulation results shown
in the figure.

4. Collisional heating at the separatrix
In this section, we will add a weak collision effect to the system. Besides our

analytical solutions, we use numerical methods to verify our results. We use the
grids method to solve the differential equations related to the linearized, collisional
Boltzmann equation, details of which are described in Appendix B. In a weakly
collisional regime, small-angle scattering has the dominant collisional effect in
scattering of particles in velocity space. In this regime the collisional effect is well-
described by the Fokker–Planck collision operator given by:

C(f ) =
∂

∂v

(
D(v)

∂

∂v
f − v

T
f

)
(52)

D(v) is the velocity space diffusion coefficient, which is a function of velocity. Since
the Fokker–Planck collision operator contains derivatives of f with respect to v, the
effects of collisions are significant in regions where these derivatives are large. The
results from the previous section indicate that at the separatrix there is a discontinuity
in f . Therefore, in the vicinity of the separatrix, derivatives of f become large
and collisions significantly change the distribution function. Other regions in which
collisions have significant effect due to large derivatives are the resonant regions.

The linearized Boltzmann equation with the Fokker–Planck collision operator
describes the time evolution of the system:

∂δf

∂t
+ v

∂δf

∂z
− 1

mq

∂δφ

∂z

∂F0

∂v
= C(δf). (53)

We approximate the collision operator by its dominant term at the separatrix:

C(δf ) ≈ D(v)∂2
v δf. (54)

Using (8) and (9) in (53), for the time independent part of the linear distribution
function and (10) for F0(v) we obtain:

−iωmδf + v
∂δf

∂z
+ v

∂δφ

∂z

F0

T
= D(v)∂2

v δf. (55)

Considering that δφ(z) has an odd symmetry with respect to the center of plasma,
the inherent symmetries of the solution to the above equation are:

δf (z, v) = −δf (−z, −v) (56)

δf (z, v) = −δf (z + L, v). (57)

In order to obtain a smooth and connected solution to δf at the separatrix,
trapped and passing solutions must match at the separatrix v = vs . We will solve for
passing and trapped particles separately and match the solutions across the separatrix.
Although the drive potential includes only a single harmonic drive with mode number
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m(see (5)), due to the collisions, the response of the plasma is not limited to the mth
harmonic and has a series form

δf p(z, v) =

∞∑
odd m=−∞

δf p
m (v)eikm(z+L/2) (58)

Substituting from (5) in (55) we obtain

i(knv − ωm)δf p
m + ikmvδφp

m

F0

T
= D(v)

∂2δf p
m

∂v2
(59)

For the left and right trapped particles we substituting from (32) in (53) and obtain

i(k2nv − ωm)δf l,r
n + ik2nvδφl,r

n

F0

T
= D(v)

∂2δf l,r
n

∂v2
(60)

The exact solution of these equations involve complex Airy functions and their
integrals. We can use the boundary layer approximation method (Bender and Orszag
1978a) to find local solutions to these equations at the separatrix region. In the narrow
separatrix layer the functions δf l,r

n and δf p
m are rapidly varying, whereas all of the

other functions of v present in (59) and (60) are slowly varying. We approximate all
the slowly varying functions of v to be constants, with their values equal to their
given value at v = vs:

F0(v) ≈ F0(vs) (61)

D(v) ≈ D(vs) (62)

(kmv − ωm)δf p
m ≈ (kmvs − ωm)δf p

m (63)

(k2nv − ωm)δf l,r
n ≈ (k2nvs − ωm)δf l,r

n (64)

In order for the approximations in (63) and (64) to be correct, i.e. the variation of
the functions (kmv − ωm) and (k2nv − ωm) to be small compared to their value at the
separatrix, the resonant regions for which vn ≈ ωm/k2n for trapped, and vm ≈ ωm/km

for passing region, must be far from the sparatrix layer. Hence, the following condition
must be satisfied:

res
n + s

n � |v − ωm/kn|, (65)

where s
n is the width of the separatrix layer and res

n is the width of nth resonance.
In the collisionless theory resonances are singularities in the velocity space and have
zero width. However, introducing collisions into the system broadens these resonances
and we represent the width of the nth resonance with res

n . Equation (65) dictates
the condition that the resonance regions and the separatrix boundary layer must not
overlap. In other words, regions of rapid variation of the solutions must be isolated.

The approximate differential equation in the passing region of the boundary layer
is given by

i(kmvs − ωm)δf p
m + ikmvδφp

m

F0(vs)

T
= D(vs)

∂2δf p
m

∂v2
(66)

This equation has a particular solution which is given by

δf p
m =

δφp
mvsF0(vs)/T

ωm/km − vs

(67)
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This solution corresponds to the collisionless solution (30), evaluated at the separatrix
v = vs . The homogeneous solutions to (66) are given by

δf p
m = δφp

m

F0(vs)

T
a±

m exp[±i3/2
√

(ωm − kmvs)/D(v − vs)]. (68)

Since we expect the solutions to stay finite as v → +∞, the only acceptable solution
for the passing region will be the plus sign and we take a+

m = am. Using (67) and (68),
the total solution inside the passing region of the separatrix layer is given by

yin(v) =
δφp

mvsF0(vs)/T

ωm/km − vs

+ δφp
m

F0(vs)

T
am exp[i3/2

√
(ωm − kmvs)/D(v − vs)], (69)

which has an undetermined coefficient, am. This coefficient, together with all the other
undetermined coefficients from the trapped region, will be determined from matching
the boundary values at the separatrix. The first term on the right-hand side is the
contribution from the collisionless system. The second term on the right-hand side
is the perturbation to the collisionless solution, due to the effect of collisions. This
solution falls to zero rapidly in a region with a thickness approximately given by

s
m =

√
2D/(ωm − kmvs), (70)

which is the inverse of the coefficient of real part of the exponent in (69).
The boundary layer, which is characterized by the rapid variation of solutions,

connects to the passing region far from the separatrix, which we call the outer region.
In the outer region, the solution to (59) varies slowly and the derivatives of δf p

m

are small. Since the system is weakly collisional and D(v) is small, we can take
D(v)∂2δf/∂v2 ≈ 0 in the outer region. As the result of this approximation, the outer
region solution to (59) will be:

yout(v) =
δφp

mvF0(v)/T

ωm/km − v
, (71)

which is identical to collisionless passing region solution in (30).
So far we have the solution for δf p

m within the boundary layer given by equation
(69), which we called yin(v), and the solution for the outer region, given by (71),
which we called yout(v). In order to connect these two solutions and obtain a uniform
solution over v, we compare the asymptotic form of yin(v) and yout(v) to obtain a
solution describing the middle region, i.e. between outer and inner solutions:

lim
v→∞

yin(v) =
δφp

mvsF0(vs)/T

ωm/km − vs

, (72)

lim
v→vs

yout(v) =
δφp

mvsF0(vs)/T

ωm/km − vs

.

Therefore, we take the middle region solution to be:

ymid(v) =
δφp

mvsF0(vs)/T

ωm/km − vs

(73)

We can define a uniform solution as follows:

yuniform(v) = yin(v) + yout(v) − ymid(v). (74)
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Substituting from (69), (71) and (73) into (74), we obtain a uniform solution for the
passing region distribution function δf p

m :

δf p
m (v) =

δφp
mvF0(v)/T

ωm/km − v
+ δφp

m

F0(vs)

T
am exp[i3/2

√
(ωm − kmvs)/D(v − vs)]. (75)

As the effect of collisions become weaker, D decreases and the boundary layer shrinks.
In the limit where D goes to zero, the boundary layer vanishes and we retrieve the
collisionless solution at separatrix from the first term in (75).

Following the steps taken for the passing region, a uniform boundary layer solution
to (60) for the left trapped particles is given by

δf l
n =

δφl
nvF0(v)/T

ωm/k2n − v
+ δφl

n

F0(vs)

T
bn exp[−i3/2

√
(ωm − k2nvs)/D(v − vs)]. (76)

The first term on the right-hand side is the collisionless solution and the second
term is the correction due to collisions and we took the negative sign in order for
the solution to stay finite as v → 0. The undetermined coefficient bn is found by
matching the solutions at the separatrix. Due to symmetry, the right trap solutions
are redundant and contain no extra information. The boundary layer thickness for
the nth trapped Fourier component is defined as

s
2n =

√
2D/(ωm − k2nvs) (77)

As was the case for the passing solutions, boundary thickness, which is proportional
to

√
D, vanishes as D goes to zero and the collisionless solution will be retrieved.

Therefore in the presence of weak collisions, the separatrix is surrounded by a layer
of width proportional to

√
D from both above and below vs .

4.1. Matching the boundary solutions at separatrix

By matching the solutions obtained for trapped and passing distribution functions,
we obtain a uniform solution over the whole separatrix region in (z, v) phase space.
The passing distribution has the functional form given by (27) with δf p

m given by (75).
We expand the functions eikm(z+L/2) in terms of the complete set of functions eik2nz

which have L periodicity:

eikm(z+L/2) =

∞∑
n=−∞

lmn eik2nz, lmn =
1

L

∫ 0

−L

ei(km−k2n)zdz

lmn =
sin mπ

2

π(n − m/2)
, m odd (78)

As a result, we can rewrite the passing distribution given in (58) as

δf p(z, v) =

∞∑
n=−∞

( ∞∑
odd m=−∞

lmn δf p
m

)
eik2nz (79)

Comparing the above equation to (32), the matching conditions at the separatrix
for the left half of the plasma are given by⎛

⎝ δf l
n(vs)

∂δf l
n(vs )

∂v

⎞
⎠ =

∞∑
odd m=−∞

lmn

⎛
⎝ δf p

m (vs)

∂δf
p
m (vs )
∂v

⎞
⎠ (80)
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Figure 6. Contour plots of the real and imaginary part of δf in the z, v phase space, near
the separatrix (v/vs ≈ 1), for vT /vs = 1.73 and for diffusion coefficient DL/v3

s = 2 × 10−4.
Plots (a) and (b) are obtained from the analytical boundary layer method and plots (c) and (d)
are obtained from the numerical grids method.

For the right half of plasma we use the symmetry relation (56). We substitute the
boundary layer solutions, (76) for δf l

n and (69) for δf p
m , in the sets of equations in (80)

and solve them to determine the unknown coefficients, am (passing) and bn (trapped).
The coefficients are functions only of ωm/kmvs , since we factored out their dependence
on T which was of the form F0(vs)/T . For the purpose of practicality we need to
truncate the infinite series in order to evaluate the unknown coefficients. Keeping M

terms on the trapped side implies there are 2M equations, so we need to keep M

terms on the passing side so as to have the same number of equations as unknowns.
Using Mathematica, we solve for the unknown coefficients am and bn. Figure 6

compares the contour plots of the time independent part of the distribution function
δf in the vicinity of the separatrix v ∼ vs over the (z, v) phasespace, for mode m = 1
drive potential, with vT /vs = 1.73, ωm/k1vs = 0.8, and diffusion constant DL/v3

s =
2×10−4. M = 101 terms are kept for trapped particles (n = −50, −49, . . . , 49, 50) and
M = 101 for passing (m = −101, −99, . . . , 97, 99) in the matching equations, (80).
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Figure 7. Plots of the real and imaginary part of δf as a function of v/vs near the separatrix
(v/vs ≈ 1), at the left end of plasma z = −L/2, for vT /vs = 1.73 and for diffusion coefficient
given by DL/v3

s = 2 × 10−4 and DL/v3
s = 5 × 10−5. Solid curves are obtained analytically

via the boundary layer method. Dashed lines are the collisionless solutions. Numerical grids
method results are depicted in diamonds. Double-headed arrows show the width of separatrix
layer. Dashed lines show collisionless theory.

In Fig. 7, δf (z, v) is plotted near the separatrix, at the left end of plasma z = −L/2,
for the same parameters as Fig. 6, as well as for DL/v3

s = 5 × 10−5. The results from
the numerical grids method are plotted in diamonds. The dashed curve shows the δf

from the collisionless theory. As shown by the arrows, the width of the separatrix
layer for plot (c) is approximately two times smaller than the width of the separatrix
layer in the plot (a), consistent with the expected

√
D dependence of the width of the

separatirx layer.
Now that we have obtained the collisional δf p

m and δf l
n , we can calculate the

heating at separatrix. For sufficiently small D, away from resonances, the separatrix
layer can be considered as an isolated region. Heating in separatrix can then be
calculated independently and added to the resonant heating in other parts of phase
space to get the total heating.
We substitute the solved collisional δfn’s in the average heating (39) and perform
the integrals. At v ≈ vs , the first term of δf p

m and δf l
n , given by (75) and (76) are

purely real and give the collisionless solutions. As a result, they do not contribute to
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Figure 8. Heating per unit time versus the diffusion coefficient D, for vT /vs = 1.73 and

ωm/k1vs = 0.2 and for drive mode m = 1. The dashed line depicts a
√

D dependence for
comparison.

heating integrals. The second term which is the collisional correction to δf p
m and δf l

n

has non-zero value in the integral which is equal to:

dE
p
sep

dt
= n0L

∞∑
m=−∞

kmF0(vs)
|δφ|2
T

Re

(
am

[
−vsi

−1/2

√
D

ωm − kmvs

+ i−2 D

ωm − kmvs

])
,

(81)
for the passing side of the separatrix layer, and

dEt
sep

dt
= 2n0L

∞∑
n=−∞

k2n(C
l
n)

2F0(vs)
|δφ|2
T

Re

×
(

bn

[
vsi

−1/2

√
D

ωm − k2nvs

− i−2 D

ωm − k2nvs

])
, (82)

for the trapped side of separatrix, which has a factor of two in order to include the
heating from both right and left sides. In evaluation of (82), the limits of integration
was from zero to vs , but the lower limit of integral has been taken to be −∞, since
δf falls to zero on the scale of separatrix layer thickness which is much smaller than
vs . The total heating in the separatrix layer is subsequently equal to the sum of the
heating in the passing (81) and trapped (82) side of the separatrix:

dEsep

dt
=

dE
p
sep

dt
+

dEt
sep

dt
(83)

Although weak collisions broaden the resonance regions, the change in resonant
heating due to these weak collisions is negligible. As a result the total heating of the
plasma is the sum of the separatrix heating and the collisionless resonant heating
obtained in (39).

In Fig. 8, dE/dt is plotted versus the diffusion coefficient D, for vT /vs = 1.73
and ωm/k1vs = 0.2 and for drive mode m = 1. At this frequency the resonances are
far from the separatrix and therefore, the separatrix layer is isolated, thus theory is
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Figure 9. Heating per unit time as a function of ωm, obtained from numerical grids method
for D = 1.5 × 10−3, and D = 6 × 10−3, and obtained from (39) for D = 0.

expected to work well. The results obtained from the numerical grids method are
depicted in diamonds and the analytically obtained heating is depicted in a solid
curve. As D → 0 the value of the dE/dt tends to the collisionless heating obtained
from (39). Furthermore, as D grows the heating at the separatrix layer dominates.
This heating has a

√
D dependence.

Figure 9 depicts the heating versus the drive frequency ωm. Heating for a collisionless
plasma (D = 0) is depicted in a dash-dotted curve and evaluated using (39). The
collisional heating result is obtained from the numerical grids method and depicted
in a solid curve for D = 1.5 × 10−3, and a dashed curve for D = 6 × 10−3. The
collisionless heating is discontinuous for two values of frequency. At ωm/k1vs = 1 the
passing resonance appears at the separatrix velocity vs , which causes a discontinuous
jump in the collisionless heating curve. At ωm/k1vs = 2 the n = 1 trapped resonance
disappears at the separatrix and this causes a sudden drop at in the collisionless
heating curve. In the presence of collisions, the added heating at the separatrix
connects and smooths out these discontinuities, as we can see from the plots related
to D = 1.5 × 10−3 and D = 6 × 10−3.

In Figs 10(a) and (b) we compare the heating obtained from the analytical boundary
layer method and depicted in diamonds, to the numerical grids method results
depicted in solid curves, for the same parameters as Fig. 9. The dashed curves show
the collisionless heating for comparison purposes. For the smaller value of D we have
a better agreement between the two methods. Furthermore, we can see that as the
frequencies approach resonance, at ωm/k1vs = 1 in Fig. 10(a) and at ωm/k1vs = 2
in Fig. 10(b), the analytical results deviate from the numerical results. Since the
separatrix layer and resonance regions are overlapping the boundary layer theory is
no longer valid.

Figure 11 depicts the heating for larger values of the drive frequency ωm. At large
values of ωm/kmvs the discontinuity in the distribution function between the trapped
and passing regions becomes small and as a result the collisional heating due to the
separatrix is not a large effect. Instead, collisions simply smooth out the steps in
the heating rate caused by the disappearance of resonances in the trapped particle
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Figure 10. Heating per unit time as a function of ωm. The results from the analytical boundary
layer method are depicted in diamonds. The numerical grids method results are depicted in
solid curves. The dashed line is collisionless theory.

Figure 11. Heating per unit time as a function of ωm.

distribution as ωm increases. For large wave phase velocities, passing and trapped
particles near the separatrix energy have nearly the same response to the wave, so
the separatrix discontinuity is small and not important to the wave heating. This is
as opposed to small wave phase velocities, where there is a large discontinuity in the
distribution function at the separatrix and hence a dominant collisional separatrix
heating effect.

5. Conclusion
We have presented a 1D model of a finite length plasma with its population

divided in velocity space into passing particles with |v| > vs and trapped particles
with |v| < vs . The squeeze potential that creates this division is assumed for simplicity
to be an infinitesimally narrow kinetic barrier of amplitude ϕs = 1

2
mqv

2
s . We then

apply a standing sinusoidal drive potential of odd symmetry with respect to the center
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of plasma. Consequently, passing and trapped particles experience different perturbed
potentials along their unperturbed orbits. The response of the trapped particles to the
external drive is non-sinusoidal and contains higher harmonics while passing particles
are unaffected by the narrow barrier.

The 1D model used here neglects radial variation of the squeeze and drive potentials,
and so the results only provide qualitative information as to the size of the heating
effects due to squeeze, as opposed to a more realistic model (Ashourvan and Dubin
2014) that includes radial inhomogeneity of the plasma. Nevertheless, we are able to
draw several conclusions from the analysis based on this 1D model:

(i) The drive potential performs non-zero average work on the resonant particles
due to a series of higher harmonics in the trapped region at bounce frequencies
ωb(En) = ωm/n. In the regime where ωm/kmvT  1 , and for the narrow squeeze
barrier considered here, the resonant heating in the passing region is exponentially
small, and the sum of the trapped particle resonant contributions results in finite
collisionless heating of the plasma. Thus, trapped particles dominate the enhanced
heating due to squeeze in this model.

(ii) For a smooth squeeze of finite axial width , we estimate that the trapped
particle contribution to the enhanced collisionless heating arising from squeeze
becomes negligible compared to the passing particle contribution when  satisfies
 � vs/ωm. Hence, trapped particles are important for collisionless squeeze damping
due to the narrow squeeze considered here (with  = 0), but for the small (vs < vT )
smooth squeezes considered in Ashourvan and Dubin (2014) trapped particles have
negligible impact on the damping.

(iii) The collisionless particle velocity distribution function is discontinuous at the
separatrix (v = vs) because trapped and passing particles respond differently to
the drive potential. Adding weak collisions in the form of a Fokker–Planck collision
operator results in large correctional terms at the separatrix. These corrections connect
and smooth out the passing and trapped solutions at the separatrix. Furthermore, the
drive potential performs non-zero work in the separatrix layer which can add large
contributions to the heating, scaling as

√
D, in the regime where ωm/kmvs � 1 (where

D is the velocity diffusion coefficient). However, when ωm/kmvs  1 the discontinuity
at the separatrix becomes small and collisionless heating due to Landau resonances
caused by the squeeze is the dominant effect. This is because the response of particles
at or near the separatrix velocity no longer depends on whether they are trapped or
passing when the wave phase velocity is large, since such particles move axially only
a small fraction of the plasma length in a wave period. Hence, for the high-phase-
velocity weakly-damped modes considered in Ashourvan and Dubin (2014), enhanced
collisional effects associated with the separatrix boundary layer can be neglected.
Thus, the work presented here indicates that the perturbative collisionless theory
of Ashourvan and Dubin (2014) should be sufficient to describe the results of
ongoing experiments that apply small smooth squeeze potentials to weakly collisional
cylindrical non-neutral plasma columns, and that observe enhanced TG mode
damping. The results of such experiments will be presented in a future paper.

Nevertheless, several issues remain to be addressed. For instance, in the drive regime
ωm/kmvs � 1 we found that heating from the collisional boundary layer is important
and trapped particle effects on the heating are also important. However, in this regime
the collective plasma response is closer to a Debye-shielding response than to the
axially-sinusoidal plasma mode considered here, and this collective response should
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be properly accounted for. Such self-consistent effects on low-frequency collisional
heating will be considered in future work. Also, we consider here only azimuthally-
symmetric plasma modes. However, for modes with azimuthal dependence there is
an E × B drift response to the plasma wave due to the azimuthal wave electric field.
This E × B drift response could produce a discontinuity at the separatrix even for
large axial phase velocities, possibly resulting in strong boundary layer heating at
the separatrix even for ωm/kmvs  1. This could explain experimental results such as
those observed in Kabantsev and Driscoll (2006). These issues will be addressed in
future work.
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Appendix A. Collisionless heating for ωm/kmvT  1

In the large frequency limit the heating due to passing particle resonance is
exponentially small, thus the plasma heating is due to the trapped resonances:

dE

dt
= πLn0

|δφ|2
T

∞∑
n′=nmin

k2n′ |Cl
n′ |2v2F0(v)|v= ω

k
2n′

, nmin = 
 ω
k2vs

� (A 1)

For nmin  1, from (25) we can approximate:

Cl
n ≈ − m

4n2
(A 2)

Defining the drive frequency f = ωm/2π , the trapped heating in the large frequency
limit, substituting for F0 from (10), in the limit ωm/kmvT  1 can be written as

dE

dt
=

√
2

π

n0

mq

|δφ|2
∞∑

n′=
 Lf
vs

�

L2f 2

v3
T

m2

4(n′)5
exp

(
− f 2L2

2(n′)2v2
T

)
(A 3)

We perform the change of dummy variable n′ to n + 
Lf

vs
�, and since Lf

vs
is large, in

the argument of the sum we substitute 
Lf

vs
� with Lf

vs
to obtain:

dE

dt
=

√
2

π

n0

mq

|δφ|2 m2

4v3
T

∞∑
n=0

L2f 2

(n + Lf

vs
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exp

(
− f 2L2

2(n + Lf

vs
)2v2

T

)

=

√
2

π

n0

mq

|δφ|2 m2

4v3
T

v4
s

L2f 2
S(vs/vT ), (A 4)

where we defined

S(vs/vT ) =

∞∑
n=0

1

(1 + tn)5
e

− (vs /vT )2

2(1+tn)2 (tn+1 − tn) (A 5)

tn =
nvs

Lf
(A 6)
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In the limit Lf

vs
→ ∞ we have tn+1−tn = 1/Lf

vs
→ 0, the above sum can be approximated

by the Riemann integral as follows (Bender and Orszag 1978b)

S(f ) =

∫ ∞

0

1

(1 + t)5
e

− (vs /vT )2

2(1+t)2 dt =

∫ 1

0

u3e
−( vs

vT
)2 u2

2 du

= 2

(
vT

vs

)4
[
1 −

(
1 +

1

2

(
vs

vT

)2
)

e
− 1

2

(
vs
vT

)2
]

(A 7)

Thus, in the limit of large frequencies for which ωm/km  vT , we have

dE

dt
= 2

√
2

π

n0

mq

|δφ|2 vT

v2
ph

[
1 −

(
1 +

1

2

(
vs

vT

)2
)

e
− 1

2

(
vs
vT

)2
]

, ωm/kmvT  1 (A 8)

where vph = ωm/km is the wave phase velocity. In the limit where vs/vT  1, the
exponential term in (A 8) will tend to zero. Therefore the heating will be of the form

dE

dt
=

2n0|δφ|2
mq

√
2

π

vT

v2
ph

(A 9)

In the limit where vs/vT � 1, we expand the exponential in A 8 to obtain

dE

dt
=

2n0|δφ|2
mq
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π
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(A 10)

In summary, we have:

dE

dt
=

2n0|δφ|2
mq

√
2

π

vT

v2
ph

, vph  vs  vT (A 11)

=
n0|δφ|2

mq

√
2

π

v4
s

4v2
phv

3
T

, vph  vT  vs (A 12)

Appendix B. Numerical grids method
We use the grids method to numerically solve for the linear distribution of finite

length plasma with weak collisions and an applied squeeze which is infinitesimally
narrow. We solve the following linearized Boltzmann equation to obtain the time
independent part of the linear distribution function δf (z, v) define in (9)

−iωδf + v
∂δf

∂v
+

v

T
δϕ(z)F0(v) = D

∂

∂v

(
∂δf

∂v
+

v

T
δf

)
(B 1)

where δϕ(z) is given by (5) and the diffusion coefficient D is taken to be a constant
in all phase space. The above equation is a PDE in z and v. We can discretize these
independent variables in the above equation and solve for δf on a coarse-grained
(z, v) phasespace. Grid point position coordinates in phase space are given by

zn = nz − z0, n = −N + 1, . . . , N (B 2)

vm = mv − v0, m = −M + 1, . . . , M
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Figure 12. Enforcing the periodic boundary condition on the grid point solutions outside
the extended phase space.

where z = L/(2N) and v = Vmax/M are the stepsizes between grid points in
position and velocity space, z0 = z/2 and v0 = v/2. At a constant velocity vm,
there are equal number of grid points N/2 on the left and right side of z = 0. The
leftmost of which is z−N+1 = −L + z/2, which is the closest part of plasma near
the left wall, and the right-most of which is zN = L − z/2, closest the plasma gets
to the right wall. Vmax is an arbitrary velocity magnitude at which we approximate
the value of δf to be given by the collisionless solution in (31), which must be far
enough from the separatrix or resonances such that the boundary solution does not
affect the solutions in the aforementioned regions.

Axial boundary conditions on the left and right wall and on the squeeze are all
specular, given by (3) and (38)

Based on these boundary condition we construct the extended coarse-grained phase
space. Figure 12 describes the grid boundary postitions and enforcing the boundary
conditions which relate the value of δf at different grid points.
The linear PDE in (B 1) must become discretized by replacing all the partial derivatives
with their discrete form, which we choose to be centered difference:

∂δf (zn, vm)

∂z
=

δf (zn + z, vm) − δf (zn − z, vm)

2z
(B 3)

=
δf (zn+1, vm) − δf (zn−1, vm)

2z

∂δf (zn, vm)

∂v
=

δf (zn, vm + v) − δf (zn, vm − v)

2v

=
δf (zn+1, vm+1) − δf (zn, vm−1)

2v

∂2δf (zn, vm)

∂v2
=

δf (zn, vm+1) − 2δf (zn, vm) + δf (zn, vm−1)

v2
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Replacing the discrete derivatives in (B 1), this equation is transformed into a series
of coupled, linear equations for δf (zn, vm). There is an equation for each point inside
the (extended) phase space. We solve these equations over the constructed phase
space and its related boundary conditions. In the next step, the discrete solution
is interpolated over the 2D phase space to get a smooth and continuous solution.
Furthermore, using (38) we can use the obtained δf (z, v) to calculate the heating per
unit time.
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