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Abstract of the Dissertation

Temperature Equilibration and

Many-Particle Adiabatic Invariants
by

Shi-Jie Chen
Doctor of Philosophy in Physics
University of California, San Diego, 1994
Professor Daniel H.E. Dubin, Chairman

The temperature equilibration of single-species plasmas is investigated in both weakly
and strongly correlated limits. The correlation strength of a plasma is determined by
the correlation parameter I' = ¢?/akT, where g is the charge, T is the temperature
and a is the inter-particle spacing. Strong correlation corresponds to I' > 1 and weak
- correlation corresponds to I' <« 1.

For each equilibration process that is investigated, a many-particle adiabatic
invartant limits the equilibration. The first process examined is the equilibration
of spin temperature with kinetic temperature in a weakly correlated pure electron
plasma in the strongly magnetized limit, where the distance of closest approach is
large compared to the Larmor radius. In this limit, the spin precession frequency is
large so the component of spin along the magnetic field is an adiabatic invariant which
1s broken only by resonant magnetic fluctuations at the spin precession frequency. In
this case, we find that the most important spin flip mechanism stems from electron-

electron collisions in a spatially inhomogeneous magnetic field. Such collisions cause




an exchange of spin and cyclotron quanta, and consequently the conventional many
electron adiabatic invariant (i.e. the total number of cyclotron quanta) is broken and
is replaced by a new adiabatic invariant, equal to the sum of the spin and cyclotron
actions. A quantum Boltzmann equation is derived to describe the equilibration
process.

The second process studied is the temperature equilibration of an ordered
Coulomb chain of ions, where the charges have been cooled into the regime of strong
correlation ' 3> 1. We calculate the rate of irreversible energy transfer between
the transverse and parallel degrees of freedom in the strong transverse confinement
limit. In this limit, the transverse motions are much higher frequency than the
parallel motion, and so the total action of the high frequency transverse motion 1s
approximately a many-particle adiabatic invariant. Only when this adiabatic invari-
ant is broken can thermal equilibration occur. We find that Coulomb collisions can
couple the perpendicular to the parallel degrees of freedom and cause a breaking of
this invariant,leading to an exponentially small equihbration rate.

The third process calculated is the equipartition rate between parallel and
perpendicular motion of a single species plasma which is not only strongly magne-
| tized, but also strongly correlated so that the 'plasma. is crystallized. In this case,
we classify the crystal’s collective modes into three branches: a cyclotron mode, a
plasma mode and a E x B drift mode. We find that the total action of the cyclotron
modes is an adiabatic invariant, which can be broken via the resonant coupling be-
tween a single (high frequency) cyclotron mode and many (low frequency) plasma
modes, leading to the equilibration between the parallel and perpendicular temper-
atures. We caicula.te the rate for this process and find that the rate is exponentially
small and is an oscillatory function of the magnetic field orientation with respect to

the crystal structure.



Chapter 1

General Introduction

1.1 Overview

This thesis addresses the role of many particle adiabatic invariants in the tem-
perature equilibration of single-species plasmas. Three specific examples are studied.
Chapter 2 presents the calculation of the rate of spin temperature equilibration in a
strongly magnetized and weakly correlated pure electron plasma, Chapter 3 presents
the calculation of the rate of the temperature equilibration of a one-dimensional
Coulomb chain and Chapter 4 presents the calculation of the temperature equilibra-
tion in a strongly magnetized single species crystallized plasma.

These calculations have several features in common. First, in all three cal-
culations, the plasmas consist of a single charge species, i.e., they are nonneutral
plasmas. In experiments confinement times of several hours to several days have
been achieved [V for nonneutral plasmas, so states of confined thermal equilibrium
are possible. This unique property of nonneutral plasmas provides an experimental
opportunity to test our temperature equilibration calculations. Another significant
difference between neutral and nonneutral plasmas is that nonneutral plasmas can
be cooled to very low temperature without the occurrence of recombination. When
kT drops below g¢?/a, where g is the charge and a is the distance between neigh-

boring charges, the plasma becomes strongly correlated and as the temperature is



reduced, one expects the plasma to become a liquid and then a crystal. This second
property of a nonneutral plasma makes the experimental test of our calculations for
the strongly correlated plasma possible.

Second, our three calculations have an essential feature in common, that is,
the temperature equilibration is limited by the existence of an adiabatic invariant.
Generally, an action J which is canonically conjugate to an angle variable 8, where
f varies on a timescale faster than any other timescales in the system, is an ”almost
constant of motion” and this approximate constant is called an adiabatic invariant.
If Jis an adiabatic invariant, then on a short timescale during which J is well

conserved, the (partial) equilibrium distribution of the system has the form
D = 7 e PHted (1.1)

where H is the total energy of the system and Z, «,3 are constants related to the
temperature and the total number of particles. In order for the system to approach
the thermal equilibrium state, which is described by the distribution D = Z5 e A
with By = 1/kT and T is the equilibrium temperature, the adiabatic invariant J
must be broken. However, as a general characteristic of the breaking of the adia-
batic invariant, dJ/dt is exponentially small and scales as exp[—®/e|, where ® is an
algebraic factor determined by the dynamics, and where the adiabaticity parameter
€, which equals the ratio between the fast timescale and the slow timescale of the
dynamics, is small compared with unity. As a result of the exponentially small rate
for the breaking of the adiabatic invariant, the time for the temperature equilibration
is expected to be exponentially long as a function of ¢. Here we see two very different
timescales during the temperature equilibration process : on a short timescale, J is
well conserved and the partial equilibrium with the distribution function described by

Eq. (1.1) is established; on a exponentially long timescale, the breaking of J occurs,




causing the system to equilibrate toward the final thermal equilibrium. Obviously

the overall temperature equilibration time is mainly determined by the second pro-
cess. In Chapter 2, Chapter 3 and Chapter 4, we calculate this exponentially small
rate of temperature equilibration for three specific processes.

In Chapter 2, we present a calculation of the equilibration rate of spin tem-
perature in a pure electron plasma, where the plasma is assumed to be weakly corre-
lated, i.e., T' = ¢?/akT <« 1. Furthermore, the plasma is in the strong magnetization
regime where the cyclotron radius 7 is small compared with the distance of the
closest approach b = 2¢*/kT. Supposing that initially the plasma has a temperature
T, associated with the distribution of electron spins, which is different from the per-
pendicular kinetic temperature T, and parallel kinetic temperature T, we determine
the rate at which T,, Tj; and T, should relax to a common value.

The spin temperature 7, is defined by ";T, =hi%ln %, where §, = %}i,
g = 2.002 - -- is the Landé g factor, z; and z_ are the concentrations of electrons
with spin up and spin down respectively. Spin up and spin down are defined in terms
of the electron spin vector s: s, = s - B/|B| = +%/2. where B is the magnetic field

vector. In order for the spin temperature to equilibrate, processes which flip the
electron spins must occur. In order to understand the spin-flip process intuitively,
it is useful to consider a classical model of the spin dynamics in which the quantum
spin is regarded as a classical magnetic moment. In a magnetic field, the direction of
the magnetic moment precesses around the magnetic field line at the spin precession
frequency 1, = %Qc, where {1, = % is the electron cyclotron frequency. In the
regime of strong correlation, {1, is large and hence s, is an adiabatic invariant. In
order to flip the spin, this adiabatic invariant must be broken. We found that,

except for collisions with neutrals, which are negligible in cryogenic experiments, the

only way to break the adiabatic invariant is through the coupling with a fluctuating




magnetic field §B(¢). Furthermore, it is the Fourier component of §B(t) at frequency
equal to the spin precession frequency {1, that causes a spin flip.

The spin flip Hamiltonian can be written as §H,; = %s +éB(t). When
§B(t) is associated with an electron’s orbital motion, the coupling between spin and
5B(t) leads to an energy exchange between spin and orbital degrees of freedom, caus-
ing energy equipartition for the system. After examining several mechanisms that
couple the spin and kinetic degrees of freedom, we found that the dominant spin flip
process is an electron-electron collision in a spatially nonuniform B field. The basic
idea for this collisional depolarization is the following. As an electron moves in a
nonuniform magnetic field, in its rest frame the electron sees a time varying perturb-
ing magnetic field 4B, which to the lowest order of the inhomogeneity, has the form
§B(t) ~ r(t) - VB, where r(t) is the position of the electron. Therefore, the spin flip
is driven by the resonant component of r(t) at frequency {1,. Notice that the elec-
tron’s g factor is almost equal to 2 and so the electron’s cyclotron motion has almost
the right frequency to cause resonance. However, {1, — {1, = (g — 1), >~ 0.0012, is
still a large frequency for a strong magnetic field, and thus a perturbation of the
cyclotron motion must occur to make up the frequency difference and cause a reso-
nance. In the regime of strong magnetization, we found that such a high frequency
can be introduced in an electron-electron collision.

An electron-electron collision in a strongly magnetized plasma is quite differ-
ent from conventional Rutherford scattering. The cyclotron radii for the two colliding
electrons are small compared to distance between the electrons, and the electrons
spiral toward and away from each another along tight helical orbits that follow field
lines. During each collision, the cyclotron motion suffers a small time varying phase
shift §8(t), which varies at a characteristic frequency O(v;|/b), and the cyclotron

orbit is thus of the form rpef{®ct+8(t) ~ 5 giftet +1r.86(t)e' . Here, vy is the initial




parallel velocity between two electrons and b is the distance of the closest approach.
Here, we may see that the term r788(t)e'™* | which has a characteristic frequency
Q. + O(vy/b), can be in resonance with the spin precession frequency, causing a kick
in the spin direction during each collision. Over many uncorrelated collisions the
spin direction gradually diffuse in a random walk, leading to spin depolarization.
Based on this physical picture, for |[Q, — Q.| < O(v)/b), we estimated that

the spin flip probability amplitude |Ac| scales as

pLAH Qc
I Q-9

|Ac| ~ (1.2)

where ), b, 71 are the averaged values, L is the scale length of the magnetic field
inhomogeneity, and A# is the change of the §8(¢) during a collision, which is roughly
on the order of the small parameter & = %)/b{,. After many collisions, the spin
depolarization rate is given by Vein ~ vo|Aci?, where v, = mnob? is the collision
frequency. For |Q, — Q.| > O(v;/b), we will see that the rate becomes exponentially
small.

The problem of spin relaxation in plasmas has not received much attention.
It was only recently that this problem was considered for fusion plasmasi®. The
motivation there was that the cross-section for D-T reactions is enhanced when the
reacting nuclei’s spins are aligned, and so an increase of the fusion power output
is achieved if the plasma ions are spin polarized. It was found that, except for the
effect of plasma waves, collisional depolarization in an inhomogeneous magnetic field
is also the dominant depolarization effect in fusion plasmas. However, the collisional
depolarization effect in fusion plasmas is quite different from that for a strongly
magnetized pure electron plasma. For colhsions in a fusion plasma, the timescale on
which the orbit changes, or the effective duration time of collision, is much shorter

than the gyroperiod. So the detailed dynamics of an individual collision, which



may be termed an "impulsive” random kick, is expected to be unimportant and
consequently it suffices to take A6 ~ 27 in Eq.(1.2). On the other hand, in a
strongly magnetized plasma, ;! < b/%| and thus during the effective duration time
of collision b/ 7), the electron gyrates over many cycles and Af is small. Evidently, the
detailed collisional gyrodynamics is important for the determination of this change
during a given collision.

In Chapter 2, we first calculate the spin temperature equilibration rate v,p;, in
the classical limit kT >> Af).. We find that for £ > 0.001, vupin =~ 1.5 x 10%(g7,/ L)%
For a typical plasma density of 1083¢m ™ and B = 10kG, this implies that the mag-
netic field inhomogeneity must satisfy L(cm) < 7.157%/4(K) in order for Vppin t0 be
less than the plasma confinement time, which is typically on the order of 10%sec.

However, we must point out that in the classical limit, the kinetic energy is
assumed to be large compared with the spin energy £, and so the kinetic energy
behaves like an infinite heat reservoir supplying energy to flip spin. In this case, the
orbital state of the electron is not affected by the spin flip and thus the spin flip
transition from |+ > to |— > and from |— > to |+ > have an equal probability. This
implies that a thermal equilibrium state is reached only when the number of electrons
with spin up equals the number of electrons with spin down, which corresponds to an
infinite spin temperature. Therefore, we can not rely on the classical process to reach
thermal equilibrium and we must treat the orbital motion quantum mecilanica,lly.

In fact, the parameter regime of strong magnetization is quite unusual. For
T, ~ T ~ T the condition for strong magnetization #; < b, can be written as
T(K) < 100B%/3(Tesla), which requires a strong magnetic field and a low temper-
ature. When B is sufficiently strong and T, is sufficiently low such that ¥T < k.,

a quantum mechanical treatment is necessary. In this case, not only the cyclotron

energy is quantized as E,, = (n + 1/2)A(Q., where the non-negative integer n is the




quantum number of the Landau levels, but also spin flip would cause an appreciable

change in the orbital state. Specifically, when spin is excited from |- > to {+ >
state, the spin energy is increased by an energy quanta h{), and this amount of en-
ergy is supplied by the cyclotron energy (kfl.) and the parallel energy (A(Q, — Qc)).
Consequently, n is decreased by unity while s, is increased from —k/2 to £/2. Simi-
larly, for the opposite process, n is decreased by unity while s, is flipped from %/2 to
—h/2. This type of energy exchange between the spin the kinetic degrees of freedom
is crucial to cause spin temperature equilibration.

The result of the quantum analysis shows the equilibration rate T,/T, is

proportional to

A, , AQ, , A(0p-0ic)
1~ e F L T k:‘r],j_ + e ] [= AL [ 2KT, .
sinh (A /2T )
Here we note two important quantum effects. First, the term [sin:%éjc;:TL)]

introduces a notable suppression in the rate when kT < A{,. This is because
almost all the electrons stay at the ground state of the Landau level in this case and
they are forbidden to further give up energy to excite the spin flip. Second, in the

~ thermal equilibrium state, T,/T, = 0, we have

A, B B(Q, - Q)
KT, KT. T Ky (1.3)

Certainly we can not conclude that T, = T, = T, from Eq. (1.3). This imples
that the spin flip collisions which we calculated can not drive the system toward a
common equilibrium temperature, rather, it only drives the system toward partial
equilibrium with temperature satisfying Eq. (1.3). The physical reason for this can
be understood as follows. When spin and and orbital dynamics are decoupled, both
s, and cyclotron quantum number n are adiabatic invariants. However, when spin

is coupled to the orbital dynamics, the invariants s, and n both are broken. In the




mean time, the exchange between spin and cyclotron quanta leads to a new adiabatic

invariant, which equals to the total action of spin and cyclotron motion: s, 4 nh.
Furthermore, one can generalize this new adiabatic invariant to a many electron
adiabatic invariant p(¥) = Y:(8z + n:k), where the sum is over all the electrons.
Substituting J = u¥) into Eq. (1.1), one may easily obtain Eq. (1.3) by rearranging
the terms in the exponent.

In order for the complete equilibration to occur, the invariant p!™) must
be broken. One of the most important collisional p¥) - breaking processes is that
involving collisional perpendicular and parallel energy exchange without spin flip,
which has been discussed in another paper!l. For a weakly inhomogeneous field, this
kind of u(™) -breaking collision is the dominant mechanism and these p(¥)-breaking
collisions cause equilibration between T'; and 7} on a relatively fast timescale. If one
assumes that T, = T} during the spin-kinetic temperature equilibration process the
condition T, = Ty = T, follows directly from Eq. (1.3).

The spin temperature equilibration is an important fundamental transport
process in nonneutral plasmas. Besides the intrinsic interest of this problem, it
also has several important practical applications. For example, according to our
calculation, the temperature equilibration rate depends on the scale length L of
the magnetic field inhomogeneity through L~2. In the experiments, L ranging from
10cm to 103¢m can be easily achieved by confining the plasma at different distances
from the end of the solenoid which produces the confining magnetic field. This
suggests that the rate at which the electron spin temperature approaches the kinetic
temperature can be relatively easily controlled. If this rate is reasonably fast, it might
be possible to use a measurement of the plasma spin polarization as a thermometer for
the kinetic degrees of freedom. Since the electron spin distribution becomes polarized

as kT falls below kf),, measurement of the degree of polarization of the electron spins




could indirectly provide the kinetic temperature in a range of temperature on the

order of i}, /k. For B ~ 10 — 60kG, this temperature is on the order of 1K, which
is over an order of magnitude below the minimum temperature which have been
measured using current techniques.

On the other hand, if the temperature equilibration rate is slow, one may
use the spin of an electron as a tag in order to perform various test-particle mea-
surements. For example, one might place a small sub-population of the plasma in
the opposite spin state from the bulk of the plasma, and follow this population’s
subsequent dynamics in order to evaluate test-particle spatial and velocity diffusion
coefficients.

We now turn to the problems discussed in Chapter 3 and Chapter 4. First of
all, we note that the plasmas discussed in Chapter 3 and Chapter 4 are completely
different from that discussed in Chapter 2, which is weakly correlated. In Chapter 3
and Chapter 4, the plasmas are in the strongly correlated regime, where the correla-
tion parameter ' = ¢*/akT, is much larger than unity, where g is the charge, a is the
inter-particle spacing and T is the temperature. Compared with a weakly correlated
plasma, there are some rather distinctive properties for a strongly correlated plasma.
For example, as I' increases, the plasma undergoes a transition from a gas-like state
in the weakly correlated régime to a liquid and even crystallized state in the strongly
correlated regimel®!. Furthermore, as the condensed state is formed, the particles
interact with each other collectively rather than via binary collisions. These features
determine that the dynamical process caunsing i:he temperature equilibration is very
different from that for a weakly correlated plasma.

We first discuss the problem studied in Chapter 3— temperature equilibration
of a one- dimensional Coulomb chain. The one-dimensional Coulomb chain is a 1D

form of condensed matter, consisting of charges of a single species trapped in a linear
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configuration through the application of strong external magnetic and/or electric
fields. In at least two of the recent experiments, where the technique of laser cooling
or electron cooling was applied to the trapped ions, the formation of one dimensional
Coulomb chains has been observed®7], In one of the experiments!® ions are trapped
in a linear Paul trap, where ions are held together against their Coulomb repulsion
by an external radiofrequency field, while in the other experiment!”), a Paul trap
in ring configuration has been used to trap a toroidal cloud of ions. In addition,
it was predicted that an ordered Coulomb chain may also be realized in a storage
ring!®, where ions are confined by a external magnetic quadrupole field. For all these
experiments, ions are attracted to the chain axis by an external potential of the form

1mw?r?, where 7 is the distance from the axis and w, is the (large) radial oscillation

2
frequency.

The motivation of our investigation of the temperature equilibration of the
1D Coulomb chain is the effort to obtain a cold, quiescent chain and a low emittance
ion source, which is highly desirable for high precision atomic physics and high en-
ergy physics experiments. In the experiments, when laser cooling or electron cooling
is applied along the chain axis, Tjj, the temperature associated with the longitudi-
nal motion is cooled, but the temperature associated with the transverse motion,
T, is not cooled. T, can only be cooled through Coulomb collisions!®], where the
perpendicular energy is scattered into the parallel energy, which is removed by laser
cooling or electron cooling. In this case, the overall cooling rate depends on the rate
at which T equilibrates with 7).

We calculate the rate v at which T, and T} relax to thermal equilibrium in the
strong focusing limit, where parameter € = wg/w, is much smaller than unity. Here
we = W is the characteristic frequency of the longitudinal plasma oscillation.

For large I', the collective interactions between ions can be well described by the
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emission and absorption of phonons. In the ideal phonon limit, the ion’s motion
can be described by N longitudinal eigenmodes at frequency of order wg and 2N
transverse modes at frequency approximately equal to w,. In this case, the inequality
£ < 1 implies that the transverse motion of ions is of much higher frequency than
the longitudinal motion. Therefore, one may expect that the total action, or, the
total quanta, of the transverse phonons is an adiabatic invariant. In order for the
temperature equilibration to occur, this adiabatic invariant must be broken.

We find that the adiabatic invariant is broken by the anharmonic terms in
the lon-ion interactions, which cause phonon-phonon collisions. The basic idea is
as follows. According to the law of the conservation of energy, S, wl) = ¥, wlf),
where w{) is the frequency of the mth initial phonon and w{f) is that of the nth
final phonon. We may then classify the phonon collisions into two types. The first
type of phonon collisions conserve the adiabatic invariant while the second type
of phonon collisions break the adiabatic invariant. For the first type of collisions,
the number of (high frequency) transverse phonons are conserved. This type of
phonon collision may involve only a small number of phonons and thus is a low-
order process, which has a large rate. On the other hand, during the second type
of phonon collision, the number of (high frequency) transverse phonons is changed
before and after collision. In this case, since wy < w,, annihilation (creation) of
one transverse phonon requires creation (annihilation) of M ~ O(1/e) > 1 parallel
phonons and thus the collision is of high-order, which has an exponentially small
rate. Due to these two types of collision, the overall temperature equilibration can
be thought to evolve in two stages. On a short timescale, the first type of collisions
dominate and the energy equipartition occurs between parallel phonons and between
transverse phonons, causing the distribution of parallel and transverse energy to relax

to Maxwellian distributions described by unequal temperature ) and T, separately.
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However, the evolution does not stop at this stage. On a long timescale, the adiabatic
invariant is broken due to the second type of collisions, which cause the temperature
equilibration between transverse and parallel degrees of freedom.

In Chapter 3 in order to obtain the rate of the breaking of the adiabatic
invariant, we calculate the rate for the lowest-order process of the second type of
phonon collisions, that is, two high frequency transverse phonons decay into many
low frequency parallel phonons. The transverse phonons are destroyed in pairs be-
cause of the symmetry of the Hamiltonian. OQur result shows that for sufficiently
small € and sufficiently large T', the rate v(e,T') scales as exp[—2(1o—1)/e — \/m],
where ap = (7/8 + 1/9€)?/T),n = /7((3),T)| = ¢*/akT) and 70 = v + (Iny)/2n,7 =
In[/7pIn2/eap). Here we see that v(e,T) is exponentially small as we expected.
Qur calculation also shows that in order for the harmonic approximation to be valid,
we must require €I')) > 1. To understand this condition, we notice that large parallel
displacements are desirable in order to obtain a large adiabatic invariant breaking
rate because large displacements yield large anharmonic interactions. However, such
large displacements are improbable for low temperature and the competition be-
tween these two effects causes the rate to be dominated by parallel displacements
with a peak at a/\/eT“ . To ensure the harmonic phonon approximation is valid, we
must require a/ \/&'T“ <« a, ie., el > 1. Another important validity condition for
the harmonic approximation is '} > 62\/]:‘_“ , where Ty = ¢°/akT,. This condition
guarantees that the parallel force induced by the transverse motion, which is propor-
tional to the square of the transverse displacements, is small compared to the linear
restoring force.

A striking feature of the equilibration rate v(e,T') is the abrupt steps at
integer ratios between frequencies 2w, and the maximum parallel phonon frequency

wm = nuwp. This is because a phonon-phonon interaction which creates or annihilates
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two transverse phonons and M parallel phonons can only occur if Mw, > 2w,, or
2/ne < M. When 2/5¢ exceeds this value the process no longer contributes and the
rate decreases abruptly. For very large €~ these steps are smoothed out and finally
disappear because the rate is then determined by many high order processes, each
of which has a small effect when taken individually.

In fact, the temperature equilibration rate of a 1D Coulomb chain has been
examined via numerical simulations!’®). However, the validity conditions for the
harmonic approximation are not fully satisfied in that work. In particular, the con-
dition T'; > €® Iy is not satisfied and the transverse displacement is not small,
which causes a nonperturbative driving force of the parallel motion. This makes a
detailed comparison between that calculation and the present analysis not possible.
Nevertheless, Ref[10] does document a decrease in the rate as ¢ decreases. We also
note that in the actual experiments, other mechanisms, such as scattering with gas
molecules or heating due to the 1.f. micromotion in the trap, may contribute to the
equilibration process in a real Paul trap or storage ring.

In addition, when the ion chain is confined in a ring configuration, it will
be bent and in this case, the symmetry of the Hamiltonian is changed, causing a
process where one (instead of two) transverse phonon decays into M /2 (instead of
M) parallel phonons. Therefore, the rate ' for this process is expected to be on
the order of %u(?e, I'), where R is the curvature radius. When % is not sufficiently
small, the curvature effect may play an important role. For example, the circular
Paul trap experiments(® a ~ 5um and R ~ lem so % ~ 5 x 107*. In storage ring
experimentst®, typically @ ~ lgm, R ~ lm and %N 107 is so small that v’ is
negligible compared with v, and in linear Paul trap experiments!] % = 0.

We now turn our attention to the problem discussed in Chapter 4 — the per-

pendicular to parallel temperature equilibration of a crystallized single species plasma
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in the strong magnetization limit, where the cyclotron frequency . is large compared
to the plasma frequency w,. As we have mentioned, when a plasma is cooled to an
extremely low temperature at sufficiently high density, the plasma becomes strongly
correlated and furthermore, the strong correlation causes the formation of liquid and
even crystallized structures. Theoretical calculation has predicted that a first-order
phase transition should occur from a liquid to a body-centered-cubic (bec) crystal
at T' ~ 172 for an infinite horﬁogeneous one component plasma. Moreover, recent
experiments have trapped a cloud of 10? — 10* ions at a sufficiently low temperature
so that the correlation parameter T is largel'l. In this regime the system becomes
strongly correlated and the transition to spatially ordered states has been observed.
However, it is important to note that in the actual experiments, the number

of ions are relatively small so that surface effects may play an important role. Sim-
ulations involving these relatively small number of ions predict that the ion cloud
will separate into concentric spheroidal shells'?l. This prediction has been verified
in experiments!'!). In this case, instead of a sharp phase transition, the system is
expected to evolve gradually from a liquid state characterized by short-range order
and diffusion in all directions, to a state where there is diffusion within a shell but no

| diffusion between shells (liquid within a shell, solidlike in the radial direction), and
ultimately to an overall solidlike state. Therefore, the temperature equilibration for
the system can not in general be predicted by that for a perfect bee erystal. How-
ever, in order to gain a physical insight for the temperature equilibration process, we
chose a simplified model where the plasma consists of randomly oriented local bce
lattice structures!’®. As one may expect, the temperature equilibration process is
dominated by the nearest neighbor interactions. This fact allows us to evaluate the
temperature equilibration rate for the system by averaging the equilibration rate of

a local crystal over randomly varying crystal orientations, or, equivalently, averag-
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ing over the randomly varying magnetic field directions with respect to the crystal

structure.

Specifically, the problem proposed in Chapter 4 is as follows: Suppose initially
the plasma is characterized by unequal temperature T, and T}, where T and T)
are the temperature associated with the motions perpendicular and parallel to the |
magnetic field respectively. We calculate the rate at which T and Tj should. relax
to a common value.

This equilibration rate has been investigated by O’Neil and Hjorth¥ for a
weakly correlated and strongly magnetized plasma where the equilibration is driven
by binary collisions. In that case, the cyclotron frequency is larger than the charac-
teristic frequency w of the collisional dynamics, which is on the order of v /b, where
v|| is the relative parallel velocity and b is distance of the closest approach. This
large frequency separation implies that the sum of each individual cyclotron action
is an adiabatic invariant. Due to the existence of this adiabatic invariant, the equili-
bration rate is an exponentially small function of 1/e;, where £; = w)/Ql. < 1 is the
small adiabaticity parameter. Specifically, the exchange of perpendicular cyclotron
energy and parallel energy that occurs during a single collision was found to be on

the order of e~*/261_ and after many uncorrelated collisions, an average of e~"/2%

over a Maxwellian distribution yields the equilibration rate vy ~ ea;p(—2.04/€'f/ 5),
where &, is the average of €;. However, in the strongly correlated regime, particles
interact collectively with each other and 1/w| is characterized by the collective time
scale associated with the slow parallel oscillation, which is on the order of w;*. Cor-
respondingly, €, is replaced by € = w,/§ < 1. In this case, we find that for eI} > 1
the equilibration rate v ~ ezp[—(1 + Inel|)/e]. Here, T = ¢*/akT}; > 1 and thus
£ = I‘"\/(_iI‘—HEl > &,, which implies that ¥ 3> 14. Therefore, in the regime of strong

correlation, the rate due to collective interactions that we calculate here is much

B
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larger than that predicted by the binary collisional equilibration rate.

In the regime of strong correlation, particles interact with one another col-
lectively. In this case, the eigenmodes for the crystallized plasma can be classified
into three branches with very different frequency regimes, namely, N perpendicular
cyclotron modes with frequency on the order of (};, N parallel plasma oscillation
modes with frequency on the order of w, and N E x B drift modes with frequency
on the order of w}/Q,. The condition of strong magnetization implies the ordering
Q> wp > wﬁ /€. Furthermore, since the E x B dnft modes have much smaller
frequencies than the other modes and the amplitude of the drift modes are small
compared with the inter-particle distance, we may neglect the contributions from
these modes to the temperature equilibration. We can now easily see the strong
similarity between this 3D magnetized problem and the 1D Coulomb chain problem,
where w, assumes the role of (), in the present problem. By analogy with the 1D
Coulomb chain problem, we expect that the total action (quanta) of the cyclotron
modes (phonons) is an adiabatic invariant and the breaking of this adiabatic in-
variant leads to an exponentially small equilibration rate as a function of the small
adiabaticity parameter € = w,/().. However, despite the similarities between the 1D
and 3D problems, in what follows, we emphasize that there are distinctive features
of the 3D problem.

One of the most distinctive features is that the abrupt steps in the equilibra-
tion rate of a 1D chain now disappears for the 3D plasma. This can be understood as
follows. As we have mentioned, the rate is dominated by the processes involving large
frequency parallel phonon modes. For a 1D chain, the largest parallel frequency wp,
occurs at the shortest wavelength mode with & = w/e, which has a divergent density
of states proportional to 1/|k — w/a| — oo, causing the abrupt steps in the rate.

On the other hand, for a 3D plasma the maximum parallel frequency w, occurs at
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the long wavelength modes with & — 0, which has a density of states proportional
to k — 0. According to energy conservation, a phonon collision which creates or

annihilates one cyclotron phonon and M ~ O(1/e) plasma phonons can only occur

if M > Q./w,. However, as M — Q./w,, k — 0, and the number of the plasma

modes — 0, causing the abrupt steps to be smoothed out.

Another distinctive feature of the 3D problem is the dependence of the rate

v on the orientation of the magnetic field with respect to the crystal structure. This
dependence can be understood from the following physical picture. In the guiding
center limit, one may think of particle’s motion as fast cyclotron motion in the
perpendicular plane and relatively slow oscillation in the parajlel direction. In this
case, as a particle ! oscillates slowly along the field line, it produces a slowly varying
perturbing electrostatic force §f on another particle n. The perpendicular component
of §f, §f1 ~ |8f|sinby,, where 8, is the angle between the magnetic field and the
relative position for  and n, would modify particle »’s cyclotron motion causing
a change of the cyclotron action, and leads to an energy equipartition at rate v,.
This type of interaction between different pairs of particles acts cumulatively and
leads to the breaking of the adiabatic invariant at a rate v = 3,4 v1a. The rate v,
can be obtained by expanding the interaction Hamiltonian, keeping only the lowest-
order process, which corresponds to the annihilation of one cyclotron phonon into

M ~ O(1/e) > 1 parallel phonons. In the ¢ « 1 and T > 1 limit, we find that

Vin depends on € and 6, as

e~ ¥/[(cos 6n) /P (cos 1)) (1.4)

where P} s<(x) is the associated Legendre function of the first kind,

™

2
™
$ = 1H[ﬁ( 3 )2/302/261-‘“] + 1,
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where ¢g is a positive constant weakly dependent of the magnetic field direction. As
for the 1D case, here we see that the rate is exponentially small and in order to
make the result sensible, we must require the validity condition for the harmonic
approximation eI 3> 1 to be satisfied. Furthermore, as a unique property of the 3D
problem, v is an oscillatory function of 6, shown by the Legendre function. Also,
v decays exponentially as 8, increases due to the factor {cos Bln)z/ €. Notice that
P1—+11 /e(cos 61.) = 0 at 6, = 0. We therefore expect that the largest rate occurs at
small but nonzero f,. Physically, this is easy to understand. In order to obtain a
large rate, a large parallel relative ion displacement is desirable. Furthermore, the
rate is dominated by the largest frequency plasma modes, which, as we will see,
are the long wavelength modes with wavevector k || B. In this case, the largest
parallel relative ion displacement obviously occurs at 8, = 0. As an extreme case,
the relative ion displacement would vanish for 6;, = w/2. However, when 61, — 0,
§f, ~ |6f|sinfy, — 0. Therefore, we expect that the competition between the
tendencies of small and large 8y, yield a peak in » at small but nonzero 8, for large
1/e.

Finally, as a caveat, we must point out that in both Chapter 3 and Chapter
4, when calculating the rate of the breaking of the adiabatic invariant, we assume
that the particle’s exact trajectory can be approximated by the unperturbed trajec-
tory determined by the harmonic Hamiltonian. The approximation of integration
along the unperturbed trajectory works well for a weakly correlated plasma. How-
ever, its validity in the strong correlation regime needs to be tested. In fact, when
the anharmonic terms become important, J can no longer be approximated by the
total action associated with the high frequency (perpendicular) harmonic motion,I
Consequently, the constants a and 3 in Eq.(1.1) are not simply related to the per-

pendicular and parallel kinetic energies. Moreover, the particle’s orbit is perturbed
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by the anharmonic interactions and in this case, the perpendicular and parallel mo-
tion can be thought of as nonlinearly coupled harmonic oscillators. This nonlinear
coupling will introduce a frequency shift which will effectively change the adiabaticity
parameter ¢, causing a change in the exponential of the rate for the breaking of the
adiabatic invariant. Also, this nonlinear coupling, if sufficiently strong, may cause
the parallel and perpendicular dynamics to become chaofic. This could produce high
frequencies in the parallel motion (due to, say, close collisions), and low frequencies
in the perpendicular motion (due to nonlinear resonances) which leads to strong cou-
pling between the parallel and perpendicular degrees of freedom. Presumably, such
effects are responsible for the relatively rapid equilibration rates observed in the
previous simulations'®, where the amplitude of the perpendicular motion is large
(T < é \/I‘_” )- However, in the regime of nearly harm.onic phonons discussed in this
thesis, we believe that the use of harmonic orbits, while not rigorously justifiable, is
a useful first approximation.

Chapter 2 of this thesis has been published in The Physics of Fluidsi*4,
Chapter 3 of this thesis has been published in Physical Review Letters*s).
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After examining several mechanisms which couple the spin and kinetic de-
grees of freedom, we conclude that the dominant spin-flip process is an electron-
electron collision in & spatially inhomogeneous magnetic field. In the experiments,
the confining magnetic field is inhomogeneous due, among other things, to the finite
length of the solenoid. The degree of field nonuniformity can be controlled by con-
fining the plasma at dlfferent distances from the end of the solenoid. The ability to
control the rate of spm temperature rel;xa,tmn may be useful in future expenments
which rely on measurements of the degree of electron spin polarization. Two such
e}'-cperimgnts are brieﬁy. discussed in the conclusion of the paper. “ e

In order to understand the spin-flip process intuitively, it is useful to consider
a classical model of the spin dynamics in which ‘the _spin is regarded as a classical
magnetic moment. (It is well-known that this.cla,ssicz;l picture is rigorously correct
if one considers the dynamics of the quantum expectation value of the spin opera-

tor.) The direction of the moment precesses around the magnetic field at the spin

precession frequency 0, = gQ./2, where g is the Lande g-factor, equal to 2.002... for

*electrons. In the regime of strong magnetization €2, is large and hence the component

of the magnetic moment along the magnetic field is an adiabatic invariant. In order

to flip the spin this adiabatic invariant must be broken. If collisions with neutrals
are neglected (and we will see that this effect is unimportant in Section 2.2), the only

way to break the-invariant is through a resonant fluctuation in the magnetic field

- (that is, a fluctuation at frequency £, in the electrons’ rest frame. Electron cyclotron

motion in a spatially nonuniform (but time-independent) magnetic field is almost of
the right frequency to cause such a fluctuation in the electron’s rest frame since the
electron g factor is nearly equal to 2. However, 2, — Q. ~ 0.001£, is still a large

frequency and so cyclotron’motion by ‘itself is not énough to break the invariant,

and a perturbation of the cyclotron motion must occur which is of sufficiently high
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Chapter 2

Equilibration Rate of Spin
Temperature in a Strongly
Magnetized Pure Electron Plasma

2.1 Introduction

Recent experiments have confined and cooled a pure electron plasma to cryo-
genic temperatures, T ~ 1 — 10K, in a strong solenoidal magnetic field, B ~
10 — 60kGM. This range of temperatures and magnetic fields places the plasma
in the novel regime of strong magnetization, in which the average distance of clos-
est approach b = 2e2/k7) is large compared to the average Larmor radius 7 =
| \/fm /e (where € is the electron charge, T} and T is the kinetic temperature
associated with the distributions of velocities parallel and perpendicular to the mag-
netic field, m the electron mass and §2. = eB/mcis the electron cyclotron frequency).

In this paper we consider a strongly magnetized pure electron plasma which
initially has a temperature associated with the distribution of electron spins, T},
which is different from the kinetic temperatures T} and T,. We calculate the rate
at which T,, T}, and T, should relax to a common value. We assume throughout

that the plasma is weakly correlated (i.e. that nA}, >> 1 where n is the density and

Ap = v kT /4wen is the Debye length).

21
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After examining several mechanisms which couple the spin and kinetic de-
grees of freedom, we conclude that the dominant spin-flip process is an electron-
electron collision in a spatially inhomogeneous magnetic field. In the experiments,
the confining magnetic field is inhomogeneous due, among other things, to the finite
length of the solenoid. The degree of field nonuniformity can be controlled by con-
fining the plasma at different distances from the end of the solenoid. The ability to
control the rate of spin temperature relaxation may be useful in future experiments
which rely on measurements of the degree of electron spin polarization. Two such
experiments are briefly discussed in the conclusion of the paper.

In order to understand the spin-flip process intuitively, it is useful to consider
a classical model of the spin dynamics in which the spin is regarded as a classical
magnetic moment. (It is well-known that this classical picture is rigorously correct
if one considers the dynamics of the quantum expectation value of the spin opera-
tor.) The direction of the moment precesses around the magnetic field at the spin
precession frequency §1, = gfl./2, where g is the Lande g-factor, equal to 2.002... for
electrons. In the regime of strong magnetization £}, is large and hence the component
of the magnetic moment along the magnetic field is an adiabatic invariant. In order

| to flip the spin this adiabatic invariant must be broken. If collisions with neutrals
are neglected (and we will see that this effect is unimportant in Section 2.2), the only
way to break the invariant is through a resonant fluctuation in the magnetic field
(that is, a fluctuation at frequency 2, in the electrons’ rest frame. Electron cyclotron
motion in a spatially nonuniform (but time-independent) magnetic field is almost of
the right frequency to cause such a fluctuation in the electron’s rest frame since the
electron g factor is nearly equal to 2. However, §1, — (. ~ 0.0018, is still a large
frequency and so cyclotron motion by itself is not enough to break the invariant,

and a perturbation of the cyclotron motion must occur which is of sufficiently high
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frequency to make up the difference and cause a resonance between the spin and or-
bital dynamics. In the regime of strong magnetization the only perturbation of such
high frequency is an electron-electron collision, which induces orbital perturbations
with frequencies of order 3/b, where ¥ is the thermal speed.

In order to estimate the magnitude of the spin depolarization rate due to
electron-electron collisions in a spatially nonuniform B-field, consider a strong static
magnetic field B2 along with a small time varying magnetic field 6B(t) in the elec-
tron’s rest frame. This time dependent field is due to electron motion through the
spatially inhomogeneous but time-independent external magnetic field. We will es-
timate B presently, but for now all we need to assume is that for a time At ~ b/3,
the timescale of an electron-electron collision, §B(t) has a right-circularly polarized
component rotating at frequency w = ,. This component resonates with the spin
precession and drives a spin flip. The magnitude of this resonant component, é Bk,
will be given approximately by a sum over all temporal Fourier components of the

right-polarized part of §B(t) with frequencies w satisfying |w — Qp| < 27/At:

(2 +19) .=
§Bg ~ f dWw =T sp
R [w—0p|<2m/ At \/E (W)

where §B(w) is the Fourier transform of §B(t). The probability amplitude AC of

the spin flip is then given, in perturbation theory, by the angle through which the

spin precesses in time At due to this resonant field:

IAC| ~ —2-|5Bg|At.

2me

Now, 6B(t) can be estimated for an electron executing cyclotron motion in a slightly
nonuniform magnetic field: §B(t) ~ p(t) - VB where p is a vector describing the
cyclotron motion: p(t) = 7r(cos(Qt + )& + sin(Qt + 6)7), where ¢ 1s the constant

gyrophase. If one further assumes that the electron suffers a collision for which the
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impact parameter is large compared to the Larmor radius, we will see in Sec.(2.3)
that the most important effect 1s that  becomes a function of time, adding Fourier
components which bring §B(¢) into resonance with the spin precession: § = 6,+64(t).
Since 66(t) is small in such a collision, one can expand to first order in 66 to find
that the resonant magnetic field approximately

_ o -
§Bp ~ B2 s
L Jlw-n,|<2n/at 27

(w— )
where § is the Fourier transform of §6(t) and L is the scale length of variation

of B. Since §4(t) varies on a time scale of order At = b/#, if one assumes that

(Qp — 2.)At < 1 this integral can be estimated as approximately

fr, .-
6Bp ~ BKt—LEG(QP - QC).

Furthermore, the magnitude of 69(Qp — §1.) can be estimated using dimensional

analysis of the integral expression for the Fourier transform:

1669, — Q) = | [ dté(t)e =00 ~ AG/(Q, — Q)

-0

where A#f is the total change in §6(¢) during the collision, and again we have assumed
(Q — Q:)At < 1. In this regime we show in Section 2.2 that A# is roughly on order
of the small parameter € = 7, /Bﬂco, where 7, is the parallel relative thermal speed.
This parameter is the ratio of the frequency associated with a collision compared
to the cyclotron frequency. When € <« 1 the plasma is in the strongly magnetized

regime. Using this estimate for Aé, the spin flip amplitude is approximately

FrAf . er,  §l

[AC~=F Q-0 LO,-0 (2.1)

Finally, over many uncorrelated collisions the spin direction gradually diffuses in a

random walk and the rate of spin depolarization is given by v,pin ~ ve|AC|?, where
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v, = mnub® is the electron-electron collision frequency.

This estimate for the depolarization rate gives the proper scaling of the spin
depolarization rate provided that |, —Q.| < 7/b, or € > g/2—1 = .001. For € < .001
we will see that vupin becomes exponentially small. This is because (£, — Q.)At
becomes greater than unity in this regime, so that A@ becomes exponentially small.

Although there has been considerable previous work, both theoretical and
experimental, on the spin relaxation in neutral gases and solids, spin relaxation
in plasmas has not received as much attention. However, the problem has been
considered theoretically for plasma parameters of fusion interest. In this interesting
work(?! it was noted that the fusion cross-section for D-T reactions is enhanced when
the reacting nuclei’s spins are aligned, and so an increase of the fusion power output
is achieved if the plasma ions are spin polarized. A calculation of the rate at which
the nuclear spins are depolarized by various effects was then carried out.

It was found that, except for the effect of plasma waves, collisional depolar-
ization in an inhomogeneous magnetic field is also the dominant depolarization effect
in fusion plasmas. However, although collisions give rise to spin relaxation effects
for both fusion plasmas and pure electron plasmas, the relaxation rates are quite
different in the two cases. For collisions in a fusion plasma, the time scale on which
the orbit changes, or the effective duration time of collision, is much shorter than
the gyroperiod and so the detailed dynamics of an individual collision, which may be
termed an "impulsive” random kick, is expected to be unimportant. In this case it
suffices to take Af ~ 27 in Eq.(2.1), and then the relaxation rate given by Eq.(36) of
Ref.[ 2] is recovered. On the other hand, during the effective duration time of colli-
sion in a strongly magnetized plasma, the electron gyrates over many cycles. In this
case, there is only a small change of the gyrophase due to the Coulomb interaction.

Evidently, the detailed collisional gyrodynamics is important for the determination



of this change during a given collision.
The collisional process considered here causes an exchange of spin and cy-

clotron energy, and consequently the many electron adiabatic invariant of O’Neil and

Hjorth® equal to the sum of the perpendicular kinetic energies ; E.;, is broken.

However, as we will see this adiabatic invariant is replaced by a new N-electron

invariant equal to the sum of the spin and cyclotron actions:

Ey;
Qc(x,-)

g™ =3 "[s;, + ] = const. (2.2)

where s5;, is the component of the spin along the magnetic field for electron 7 and
E1:/9(x;) is the cyclotron action. The conservation of x¥) implies that this col-
lisional process cannot by itself drive the system to complete thermal equilibrium
and in general T, = T| = 1), will be the result. Rather, in Section 2.5 we obtain the

relation

1, (e/2-1) g/2 _
T, Ty T,

0 (2.3)
which holds for the state of partial thermal equilibrium which is achieved after
many collisions which conserve u™). Of course, since !’ is not an exact invari-
ant, electron-electron collisions occur which cause exponentially small changes in its
value. Because the spatial variation of the magnetic field is slow compared to the
Larmor radius of the strongly-magnetized electrons, almost all of these collisions are
of the type described by O’Neil and Hjorth in which the spin plays no role, and these
collisions cause 7', to approach Tjj according to the equations described in Ref.[ 3].
In turn, collisions considered in this paper which conserve u(*) cause T, to approach
the common value of T, and 7 [see Eq.(2.3) for T, = 7], and hence a state of
complete thermal equilibrium is achieved. This is the qualitative picture of spin

relaxation which emerges from our analysis.
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In Section 2.2 we make order-of-magnitude estimates of various spin flip pro-
cesses, including spin flip due to the mutually generated magnetic field, radiative
transitions and interactions with background waves, Thomas precession, electron-
neutral collisions, and single particle electron motion through the inhomogeneous
B-field. We find that all processes except for electron-electron collisions in an in-
homogeneous B-field produce depolarization time scales which are longer than the
plasma confinement time of approximately 10° seconds, provided that neutrals with
partially-filled valence shells, such as N;, are kept at pressures below ~ 10714 Torr
(this is a reasonable upper bound in the cryogenic environment of the present ex-
periments). In the regime i), < k7T, and € > .001, we find that spin depolarization
rate is Vupm = 1.5 x 10%v,(eFL/L)?. For a typical plasma density of 108¢m™2 and
B = 10kG, this implies that the B-field inhomogeneity scale length L must sat-
isfy L(em) < 7.15T7%/%(K) in order for v}, to be less than the plasma confinement
time. In Section 2.3 we present a calculation of the spin flip transition rate due to
electron electron collisions in a weakly inhomogeneous magnetic field assuming that
the orbital motion can be treated classically (that is, assuming that the electron’s
kinetic energy is large compared to %l.). This calculation improves the estimate for

| Vepin given by Eq.(2.1), extending it to cover the range € < 0.1. In Section 2.4 the
calculation is repeated using a quantum description of the orbital motion, since in
fact 7| and i”” can be of order Af). in the experiments. In the classical limit this rate
agrees with that calculated in Section 2.3. In Section 2.5 we present a derivation of
a Boltzmann collision operator for spin relaxation which conserves u(¥) and drives
the system to a partial thermal equilibrium described by Eq.(2.3). We summarize
our results in the conclusion and discuss two possible experiments which rely on

measurements of spin polarization.
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2.2  Order of Magnitude Estimates for Spin De-
polarization Processes

As pointed out in our discussion, spin depolarization is caused by a resonant
perturbing magnetic field of frequency {1, due to an electron-electron collision in
a nonuniform magnetic field. Such resonant fields can also be induced by other
mechanisms. We will consider four such processes, as well as a fifth process due to
spin exchange in electron-neutral collisions. In order to simplify results we assume

that T\ and T are of the same order of magnitude.

2.2.1 Spin flip due to mutually generated magnetic field

Consider two electrons, 1 and 2, immersed in a uniform external field B,
separated by relative distance r and passing by one another with impact parameter p
on the order of b > 7y, (see Fig.(2.1)). Then electron 1 sees a time varying magnetic
field induced by the relative motion of electron 2 as well as electron 2’s intrinsic
magnetic moment. In the former case the field is B = (e/c)(r x r)/r®, and the
component of this field which is resonant with the spin precession is approximately

8Bg ~ (e/c)uiz/r*, to lowest order in #,/b. Taking v, equal to the thermal velocity
7= \/m and the effective interaction time of the electrons equal to 5/, we find
the change in direction of spin is AC ~ eg§Bp/2mc - b/ ~ (#/c)? ~ 107'°T where
T is the temperature in K. This gives rise to an extremely small depolarization rate
vo(ACY? ~ 10727} /2p(sec™!), where v, ~ wb?n© is the electron-electron collision
frequency and # is the electron demnsity (n) in units of 107em 3.

The intrinsic magnetic dipole moment of electron 2 also induces a time vary-
ing magnetic field at electron 1. However, this magnetic field is so weak that the

spin depolarization effect is negligible, even compared to the above estimate.



Figure 2.1: Schematic picture for an electron-electron collision in a uniform mag-
netic field in the strongly magnetized Lmat.

2.2.2 Radiative transitions and interactions with background
waves '

As an electron’s spin precesses, its related intrinsic magnetic moment will
radiate spontaneously through magnetic dipole transition. The rate for the sponta-

2& _
LAy LY 2 1071 B3(sec™!), where B is the magnitude

) . 2.9
. 4 2
neous radiation is [4l 5(5) m2ch ©

of the magnetic field in Tesla.

In addition, as pointed out by, for example, R.M. Kulsrud et al.? in a uniform
magnetic field, the right circularly polarized component of an electromagnetic wave
with harmonics near §), will cause an electron spin depolarization. It is easy to
show that a thermal level of electromagnetic waves produces negligible depolarization
provided that the plasma is optically thin. When the plasma is optically thick, the
problem is more complicated due to the dielectric behavior of the magnetized pl#Sma.,
but we believe that for a thermal equilibrium plasma at cryogenic temperature, the

electric current fluctuation is negligibly small and there aren’t appreciable excitation
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of magnetic fluctuations. However, waves which are unstable in the range of eleciron
spin precession frequency could cause appreciable spin depolarization. Although
eleciromagnetic instabilities could be driven when T’ and T) differ, if the temperature
difference |T'| — T))| is not too large and no external heating is assumed, then, unlike
the spin polarized fusion plasma, the presence of strong cyclotron damping should
‘make the existence of unstable waves at the spin precession frequency unlikely (since
the electron spin precession frequency 2, = g—ﬂc is close to the cyclotron frequency
Q.).

Another possible depolarization effect is due to the electron position shift
driven by electrostatic waves at the spin precession frequency {,. In a spatially
nonuniform magnetic field the magnetic field seen in the electron’s rest frame is per-
turbed at frequency €2, and the electron spin is flipped by the resonant magnetic field
perturbation. However, one may show that compared with the collisional effect, this
effect is also negligible for a thermal level of waves in the strongly magnetized cryo-
genic plasma. Physically this is due to the relatively few degrees of freedom involved
in these collective electrostatic modes compared with the perturbing electrostatic

field due to collisions.

2.2.3 Thomas precession

Due to this pure relativistic effect, the electron sees an additional perturbing
magnetic field corresponding to a precession frequency wr(t) ~ ¥ x ¥/2¢?. The
magnitude of this frequency does not equal 2, except during an electron-electron
colision. During the collision, a component of the Thomas precession frequency
given by wr(t) ~ v, x ¥;/2¢* varies at the resonant frequency and so leads to
a spin direction change AC ~ (Q.v.9/2¢%) - (b/7)) ~ (%) . (%)2 Here we have
again kept only the lowest order component of wr in an expansion in 7;/b. The
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depolarization rate is then v.(AC)? ~ IO‘TﬁBZ\/TlTlra(sec‘l). As before, B is in

units of Tesla and #, T\, Tj are again in units as defined in section (2.2.1).

2.2.4 Electron-neutral collisions

In the cryogenic environment of the experiment it is likely that the residual
neutrals are almost entirely helium since most of the neutral gas freezes on the
wall. Nevertheless there may be traces of other gases, and here we also consider
collisions with nitrogen molecules as a representative example. To calculate the
spin depolarization rate due to electron-neutral collision, we note that the spin flip
cross section due to spin exchange bet‘ween the free electron and atomic electron is
several orders of magnitude larger than that due to other effects®® such as the spin-
orbit interaction. For electron-helium collisions the spin exchange is inhibited by
the Pauli exclusive principle and so the depolarization effect is effectively negligible
for them. For an electron-nitrogen collision, the spin flip cross section is Tpin flip =
T apinexchange ~ Okinetic = 342 and thus the depolarization rate is approximately
O spin flip N, De < 10-3T-}2qy, (sec™) where #in, is the density of nitrogen molecules
in units of 10*/em® and T is again the temperature in units of Kelvin.

In addition, electron-neutral collisions change electron’s orbit randomly re-
sulting in a fluctuating magnetic field in the electron’s rest frame due to the non-
uniform external magnetic field. This perturbing field causes a spin flip at rate {2
Vepin = 9.57 x 10~3T3/2B~2 =25y, where the scale length of magnetic field inhomo-

geneity L is in units of cm and 7y is the neutral density in units of 10*/em?.

2.2.5 Single particle motion

Single particle motion consists of cyclotron motion together with a slow ExB

rotation of the plasma column and parallel streaming along the slightly curved mag-
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netic field lines. Neither of these drifts cause sufficiently high frequency perturba-
tions to the magnetic field observed in the electron rest frame and so these effects
cause negligible spin depolarization. However, as an electron approaches the end
of the plasma along a field line, the electron feels an electric potential with a scale
length of gradient of order of Ap, the Debye length. Due to the electric potential,
the electron gyro-orbit is disturbed and thus, in the slightly nonuniform B-field,
as in an electron-electron collision, a secular spin depolarization results. However,
since Ap > b, the "collision” with the end of the plasma is much slower than an
electron-electron collision, and the resonant field § Bg is much smaller. The size of
this effect can be estimated by substitution of Ap for bin Eq.(2.1) and use of the axial
bounce frequency », = /L, rather than v., where L, is the length of the plasma.
This implies a depolarization rate smaller than that given by Eq.(2.1) by the factor
(?) : (ng)2 ~ 107%/TL,, where L, are lengths in units of centimeters. This result
is cfurther reduced if the electron mean free path is less than L,, and so should be
regarded as an upper bound.

The depolarization rate vy, for various spin relaxation processes are plotted
as a function of small parameter ¢ = 7/b = 1073T%2/B in Fig.(2.2), where the
other parameters B, @, fiy,, and @iy are set to be unity and L is set to be 10em. The
conclusion we draw from the figure is that the spin relaxation time v, due to all
effects considered other than that of collisional depolarization in a nonuniform mag-
netic field is longer than the maximum plasma confinement time of approximately
105sec provided that @iy, < 1. Therefore, we conclude that the dominant depo-

larization effect is due to collisional depolarization in an inhomogeneous magnetic

field.
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Figure 2.2: Plot of the spin depolarization rate as a function of
€ = 75, /b = 10™3T3/2/ B for different processes. Curve 1: collisional depolarization in
a nonuniform magnetic field. Curve 2: spin exchange effect during electron-neutral
collisions. Curve 3: Thomas precession. Curve 4: spontaneous magnetic dipole ra-
diation. Curve 5: spin flip due to mutually generated magnetic field. Curve 6: spin
flip due to electron-neutral collision in a nonuniform magnetic field. The electron
density n. is assumed to be 107em ™3, the neutral density is taken to be 10%cm™3,
the magnetic field is 1Tesla and the scale length of magnetic field inhomogeneity is
taken to be 10em. -

2.3 Collisional Spin Depolarization in an Inho-

mogeneous Magnetic Field

In this section we consider in detail the problem of spin depolarization due to
electron-electron collisions in a weakly inhomogeneous magnetic field. The velocities
of the colliding electrons are taken to be sufficiently large so that we can treat the
orbital dynamics classically. We will eventually expand in the small parameters r1/b
and rz,/ L, but in order to set up the problem we consider the spin dynamics of a spin ;
particle moving on a general classical trajectory through an inhomogeneous magnetic

field In a fixed laboratory frame of reference the spin part of the wavefunction |4 >
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evolves according to

0
iﬁgzhb >=85- Q[ > (2.4)

_geB

where Q,(¢) (x(t)), x(¢) is the position of the electron, s = %(o,, 0y, 0,) is the

~ 2me
spin operator for spin 1 particles and o5, 0y, 0, are the Pauli matrices, with respect to
some fixed coordinate axes. The classical approximation employed throughout this
section implies that x(t) is unaffected by the spin state and so is a given function of
time.

Now, because the spin component along the field is an adiabatic invariant we
consider the evolution of the spin in a noninertial frame of reference which follows
the electron and which keeps the z axis directed along the magnetic field. Since these
coordinate axes rotate in time as the field varies in direction in the electrons’ rest
frame, the spin Hamiltonian s-$2, transforms into th? noninertial frame according to
the usual relation H' = -0, —s-w, where w = b x i w,b is the rate of rotation of
the coordinate frame, w, represents an arbitrary rotation of the coordinates around

B, and b= B/B. Thus, in the rotating frame, Eq. (2.4) becomel?!)

iha|;bt> = (O —w) s>

Writing |9 > as |¢ >= C,(¢)|+ > +C_(t)|— >, where |[+ > and |~ > are states
polarized paraliel and antiparallel to b (i.e. they are eigenstates of o, in the coordi-
nates moving with the electron), linearized solutions can be found for the transition
amplitudes as a function of time assuming that at the initial time ¢ = ¢; the spin is
in either the + or — state only, so that C.(¢;) = 1. The probability amplitude of

transition to the opposite state follows after some simple algebra:

1 t . pt! "y (£
CIF ~ 1 . dtlwi(tl)e:F‘Ll [Ap(t")—w(t")]dt
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where wy = w, + iw,. This expression clearly shows that |Cy|* = |C_|?, so we
consider only €, from now on.

In order to make further progress we choose to set w, = 0 and further special-
ize to the regime of strong magnetization in which one may write w(t) in a guiding

center expansion:
wft) = 3 wt()e™a M (25)
n

where the w(™§ are relatively slowly varying functions compared to the oscillatory
factor; w(® is the term stemming from guiding-center motion, and the other terms
in the series are associated with harmonics of the cyclotron motion. The largest
terms are w(® and w!*V. These are of magnitude v/L, as can be seem from the
expression w = b X v - Vb. Before we evaluate the w{™’s explicitly in terms of the
strongly-magnetized electron trajectory, it proves useful to integrate by parts in order

to separate out a small oscillatory contribution due to the limits of integration:

1 winy(t') if  [nta/200c(e")de" t=t
o) = & () f
+(t) = 3 Zn: [z‘(n +9/2)0(t) t'=t
=1
o " %w(n)(t' ) o [ ‘1' [n+g/2]0.(")dt" (2.6)

n o tn+ g/2]1Q(¢)
We neglect the first term because it is small and nonsecular. By this we mean that
even after many collisions, the velocity of the electron remains on the order of the
thermal speed and so w{™ /€1, also remains small. Furthermore, although there is a
nearly resonant denominator for the n = —1 term in the series, the term is still only
of order r/(¢g — 2)L <« 1. It is also true that after any single collision the change
of the second term of Eq. (2.6) is small (in fact it is smaller than the first term

by O(g), as we will see). However, over the course of many collisions this second
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term grows secularly in a random walk and hence dominates the expression for C
over time. Physically, the first term represents the effect of fast spin precession in a
slowly varying magnetic field, which causes small oscillations in the z-component of
the spin as B changes direction in the electron rest frame. To make an analogy with
the classical theory of adiabatic invariants, the exact adiabatic invariant is not s,,
but is instead an infinite asymptotic expansion with s, as the lowest order term. The
small oscillations in s, represented by the first term of Eq. (2.6) are due to higher
order non-secular terms in the invariant, and are not important in determining the
secular change of the invariant.

We further simplify the expression for € by neglecting terms of order (rz/L)?
and higher. Since w is already of O(rr /L) we can therefore neglect the magnetic field
gradient in the dynamics of the electron orbits and evaluate the collisional dynamics
in a constant field By = B(xo), where we choose X as the center of mass position at
the instant of closest approach of the colliding electrons (see Fig.(2.1)). Furthermore, -

to lowest order in r/L, w itself can be written as

~

w:iJuXV'(Vb)D

where by = b(x) and (Vb)o = Vb(xo) are constant, and the velocity v has a guiding

center expansion of the same form as Eq. (2.6). Then keeping only the near-resonant

n = —1 term in the series over n in Eq. (2.6), the expression becomes
Colt) = =i [ by vt (V)| i~ 1)(9/2 = g
(g - 2)Qc0 51 dt'

+0 ((’%)2) (27

where 00 = {0.(Xo). All other terms in the series give contributions which are

exponentially small because of the fast variation of the phase factor in the integrand.




dv(-1)
dt

parameter € = v,(t;)/b{0 where b = 2e?/pv?(t,) is the distance of closest approach,

Finally, (t) is evaluated in a guiding center expansion in the small
v,(t1) is the initial relative parallel velocity, and g = m/2 is the reduced mass. We
again consider two electrons, labeled 1 and 2, colliding in a uniform magnetic field
B. In the strongly magnetized regime the collision may be pictured schematically as
shown in Fig.(2.1). The electrons spiral in tight Larmor orbits toward one another
along the magnetic field lines, and their mutual Coulomb repulsion perturbs the
orbits. This perturbation shifts the cyclotron frequency, bringing it into resonance
with the spin precession, aﬁd inducing a spin flip transition. We will determine
the trajectories of the electrons and use them to calculate C; for electron 1. The

equations of motion for two electrons are

ml.(]_,g =€

€.
¢(x1 - xz) — EX1,2 X Bg

axl,z

where ¢ = —e/|x; —x,| is the interaction potential. The center of mass motion can be
separated out by transforming to center of mass coordinates through R = (x;4x)/2,

I = X; — X3, leading to

mR = —R x By, (2.8)
= 2e 0 4(r)— S x B (2.9)
mr = ear r cr 0 .

Equation (2.8) describes center of mass motion which is just a combination of con-
stant amplitude Larmor gyrations and parallel streaming. Since dv{~1)/dt is zero for
this motion, the center of mass motion makes no contribution to C,.

Turning to the equation for relative motion, we solve for r by expanding in €
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using standard asymptotic techniques. To O(e) the result isl®
i = vy(t) + vio + Re {ei[ﬂco(f — t1) + 60 + 86(2)] 5 _ i@]} +0(e)  (2.10)

where 0y is the initial relative gyrophase, vy is the slowly-varying guiding center
relative velocity, v o = v, (#;) is the initial perpendicular relative velocity, and 46 is
a O(e) slow variation of the relative gyrophase given byl®]

_ @, () -3
(1) = 5= jh T (2.11)

where the function z(t) is the lowest order z position of the guiding center, determined
by solution of the equation

82 Z

and py = \/ 2(t1)? + y(t1)? is the initial impact parameter. The time ¢, is chosen so
that the electrons are initially far apart, i.e. |29(f = 0)| > po.
A further simplification can be made by noting that # appears in Eq.(2.7)

£

only in the combination

dot™V
di

. dvY)
.—_lbox "dt -Vbo]_.

Using the fact that V-B = V x B = 0, this expression can be rewritten as

duw(™) :

dt 2B,

Bz0 dt +2 &

8B, du™V (BBy ) _aB,,) do Y
ayg 6:!:0 ayo

o (0B: _ 0B.\ dul™)
6.’80 za‘yo dt ’

where v4+ = v, + 1v,. However, Eq. (2.10) implies that only the term involving



doY) /dt provides a resonant contribution at O(e), so to this order we find

w1 0B,  ds§ ;

e 1 O(e).

dt - 4Bo 320 $ULo dt

Here an extra factor of 1/2 appears because electron 1's velocity equals R + ar.
Thus, to O(e) only the slow time vanation of the gyrophase contributes to C,.
Substitution of this expression into Eq.(2.7), together with Eq.(2.8), leads to

a simple form for the secular change in C; during a single collision

—16' 2 0
AC+ _ 1 EBB;,B ? 2P9 et co(g/Z—l) dt'

4(9—2)30 0z Qe u —c0 z2 t' -|-p 5/2

cote)+0 () 213

where 6" = 6o + Qeo(2 — 1)t;, and 7, = 110/ 15 the initial relative Larmor radius.
Here we have taken the limits of integration to +co in order to determine the total
change in C, after a single collision. Of course, this assumes that the plasma is
weakly correlated so that two particle collisions are well-separated in time.

It is also useful to work with dimensionless distances and times, defining
t = tv,(t,)/b, p = po/b and Z = 25/b. Then Eq.(2.13) becomes, after some simple
algebra,
1 7,88, b’

AC+ = 3lg=2) Bo 070 eI|(5 —1)/e, ] (2.14)
where the function I(z, p) is defined by
;52 _ 32
I Al 7 S il L.
I(z,p) = /_m die— 1" ZoEn 215)

and Z(t) satisfies the differential equation [see Eq. (2.12)]

2 1 _
/52 + 22 -

z 4+ (2.16)
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with initial conditions z(t = —o0) = —oo, (t = —oo) = 1. We note that Eq.(2.16)
can be analytically integrated and £ can be expressed in terms of Z through elliptic
integrals (see Appendix 2B).

In a few special cases analytical forms for I can be obtained: For example,

Iz,p) = —2*Ko(zp) forp>>1

I{z,p) = h(:c,,b')e_:cg(ﬁ) forz > 1 (2.17)

where

and h(z, p) is a function which is neither exponentially small nor exponentially large.

For head-on collisions,

I(z,0) = %’Tme—"z'“’ forz > 1 (2.18)
8 2 2
I(z,0) = 3 +2*lnz + O(z*)forz < 1 (2.19)

However, for general values of ¢ and g, I{z,5) must be determined numerically.
The integral over ¢ in the definition of I was performed by transformation of the
integration variable from ¢ to Z via elliptic integral expressions of the gniding center
orbit £(Z) derived in Appendix 2B, and then the z-integral was calculated using the
SLATEC [ subroutine DQAGSE.
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Figure 2.3: Plot of I(z, 5) as a function of p for different values of z. The behavior
of I(z,p) becomes singular at p = 1, the separatrix point between passage and
reflection of the two electrons. For ¢ = 0.01, I(z, 0) ~ 8/3 coincides with Eq.(2.19).
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Figure 2.4: Numerical test of the asym})')(totic form of | Iz, p)| for large . The curves -
represent asymptotic values given by Eq.(2.17) and Eq.(2.18), where the function

h(z, p) is approximated by h(z,0) = T 213 This form works reasonably well even

for values of p where I is negative. This is because the exponential dependence of I
on x dominates the behavior for large 2. The numerical results are denoted by +:
p=0;C p=05and x: p=2. :
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The function I(z,p) is plotted in Fig.(2.3) as a function of p for z = 0.01
and ¢ = 1. The singular behavior at 5 = 1 is due to the effectively infinite collision
time at the separatrix for the electrons to pass by or reflect from each other. The
behavior of I(z, p) for large # is also plotted as a function of = for different impact
parameters p in Fig.(2.4), where the numerical results are compared to the analytic
eXpressions.

Equation (2.14) gives the probability amplitude for spin flip due to the clas-
sical electrostatic collision of two strongly-magnetized electrons in a weakly inhomo-
geneous magnetic field. By averaging over a Maxwellian distribution of electrons the

average rate of spin flip can be obtained. This calculation is carried out in Section

2.5.

2.4 Quantum Analysis

In this section, the previous assumption of classical orbital motion is relaxed.
For the strong magnetic fields and low temperatures of the experiments on cryogenic
electron plasmas, the perpendicular mean thermal energy kT, can be as low as the
- spacing of the Landau levels Afl., so quantum mechanics is necessary to describe
the orbital motion. Moreover, since k7', is then also comparable with the energy
difference %§), between spin up and down, a spin flip changes the orbital state of
the electron appreciably. This spin-orbit energy exchange process is important for
the plasma thermal equilibration, as will be seen in Section 2.5. Since the electron
thermal de Broglie wavelength is small compared to the classical distance of closest
approach, the antisymmetry of the two-electron wavefunction will be ignored as this
approximation will only cause an exponentially small relative correction.

As in Section 2.3, we calculate the probability amplitude of a spin flip tran-

sition during the collision of two electrons in a spatially inhomogeneous magnetic
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field. The collision is described by the two electron Hamiltonian

e e
P (p1+ 21’11)2 0 (p2 + ZAz)z 0 e2
_T-l-sl. p(x1)+T+52- p(x2)+-l-x—1'_—x2“.

We also follow Section 2.3 in assuming that B(x) varies slowly compared to the
scale lengths associated with the electron-electron collision, and so we expand B to
linear order about an arbitrary point: B = Byz + x - VB, where x is measured with
respect to this point. Although the eigenfunctions of H are not localized, through a
judicious choice of the initial states of the colliding electrons, this arbitrary point will
become the collision center x; in the classical limit, so this expansion is justified on
physical grounds. We will see that the expansion is justified mathematically by the
convergence of the overlap integrals which couple the initial and final states through
the magnetic perturbation.

In terms of the center of mass position R = %(xl + %) and the relative
position r = x; — X3, to the first order in VB, the Hamiltonian expands out to the

form H = fI,_.m + ff,e; + I;',p;n + 5I;'o,b,ft + fI,_f where

Hom = %m(PR — SR x Bo)?
c

2
- 1 e s €
Hea = ﬂ(p El‘ X Bg) + .
ﬂspi = (sl + 52) ' Qpﬂ

e

. e
SHorpit = a&A(xl)-(pI ~ %

[ e
Xy X Bo) + ;‘E&A(Xg) . (Pz - %XQ X Bo)
and

: 1
Haf == (Sl + 52) . (R M V)on + 5(51 —_ 52) . (r . V)Qpﬂ'
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B
Here, 2,0 = %ch = %2’13_.9

1PR =
mc

-—ih-é—al—{-, and p = -ih—é; are the momentum oper-
ators of the center of mass and relative motion respectively. The function 6A(x) =
A(x)— 1By x x is the correction to the vector potential due to the spatial variation
in B(x).

Since the spin and orbital dynamics decouple in ﬂ’m, ﬂ’,e;, I;T_,p,-,, and Eﬂo,.b,-t,
these Hamiltonians are not responsible for the spin flip transition. The spin flip

transition is due only to ff,_f. According to Fermi’s "golden rule”, the probability

per unit time of a transition from state |i > to state |f > is given by

_211"
)

of

psl < flHusli > . (2.20)

Here, |¢ > and |f > are the eigenstates of H., + Hpe + Hupin + §Hoiie, py 1s the
density of the final states and the transition conserves the total spin and orbital
energy.

Before beginning the calculation of the transition rate, we note that the spin

flip Hamiltonian I;T,f can be rewritten as

H,f = XBEQPD . (51 -+ Sz) + Yaynpg . (Sl + Sz) + Zaznpg . (S] + Sz)

z z
+ §3mnpo ’ (Sl - Sz) -+ gayﬂpo : (51 —82) + 53291;0 -(s1 — Sz)

where (X,Y, Z) and (z, y, z) are center of mass and relative coordinates respectively.
To calculate the transition rate to the leading order of VB, we use for the states |7 >
and |f > the states of colliding electrons in a uniform field By, i.e. the eigenstates
of H, + H,o + ﬂ',p,-n (in the absence of 61?.,,.;,,-:), since § H_4;, is of order V B.
Several simplifications of H,; can now be made. First we note that the
operators 4; and 3, are linearly combined in H,;, so only one spin can be flipped in

the transition. This implies that a spin flip transition always involves a spin energy
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change of magnitude A{y. Now, the first two terms of H,; couple the spin and the
center of mass motion. However, this motion is described by H,,, which has well-
known harmonic-oscillator eigenstates with energies sepafated by Al for the X — Y
motion, and free streaming for the z motion. Since Ay = hifleo and the parallel
electron states are unchanged, energy conservation forbids a spin flip transition so
the first two terms of H,; may be neglected.

The third and sixth terms in H,; can be neglected for a similar reason. These
terms couple the spin and parallel dynamics, so during a spin-flip transition energy
conservation requires a parallel energy change of magnitude 2Q,. However, in the
strongly-magnetized regime this is a large change; the initial and final parallel states
would have extremely disparate wavenumbers, leading to an exponentially small
contribution to the overlap integrals appearing in the golden rule, Eq. (2.20). There
then remains only the resonant interaction between the relative (z,y) dynamics and

the spin, which involves the fourth and fifth terms in H,y:

[;329,,0 + g‘aynpo] (1 — s2)

eg p {[" OB, —if (BB,, 8B, 2iaBy) i8] 50

2mc§ _éz 6210 B 3yo 6330

0B, .0B,

2 Ozq - Syo

)(31: — 522)} + (hermitian conjugate)

On the right hand side we have written (z,¥) in terms of polar coordinates (g, #) and
we have introduced the spin creation and annihilation operators &+ and 37, where
s(®) = 3;_ — 83, +i(81, — 83,)- The term involving 4, — 82, cannot induce transitions

between different spin states and so can be neglected. Thus, the effective spin flip
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Hamiltonian is

N eg p aBz —3@ BB, BBy . BB!, 18 ~(+)
==t -y
Hey 2mc 8 { 8z ¢ +( dzy  Oyo : dzo Yoy 8

+ hermitian conjugate (2.21)

It can easily be verified that the term proportional to §B,/0zy commutes with the
operator 8, — th8/8@, so this term conserves total angular momentum in the z-
direction. However, the other term is proportional to field gradients expressing the
cylindrical asymmetry of the external field and so it 1s not surprising that this term
does not conserve total angular momentum. This difference will have important
ramifications when we employ Eq. (2.21) in the calculation of Fermi’s ”"golden rule,”
Eq. (2.20).

However, before we can apply the golden rule to Eq. (2.21) we will require
expressions for the initial and final states which are the eigenstates of ffm + I;T,.eg +
I;',p;n. These states can be expressed as the product Yem(R)¢re(r)|s12, 32 >, where
Yem(R), Yra(r), and |s1., 52, > are eigenstates of I;'cm, I;',.el, and I;',p,-,, respectively.
Since the center of mass dynamics does not appear and the spin eigenstates are trivial,
| it remains only to find 1,. We therefore calculate 1), for two colliding electrons
using a quantum version of the classical guiding-center expansion!® The expansion is

most easily derived by first expressing the relative Hamiltonian in terms of cylindrical

coordinates:
. ~R2 (18, 8, 18 0\ k0 pQo, e2
fe'—'z',r(pap(f"a—p”?w*@)*—zi % 8’ T e

Since H,.; is §-independent, the z component of the angular momentum L, = Ik is
A0
Ed)la

il
the two quantum numbers associated with dynamics in p and 2. Replacing — by 1l

a6

conserved and we look for eigenstates of the form

(p, 2)/+/p, where a denotes



in H,e yields the reduced Hamiltonian for ¥1,(p, 2):

g _-h 8 B8 (0 Y — K L e2
T op 822 2u8p ' 8p2 8u p? \/_02-{—:;2

where p? = —2hl/pQco.

We will see that the main contribution to the integral expression for the
spin flip rate comes from wavefunctions with p; such that ryy, €« py < b, where
Tl = \/ém is the quantum Larmor radius, » is the quantum number of
cyclotron motion, and b is the classical distance of closest approach. Physically,
p = pi1 corresponds to the impact parameter of the guiding center of a reduced mass
electron incident on the force center. The wavefunction ¥.(p, z) is peaked near
p =~ pi, at the minimum point of the centrifugal potential of fI,e;,;, and ia(p, 2) falls
off rapidly in a distance of order the cyclotron radius rgp < pr. It is therefore useful
to introduce the variable z; = p — p; in the relative Hamiltonian. Expansion of H,o

to second order in 7,5 /p; then yields

3
I;’,e;—H(o)-l—H(l)-l—H(z)-l—O(p ) : (2.22)
1
where
2 g2 2 2 g2
7(0) _ 9 e P& 10
(m1,2) = 24 322+ /o7 + 22 2;1,322,2—{_2# <0 T

(1) 1 o,
H (:c;,z) = _EFQCUE—{_Q(Z):B!:

ﬁ2

HON2,2) = = Q.;o z( ) + f(2)=} " 8upt’

and the functions f and g arise from Taylor expansion of the Coulomb potential,




and are defined by

e’(pf — #*/2)

f(z) (P12+32)5/2 1

It

and

— elpr
9(z) = _(p!z + 22)3/2'

A T .
Each term H(™ in this expansion has magnitude of order hﬂcg(%;ﬁ)" since
1
z; is of order r ;. Furthermore, it is clear that eigenfunctions of H.. are, in the

position representation, functions of p through the variable z;:

Yia(p, 2) = '&m(m!,z), | (2.23)

where ¥bar, is the eigenfunction of the Hamiltonian of Eq. (2.22), and o denotes
the two quantum numbers which, along with I, parametrize the state. In this form,
H. is a perturbed harmonic oscillator Hamiltonian in the variable z;, so ¥a(z, 2)
is highly peaked around z = 0.

The unperturbed Hamiltonian H/”(a,z) has eigenstates {,a > (0) which
~we write in the position representation as |, @ > (0) = G,(21)Fi.(z). Here, G, () is
a harmonic oscillator eigenfunction with eigenenergy (v + -;—)hﬂco, and Fj.(z) is the
eigenfunction of the parallel dynamics, with energy x. Thus, a can be represented
by the values of v and s. The total energy of an eigenstate of H,(o) is denoted by E,
and is given by E, = (v + %)ﬁﬂw + k. (Although E, is also a function of [ through
the dependence of & on I, we drop this subscript in order to save space.)

Taking |l,a > (0) as the base vector and using second order perturbation

theory, we obtain a perturbation expansion for |l, e >:

de
|l,a >= (1 — ?)“, o >(0) + Z(am: + boat + caaa)|l, o >(0) -|—O(T';"£)3 (224)
At 1




49
where

Gowt = Hogt/(Ea = Ewt)

baa' = H(2) /(Ea. - Ecx‘)

aa’

el = ZH(l) g /(Eq — Ex)(Ex — Eq,)

alay oo
ag

do = Y |HU)I*/(Ea — Ea,)
oy

and where we employ the notation H,q to denote the matrix element ©) < lajH|la >

However, to calculate the transition matrix element of Eq. (2.20), we will
also require an expression for |l + 1, >. Although this expression can in principle
be obtained from Eq.(2.23) by substitution of I £ 1 for I, it is more convenient to
determine | + 1,& > in terms of |, >{®) rather than [l + 1, >, The ket
I £1, > is the eigenstate of I},(z)l, which is related to fI,(O) through a Taylor

expansion of p;:

h 62 TgeL

HO o N — fg© Tol \3
l:kl(mﬂz) Hl (1:,2) :F .UchO (Plz i 22)3/2 + O( pr )

2

h e
Wl (51 +
position representation the kets are related by

Taking the term F as the perturbation, we find that in the

O (2,2) = 5%2,2) F 3 hawt(z, 2) (2.25)

where

—h e?
et = (#Qco (o} + z2)3/2)m, [(Ba = Eer). (2.26)
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Substituting Eq. (2.25) in Eq. (2.24) with ! replaced by [ £ 1 yields

Pra1a(®, 2) = Pral2, 2) zhm (=, 2) + O( “) (2.27)

We now evaluate the transition matrix element < f|H,s|i >. Without loss
of generality, we take the initial state to be

ezlﬂ 1
V2r /P

Mlim'
bo| o

i >= >, (2.28)

— a2, 2)| —

and the final state to be
‘Ll 9 1

ets

h ﬁ
\/—\/—¢lfaf( iy )|2 2

so that during the transition spin 1 is flipped from down to up. Energy conservation

\f > (2.29)

at zeroth order in 7,z./p; requires that
1 h 1 h
(V + E)ﬁ,ﬂco - EQPQ + R = (If_f + E)hﬂcg + Eﬂpo + K,f.

Then the zeroth order parallel energy change is k; — k = (v — v;)hQe — By =
(v — vy — £)iQ.0. As discussed at the beginning of this section, since the z motion
15 very slow compared with spin precession at frequency };, by far the largest
contribution to the transition comes from v; = v —1; then |(k; ~ &) /h| = Qpo — Qo =
(g — 1)0 <€ Qpo. That is, while the spin is excited from down to up, the orbital
perpendicular motion provides one quantum of energy A{l., to the spin, and since
EQo = kS the spin also absorbs energy A(Sy — Seo) from the parallel motion.
Thus, the orbital state jumps to a lower energy state with new quantum numbers

(v¢, 55, 14). Since a spin flip from down to up is induced by the spin creation operator

3(+) in f‘I,f, from Eq. (2.21) we have

B
< flHyli >= o2 {—

+ood
8 2me oo P

o dp’lb?—-l,a, (pa Z)P¢la(P7 Z)
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6B;c 6By aBy +oo ) .
+ (3:1:0 By — & 3:1:0)/ dz/o dp¢‘+1=“f(9’z)9¢‘“(9’z)} (2.30)

-0

where [; = 14115 aresult of the integral over 8, and the matrix element < 2, %|§(+)]—
%,% >=h has been used.
The inner products appearing here can be evaluated in the quantum guiding \

center approximation by changing integration variables from p to z;. The required

integrals are

+c0 oo
Mﬂ: = \/‘oo dZL dp¢?il,af(pfz)p¢!a(P,Z)

+oc +co _ _
= [Tz [ dedis e, (o, )0+ w)alen, 2),

where the integration range in z; is extended to oo because ¥i,(z,2) is highly
peaked around z = 0. The first argument of the barred wavefunctions appeaning in
M, are evaluated at different positions, #;4+; and z;. However, these positions are

related through the equation

k
F‘Qcﬂpi '

Typ — L =p—prr1 = L

In order to simplify the evaluation of the integrals we then Taylor expand ¥y41,a, (%141, 2)
around z;:

iPy P Pol, 3) .
— o(— T, 2
pQopt  2(uSeopr)? o V') breray (20 2)

Yizr,a,(Tre1,2) = (1 +

where P, = —ihd/dz; is the momentum operator. Then to second order in ryr/py,

My, is given by
M <l41,a41 il o >
= , & B e ————
* & T 2(uQm?

L3




52

;P
;Qtu lla > +0('°;—f)3, (2.31)

+ <lt1l,04)e +

where the inner products denote integrals with respect to z and z; of barred wave-

functions evaluated at the same point; for example,
< I'a'lla >= f dZd:t:’l/;par(:c, Z)'l/;!a(ﬂ’i, Z)‘

Equation (2.31) can be further simplified since some of the terms are negligible. For

example,

<l- 1,0!_1:”0! > = < la.f”a > +Zha_fa' < la’lla > +O(r§£)3
af i

TqL
= haa+o'-g""3
ot O(EE)

Where Eq. (2.25) has been employed, and in thelsecond line we have used the
orthogonality of |la > and |lo’ > together with the selection rule 4 = v—1. However,
Eq. (2.26) implies that h,qer is proportional to &0 so < I —1,a¢|la >~ O(ren/p)?
and may be neglected. Similarly, one can also show that

~

<l- 1,a;|i|la > O(T‘Q—L)3
2(¢Qeopr)? P
so we neglect this term’s contribution to Eq. (2.31) as well. Combining Eq. (2.30)

and Eq. (2.31) then yields a simple result for the spin-flip transition matrix element:

ﬁTqL €g
84/V 2me

< f|Hasli >

9B o lro4|dlla >, Iy=1-1
B (2.32)
o | G -5 U <Loylatlla>, =141

where @* and & are the creation and annihilation operators for cyclotron quanta:
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a = m(zg + P /pQ0). This form for < f|H,¢|¢ > has a clear physical in-
terpretation. The case Iy = I — 1 corresponds to the transition dynamics we have
already described. As one of the electron spin flips from down to up, a relative
cyclotron quantum is annihilated by & and the z-component of the relative orbital
angular momentum, %l, i1s reduced by one unit, conserving the sum of the spin and
orbital angular momentum. However, in the second case, [; =1+ 1, and the sum of
the spin and orbital angular momentum is increased by two units because the tran-
sition occurs in a nonuniform external magnetic field with a cylindrical asymmetry
described by the combination of gradients preceding the matrix element. In this case
a quantum of cyclotron action is created by a*, but does not go into cyclotron dy-
namics, since ¥y must equal »— 1 in order to conserve energy. Instead, two cyclotron
quanta are distributed into energy and canonical angular momentum associated with
a change in the relative radial guiding center position, so that the final state still
has one fewer quantum in the cyclotron motion. This interpretation follows from
the fact that the radial guiding center position, i.e., the position of the peak of i,
in p, is characterized by the combination v — If¥ so the guiding centers end up far-
ther apart by a distance of order r,;. However, since the guiding center motion is
relatively slowly varying compared to the cyclotron dynamics, we would expect that
such a process is off-resonance and so it should give a negligible contribution to the
transition probability.

The guiding center expansion for ¥1,(z, z), Eq. (2.24), can now be employed
in order to explicitly calculate the matrix elements up to O(ryz./pi)?. This lengthy
algebraic exercise is left to Appendix 2A. We find that the case Iy = [ + 1 does not

contribute, as expected. The other case, I = [ — 1, is given by Eq. (2.54), and leads
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to a relatively simple form for the transition matrix element:

0* !
8B, ehry /sz'Ef) (2)(z* — pi [2)F{)(2) . (239)
20 Bp7af (g~ ) RO

< flHusli >=

As discussed in Appendix 2A, this expression neglects terms of order (ror/p;i)® and
higher.

Equation (2.33) is the transition matrix element for the spin of electron 1
to flip from down to up, which upon substitution into Eq. (2.20) yields the transi-
tion probability per unit time af. However, in the Boltzmann analysis of the next
section, rather than a! we need P/, the transition probability per collision given by
al J71, where J, is the incident flux associated with the initial relative wavefunc-
tion of parallel energy x. To calculate J. and the density of final states p; of Eq.
(2.20), we impose periodic boundary conditions at z = £L(L > p;)1®! One finds that
p; = ) and J, = %;), where -gf'uf(n) = k, and the incident (initial) state
and outgoing (final) state are taken to be |i > of Eq. (2.28) and |f > of Eq. (2.29).
Finally, we have P/ = |AC, |2, where
|0B,/0z0] €’rqr

02, 8uc(g —2), [v,(k)v,(rs)

|AC| =

[ O AR 238

T+ 7"
Since the parallel thermal de Broglie wavelength is much smaller than the
distance of closest approach a WKB solution for F{(z) is valid. Then if we further
assume that & ~ kT) 3> (£ — 1) = 10~2AQ.0, a quasi-classical expansion of the

WKB wavefunction can be carried out, and the z integral can be transformed into a




time-history integral over the classical orbit!?]

F @)= = /2 FED(E)

e L v

22— pl /2 _i(q/2 — 1)Qt
A F (23)

In Eq. (2.35) the limit + L has been extended to £ oo since L > pi, and 2(t) is given
by Eq. (2.16).
Substitution of Eq. (2.35) into Eq. (2.34) then yields the final form for the

transition amplitude in the quantum regime:

[0B,/0z|  €rqr —i(g/2 — 1)t _2-— PL/2
IAC,| = | j dte= 19 ot 2 PUIZ | (2.36)
0z, 8picg— (02 + 22)5/2

For large quantum number v, Eq. (2.36) returns to the classical result of Eq. (2.13)

because 7,z approaches the classical Larmor radius rz, as may be seen by the energy

correspondence

1 1
2.“’7'139‘:0 = ( + E)hﬂc{) o~ L’hﬂco.

2.5 Boltzmann Analysis for the Spin Tempera-
ture Equilibration Rate

In this section a collision operator is derived for spin relaxation due to
electron-electron collisions in an inhomogeneous magnetic field. The plasma is as-
sumed to be weakly correlated and the effective spin flip interaction only occurs over
a short range of order b, so only two-particle interactions are important and these
collisions can be regarded as point collisions. We therefore use the Boltzmann equa-

tion to describe the spin relaxation process. Since the electron de Broglie wavelength
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is small compared to the average interparticle distance, classical Boltzmann statistics
rather than the quantum Fermi statistics will be used throughout the calculation.
We first focus on the spin temperature relaxation problem for the classical
electron motion discussed in Chapter (2.3). In this case, the kinetic temperatures
T, and Tjj are large compared to kfl,, and so the kinetic energy of the electrons
behaves like an infinite temperature heat reservoir supplying energy to excite the
spin motion. For this classical case the orbital state of the electron is not affected
by the spin flip though the spin flip probability is determined by the orbital motion,
so the spin flip transitions from |+ > to |~ > and from |- > to [+ > have equal
probability. Therefore, we may immediately write down the time rate of change of

the spin population due to collisions:

(;Ex_)m" = Vipin(x)(24 —2_) (2:37)

where z 4 is the concentration of electrons with spin state [+ > or |— > in a volume
element at position x, where the size of the mathematically infinitesimal volume is
physically large compared with the average inter-particle distance but small cém—

pared with the scale length of the magnetic field inhomogeneity. The spin depolar-

1zation rate is given by

ain = [ 8V F(01,2.) [ 2mpodponio.||ACT (2.38)

Here |AC|is given by Eq. (2.14) and f(v,,v.) is the two-temperature Maxwellian
distribution function. A two-temperature Maxwellian distribution is employed since
the perpen;ijcular kinetic energy is an adiabatic invariant and so electron-electron
collisions drive the velocity distribution to the two-temperature Maxwellian form on
a fast time scale on the order of the electron-electron collision frequencyl®

Directly substituting Eq. (2.14) for [AC|in Eq. (2.38) and performing the
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integrals over v, one obtains

in(®) = (g ) oo -uzemp(m)uvz[

e/ 2wpodpou((§ ~ 1), p)P

where I is the integral given by Eq. {2.15), and where 7p(x) = /25T /u/Qeo(x) 1s

the Larmor radius and L(x) = (Biog—f:)_l is the scale length of the magnetic field

inhomogeneity.

Furthermore, Eq. (2.37) implies a simple form for the time evolution equation

o8 1 z_
—ln—

1
for the local spin temperature T,(x), which is defined by T = @) Az,

where S, E are the entropy and energy of the spin system:

T,(x) 2T, m,,o
T, ~ W sinh(—7=

)v,p,-n (2.39)

where

Err\ 2
Vepin = 2.5 x 107, (%") G (2.40)

Here v, = nb?n®, is the electron-electron collision frequency, (g — 2) is taken to be

approximately 0.0023 and 7(€) is given by

7(e) = fo ~ duu”sea:p(—%uz /3) fa - dp2mplI(( - 1)(we) ", B, (2.41)

where we have transformed the integral over velocities by introducing the parameter
u = €/€ = (v,/9,)® where € = 7,/b(, is the mean adiabaticity parameter, 5, =
\/Im is the relative thermal speed and b = €?/ipuv? = 2¢?/kT) is the mean
distance of closest approach.

To evaluate the numerical value of 5(€), two integrals over g and u respectively

were performed after the numerical integration of I. The p-integral was calculated
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Figure 2.5: Plot of 5(€). For & > 0.01, #(€) is almost a constant [see Eq.(2.42)].
For € < 0.01, (€) decreases exponentially since spin and orbital motion are out
of resonance as € decreases. This 7(€) curve is valid only for € < 0.1 due to our
assumption of guiding center dynamics during the electron-electron collision.

numerically using the IMSL! subroutine DQDAGP with the upper integration limit
cut off at g = 8, which introduces an error of less than +0.6%. For the u-integral,
the integrand is a smoothly varying function of u, and so a cubic spline interpolation
method was then applied by using subroutines SPLINE and SPLINT in Ref.[10] to
obtain the interpolated integrand. Finally the u-integration was completed by IMSL
subroutine DQAGS. A careful estimate of the errors involved in the cubic spline
interpolation along with the cut off in the p-integral imply an error of less than +2%

for the value of ().
9/2-1

1t is useful to note that for e > (g- —1) ~0.001, I( , ) can be approx-

imated by I(0, ) since the distribution u'/3ezp(—1u4?/) is peaked near u = 1. In

this case a numerical integration yields

o0 1 co
72(e) = f duu1/3emp(—§u2/3)f dp2mp|1(0, 5)? ~ 61, > 001, (2.42)
1] 1]
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We then recover the simple scaling of Eq. (2.1); the numerical coefficients of the two
results are within an order of magnitude of one another. The function () is plotted
in Fig.(2.5).

The spin depolarization effect is appreciable in a large variety of parameter
regimes. As an example, we take T\ ~ T), ~ 20K, &2 ~ 10>, B ~ 10kG and

L ~ 10cm. In this case € ~ 8.4 x 1072 and V,pin ~ 9.1 X 107%(sec™), corresponding

-1
apin

relaxation time ~ 11sec. However, if B is sufficiently uniform or strong so
that spins are tightly bound to the magnetic field line the depolarization effect is
negligible.

Now, the spin temperature equilibration determined by Eq.(2.39) implies that
a thermal equilibrium state is reached only when n; = n_, i.e. T, — co. Physically,
this conclusion is the direct result of the assumption of classical orbital motion. The
kinetic energy of the orbital dynamics is assumed large compared to Afl,, and serves
as an infinite heat reservoir for the spin motion. In order to observe true thermal
equilibrium one must therefore treat the orbital motion quantum mechanically.

Denote the occupation number of state |s, T’ > in a volume element at position

x by f(5,T,x) = z,(x)f(T, x), where s represents the spin state and I stands for the

| local single-particle orbital state with respect to the local magnetic field B(x) which
is virtually constant inside the volume element. The orbital distribution function
f(T) is normalized by Yr f(T') = N, where N is the total number of electrons in
the volume element. Obviously, z,, the concentration of electrons with spin state
3(= %) in the volume element, is normalized by ¥, z, =z, + z. = 1.

The rate of change of f due to collisions is governed by the following master
equation:

(iﬁ) = Y (@i fifi — afi fiF5) (2.43)
dé coll

ki
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where f; = f(s;,I‘;,x), etc. and ag is the transition rate for electron 1 scattered

from state |8,y > to state |8;I; > and electron 2 scattered from |5 > to |s;I'; >.

In Eq. (2.43), the time derivative is a partial derivative at a fixed position x; it
denotes the rate of change of the distribution function due to collisions.

Making use of the normalization condition 3y, f: = Nz; together with the
"detailed balance” symmetry relation 1 ¥, ¢} = ¥ afj in Eq. (2.43), we find a

general expression for the rate of change of the spin distribution due to collisions:
d 1 d -
[_‘Rmi] coll - N I‘Z. d_tf‘

= “Z[Za fkfl fzf:)]

Ty gkl

= —E[Za (mka:tf(rk F(Te) — 2z £ (L) F(T5))]-

Iy gkl
We now assume that s; = + and consider the form of this rate equation when
the Golden Rule, Eq. (2.20), is used to determine the a's. As noted previously,
the form of H,; implies that in any given two-particle interaction at most one spin
" can be flipped, so transition rates like a+::" +I;~" vanish. Furthermore, the form of
fI,; also implies that the transition rate for electron 1 is independent of the spin
state of electron 2. Also, if neither spin is flipped in the interaction another de-
tailed balance symmetry relation holds for transitions involving only orbital changes:
Y. @ :{;21‘: X, ¢ :‘R‘:’[r\" This follows from the fact that the wavefunctions
of the initial and final states separate into a product of a spin wavefunction and an
orbital wavefunction, both of which are members of complete sets over the spin and

orbital Hilbert spaces.

Using these relations in the rate equation, several canceliations occur and we
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are left with

d 1 T
[4] =% ¥ CRResmam- @) @)
coll P,‘F,‘I‘EF;
4+, . T+ 4T4,-Ty

where a [ = a_plir, = er,r)

If, as before, we assume that f(I') is an anisotropic Maxwellian distribution
E((T) Ey(I)
Ty Ty
tribution function f(T'x)f(T:) as the product of center of mass (C) and relative (R)

function of form ezp(—

), then we may rewrite the two particle dis-

distribution function f.(T§)fr(TH) with normalization condition Y g fe(T) = N
and Yr frR(TE) = N. As we discussed in Section 2.4, the center of mass variables
do not participate in the spin flip transition. In other words, the transition rate is
only a function of I‘ﬁ and I'E. Then summing over the CM states in Eq. (2.44) and

applying the normalization condition we have

d R
[a’“] = Y aFile-fa(TE) — 2o fa(TH)
coll

i
Further taking T'f to be the quantum numbers (I,v,x) associated with state |z >

of Eq. (2.28) and T'¥ to be the quantum numbers of state |f > of Eq. (2.29) with
- values (ly,vp,64)=(1—1,v— 1,6 —h{g/2 — i)ch), we obtain

d +i-1-1,k—h(g/2—1)}lc0

—(E$+ = L Y

vl

(o fall, v, K) — 24 fall = 1w — Lx — A(g/2 — 1)0o)]

1 L] oo [

=7 Sy > |ACPv,(x) -

l=—oavr=1 u:ﬁ(g/Z—l)nco

[m—fR(l) v, N’) — $+fR(l - 1,v— 1: Kk — h(g/2 - l)gcﬂ)] (245)
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where the equation gt 1¥ 1 Ae/2- 1000 | A2 2 ( ) has been used [see Eq. (2.34)].

lvw

The sum over v begins at one rather than zero beca.use |AC|?> = 0 for v = 0. Further-
more, the sum over & begins at (g/2—1)Q. rather than zero because, in a transition
from — to +, this is the minimum relative parallel energy required to conserve en-
ergy in the transition. Finally, the sum over ! is cut off at 0 rather than v because
we consider only guiding center dynamics for which p; » ryr. This introduces a
negligible relative error of order (r,1/b)? to the total transition probability.

The sums can be performed when the explicit form for the relative Maxwellian

distribution is employed:

v+ %)hﬂcg K
kT, kT

Fr(l v, k) = Aexp( —(

where the constant A is determined by normalization condition
0 oo oo
) >3 felly,s)=N

I=—00 v=0Kk=0

. Making the substitutions

o [l 13 [ e

L
where p(k) = is the density of states, and s = 1pv?(x), we find that

whu, (k)

2Nh? sinh(AQ.o /2T )
Qo V2w pk Ty ’

where V = 2L [ 2npidp; is the volume of the volume element. Substituting this

A=

expression for fr(l,v,x) in Eq. (2.45) yields

d 2 [ Qoo fr(l,v, &)
— — d 2 B0 JRIE, V,
[dtm+]mtl ;:1/0 2w py p;f dv,(k)|AC|

n2k(g/2-1)0g h?
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Ao + h(g/2-1)0
(z. — 2L Iy ) (2.46)

where n = ~IVE is the electron number density. Finally, the sum over v can also be

performed, and with the aid of Eq. (2.36) for |AC| Eq. (2.46) can be rewritten in

terms of the spin temperature as

ﬁ_ﬂﬂg ﬁ.!giz-—l!nco
L 4 x) = 2o (1 4 Mo/ KTayq —bte F T By 0) (g 4
kT, dt B0 kT,
where the quantum spin depolarization rate uf,,ﬁ-zt is given by
2
L@ _ v 2R/ pfdeo n [t 1 .
T 8(g - 2)L 2rkT)| 2sinh( S )
# —1 —\|2
dv, v, ¢ [2mpdpl1((S -1 2.4
foesmiarnyn 2201222t ) € [ 2ol (5~ 1) PP (2:48)
When we again normalize the integrals as in Eq. (2.40) we obtain
S@ 2 6”)2. Rlo/2kT. 1\ | (@), 2.49
Vegin = 2.5 x 10 uc( 7 (sinh(ﬁﬂco/%ﬁ) 7'?(E, Qo) (2.49)

where 7(?)(g, Q) is
2D Q) = [ dunlPeap(~507) [* 2mpapl1(E - 1)), p)P
Um 2 0 2
and the lower cutoff u,, is
_ (8 3/2 = 13
= (& — 12 (150 /3:)

Note that u, < 1 provided that kT > (g/2 — 1)Af), a condition well-satisfied
in the experiments. In this case 5(?)(g Qo) approaches the classical result 7(E).
However, even when u,, < 1 Eq. (2.49) implies that the spin relaxation rate is

notably suppressed by quantum effects when kT, <« Afl.. This is because almost
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all of the electrons will stay at the ground Landau level in this case and they are
forbidden to further give up energies to excite the spin flip. Aside from the quantum
suppression factor in Eq. (2.49), the equilibration rate is also strongly modified by
the factor

ﬁ.nm 5(§—1)nco _ ﬁnpo
(1 —e kT kT" kT, )

in Eq. (2.47), which arises from the self-consistent consideration for the energy
transfer between spin and kinetic degrees of freedom. However, if kT > #f). and
kT > (g/2—1)hQ. one may verify that the spin temperature equilibration equation
(2.47) returns to the form of the classical equation, Eq. (2.39).

As discussed in connection with Eq. (2.3), we see from Eq. (2.47) that the
spin flip collisions just calculated cannot drive T,, Ty and T} toward a common equi-
librium temperature. Instead, they can only drive the plasma to a partial equilibrium

between T,, Ty and T, such that

hﬂcg + ﬁ(g/2 - 1)0,—_,0 _ ﬁQPQ

T 7 =0 (2.50)

from which Eq. (2.3) immediately follows. This is a consequence of the fact that
these collisions conserve an N-particle adiabatic invariant which equals the sum of
the cyclotron action and the spin component along the magnetic field for each par-

ticle. For each binary collision, this invariant reduces to the two-particle invariant

EB Ec
’;,(2) = 81, + 83, + Q‘L + QJ', where ER and ES are the relative and center of mass

perpendicular (cyclotron) energies. The invariance of 1?) is evident because for the
spin flip collisions discussed in this paper, E{ and one of the two spins, say, 52,

are not changed before and after collision, and the remaining part in the invanant,
ER ‘ ‘ Ao
51zt Q_l = s1. + (v + 1/2)#, is also conserved since Av = — 51

related plasma in which the collisions are predominantly binary, one may generalize

. For a weakly cor-
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#®) to a many electron adiabatic invariant p(V):

™ =%"(s:, + %—) (2.51)
where the sum is over all the particles. This expression is an extension of the many-
electron adiabatic invariant }°; E;*/Q. derived previously for a system in which the
spin orbital dynamics are decoupled®® In such a system the spin and cyclotron actions
are conserved separately. However, an inhomogeneous magnetic field couples the spin
and cyclotron dynamics causing an exchange of spin and cyclotron quanta, which
leads to the generalized many electron invariant of Eq. (2.51).

Equation (2.3) follows directly from the statistical mechanics of M) _conserving

collisions. As a consequence of the invariance of u, the equilibrium distribution has
the form p = Z lexp(—BH + ap™), where H = 3(5:.Qp + E} + Ey) is the total

energy and Z, a,f are constants. By rearranging terms, p can be put in the form

— Z..] _stz P ti _ Fipar
P “op ;( KT, KT KTy

where T}, T and T, are related to a and 8 through the equations
1 o 1 o 1
ﬁ=m;ﬁ—§;=k—ﬂ;ﬁ—§;=m
. These relations are equivalent to Eq. (2.3).

Equation (2.3) leads us to conclude that 7, will approach Ty in this par-
tial equilibrium if T} > (g/2 — 1)T, ~ 1073T,. The fact that Eq. (2.3) does not
result in the thermal equilibrium condition T = T} = T, implies that we cannot
rely on these spin flip collisions to drive the system to complete thermal equilib-
rium. Complete thermal equilibrium requires that action invariants such as p)

must be broken. One of the most important p{V)-breaking collisions is that involv-

ing collisional perpendicular and parallel energy exchange without spin flip, which
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has been discussed by another paper(®! For a weakly inhomogeneous field, this kind
of p™)-breaking collision is the dominant mechanism and these u(™)-breaking colli-
sions cause equilibration between T’ and T on a relatively fast time scale. If one
assumes that 7', = 7} during the spin-kinetic temperature equilibration process the

condition T’y = T} = T, follows directly from Eq. (2.50).

2.6 Discussion

We have seen that in a cryogenic strongly-magnetized pure electron plasma
the equilibration rate between the spin temperature and the kinetic temperature is
dominated by a single process——electron-electron collisions in a nonuniform magnetic
field. We have calculated this rate for the case of a weakly-correlated plasma in which
the collisions are uncorrelated binary events, taking into account the possibility that
the cyclotron motion may be quantized. Although many other processes can also
cause spin flip transitions, we have estimated the rates for these processes to be
longer than the typical loss rate of the plasma, which is on the order of 10~*sec™.

We find that the equilibration rate is proportional to L™2, where L is the
- scale length of the magnetic field inhomogeneity. In the experiments the uniformity
of the magnetic field can be varied over several orders of magnitude simply by con-
fining the plasma at different distances from the end of the solenocid which produces
the magnetic field. Inhomogeneity scale lengths from L ~ 10cm to L ~ 10%cm
can easily be achieved through this technique. This suggests that the rate at which
the electron spin temperature approaches the kinetic temperature can be relatively
easily controlled. If this rate is reasonably fast, it might be possible to use a mea-
surement of the plasma spin polarization as a thermometer for the kinetic degrees of
freedom. Since the electron spin distribution becomes polarized as kT, falls below

k)., measurement of the degree of polarization of the electron spins could indirectly
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provide the kinetic temperature in a range of temperatures on the order of AQ./k.
For B ~ 10 — 60kG, this temperature is on the order of 1K, which is over an order
of magnitude below the minimum temperatures which have been measured using
current techniques!?

On the other hand, if the plasma is confined in the central region of the
solenoid where the field is very uniform, the electron spin distribution is effectively
time-independent. This suggests a second experiment, in which one uses the spin
of an electron as a tag in order to perform various test-particle measurements. For
example, one might place a small subpopulation of the plasma in the opposite spin
state from the bulk of the plasma, and follow this population’s subsequent dynamics
in order to evaluate test-particle spatial and veloaty diffusion coefficients.

Of course, both of these experiments rely on some scheme for detection of the
polarization state of the electrons, and in the test particle experiment a technique to
set up an initial spin distribution 1s also required. Fortunately, several methods for
manipulation and measurement of electron spins have been perfected. For example,
the phenomenon known as Mott-scattering!!®! has been employed for many years in
order to both produce polarized electrons and accurately measure their spin state. A
novel technique has also recently been proposel*?! in order to produce large quantities
of cryogenic spin polarized electrons by using the magnetic inhomogeneity due to
finite solenoid length in a trap of the type discussed in this paper. The proposed
technique makes use of the idea that the spin Hamiltonian s - ,(x) acts as an
effective potential in the orbital energy, and this potential is of opposite sign for
electrons of opposite spin. As the spatial distribution of electrons thermalizes along
each magnetic field line, the — spins collect in regions of large {}y(x) and + spins
collect in the regions of low Q,(x), provided that the parallel kinetic temperature

kTj is less than %|AQ,| where A, is the difference between the spin precession
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frequency in the strong field and weak field regions. This proposed technique could
be used to provide copious quantities of cryogenic spin polarized electrons for the
spin taggihg experiment, as well as other experiments involving polarized electrons.

Finally, we briefly discuss the effect of plasma rotation on the spin depolar-
ization rate. The plasma is confined against radial expansion by the v x B force
induced by rotation through the strong applied magnetic field. Throughout the pa-
per we have assumed that the plasma rotation frequency w, is small compared to
Q, — ., so that we may neglect the effect of rotation on the dynamics. This is
the usual operating regime for the experiments, which generally involve low density
plasmas. For a uniform density plasma column the density is related to the rotation

frequency through the expression w? = 2w, (Qc — w, )

However, the rotation fre-
quency can at least theoretically be as large as (2, (although this can be difficult to
achieve in practice}, so it is useful to consider this situation.

In a frame rotating with the plasma the coriolis force, which acts like a
magnetic field, shifts the cyclotron frequency to the vortex frequency @, — 2wl!®]
Furthermore, the spin precession frequency is Doppler shifted to Q, — w,.. Thus,

if w, is not too close to Q, or to ./2 our results remain valid provided that one
substitutes for 2, — 2. the expression , — Q.+ w;,, and substitutes for 7 the effective
Larmor radius in the rotating frame, 71.0./(f2. — 2w, ). For w, near ./2 the guiding
center approximation for the orbital dynamics breaks down, although s, remains an
adiabatic invariant. For w, near {3, the spin precession frequency is no longer large
and s, is no longer an adiabatic invariant. This introduces a rather novel density
dependence in the spin depolarization rate, which can be summarized as follows.
Starting at low densities, as the density increases the collision frequency increases
and the rate of spin relaxation increases linearly with density. As density increases

further, w, increases to O(f2, — ) and the electron spin precession (as seen in
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the rotating frame) goes out of resonance with the cyclotron motion, exponentially
reducing the rate of spin relaxation. However, as w, approaches ()., the effective
spin precession frequency in the rotating frame, , — w,, can become as small as
(g/2 — 1)Q.. Thus, for a narrow range of rotation frequencies near . the rate
of spin relaxation should increase dramatically due to resonances between the spin
precession and any orbital motions having frequencies on the order of (g/2 — 1)L,

such as collisional dynamics parallel to B.

2.7 Appendix 2A: Calculation of the Transition
Matrix Elements

In this appendix we calculate the transition matrix elements in Eq. (2.32)
for a spin flip from down to up. We will evaluate < ! — 1, ay|@|la > first. The initial
value of a is defined by quantum numbers (v, x) describing the cyclotron quantum
state and the parallel energy respectively. The final value oy = (v —1,5~Ff(g/2—1))
is in accordance with energy conservation in a resonant transition from spin down
to spin up. According to Eq.(2.23),(2.24), and (2.27), we have, to the second order

- of TL/P!!
<l— 1, a;l&]la >= M; + M2 + M3 + M, (252)
where

M, = (0) < laf‘&,l.’,a >(0) (1 —do — d;):

My = 3 (0har + b + Chpr + Rl o) < 110 >,

gt
ol

My = 3 (Gaat + baar + Caa)® < loylafle’ >,

al
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> e % < lo|ajla” >©) .

o oo
a‘a

We now compute M;, M,, Ms and M,. Since k; # &, the orthogonality of kets
lla >© and |lay > implies that M; = 0. In order to calculate M, we note
that (¥ < lo/|alle > () - ,/55,,5,,_15,‘:,‘ for o/ = (¥'s') and therefore we only
need to calculate the perturbation coefficients @aa’, bajary Cajat h;,,,a: for o =
(v — 1,x). However, Eq. (2.22) and (2.23) imply that in this case @ o' = 0 because
<ty -1 >=< r-/f|z|v —1>=0 for v; = v — 1. Furthermore, . J

5 ;Lﬂf;o (01)7 <wverglzily — 1,k >(0)
8 pi - Kf—-K

Bajar =

) < ks|f(2)x >O@ < vyja?lp —1> O
h'ff - K

= @2- 1) T el (g = )

where fe,x = @ < 54l f(2)Ix >(® and we have made use of the matrix elements

© < yylz?ly — 1 >@= (2 - 1/v)r? /4 and © < vsrflzly — 1,5 > ©) = 0 since

£; # x. Continuing on to the next term in M, we have

5 < a,«|—gp 23 + g(z)z|ay >< a1|L‘ﬂz + g(z)zja’ >
Copa! =
. (rs — 6)(vs — n)ifdeo + K5 — 51 .

We observe that the numerator of each term vamshes unless ¥; = vy X lorvy;+3
for oy = (v1,%61). But v; = vy = 3 can be excluded since then the numerator equals

—uf)? ' —ufd?
< Vfﬂfl gp‘co 23|V_f + 3, Ky >< vy + 3, N.II ;Lp"‘o ,1;3'1}!,1’\': >
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which is zero for x; # k. Then, using the matrix elements < v|z®|v — 1 >= 3r3,

and < v|z|r — 1 >= 1ry;, we find that the numerator equals

—-3p 1
32_m(VQc0r:L)29n,«u(5m€1 + 61%:51) + Z"'ngufm Grin

for ; = v; + 1. The result is identical for 1y = vy — 1 except that v is replaced by

v — 1. Adding the expressions for ¥ = vy £ 1 together, we obtain

. B —3p(Qe0r21) Gy v? 2 4 (v—1)2 N (v—1)?
eyt T 2p(ks — kW | B0+ K-k hQo Ao+ rf— & hQ

v v—1
Z gﬂjﬂl g&1 + .

4(5; —r.-.)u —~hQeo + Ky — K1 RQo+ 85—k
r L3 1) “g e PR
Finally, ho o = L L by definition. Now combining the above resuits, we
2p1(nf — K.)V

obtain the following expression for Ms:

My = Dt 2 [ D )y
Wy =m0 T Dt 517 (O

_|_

(v—1)2 2 v N (v—1)2
ﬁﬂco ﬁﬂco —“ﬁﬂcg + K — K hﬂcg + ky — K

v v—1
+ 4,:219“!'“9‘1& [—hncu + kf — K + RQCO + Ky — Kl:l
where x; — & = —Rk(Qp — ). Turning to M3, a similar calculation yields

Vrey,
M. = Y7k
: 4k — K )VY

3 gn!m

{(2V + l)f,;fﬁ_ - g

#(Qeorqr)*-

(v+1)2  (v+1) v? L v
—-ﬁﬂcg 4+ K — kg ﬁﬂco hﬂco + K — Kf hﬂco




v+1 v
+4Zgnm1gn’.1ﬁr [ ]}
Ky

—hQp+ Kk —K +ﬁncg+n'"'ﬁ,1

Turning to My, we notice that < lo'|a|lla” >= /v’ + 18,0 (y111)8k1w. Then

M4 = Z V' 4 ]-a';falaa,(y‘+1)n‘
P

< a’|H(1)|a_f ><alHOW' + 1,8 >
— 1/ !
—g ! +1[(”f‘”')ﬁnco+h‘rj-n’][(V"V’—l)ﬁﬂco—l—n—n’]'

From Eq. (2.22) the numerator is nonzero only when »’ — vy = +1 or +3. In these
cases, the denominator is of order O(Qc)? because [ry — '] and | — &'{ must be
much smaller than h{).; otherwise the inner products involving the dynamics in 2

would result in exponentially small results. Recalling that H(!) is of order O(Efi .
pr

we see that M, is of order O(tq—e)"‘, which is negligible compared with M, and M;.
p1

Finally, combining these results we have

<1-1,a4lalla >= My + My + O(ZE)®
P

- T:I; _2f + 2gﬂfﬂ- _ 3.9'5)0'%. 1 + EQCU - (2V2 + 1)(K’f - K;)
Ars — K}V o 2p1 B0 — (87 — £)? /1o

hQuo + (20 — 1)(ky — %1)
" 4;19""“9“ [ (A€leo)? — (k7 — £1)

B+ (20 + 1)(s — M)] } (2.53)

(890)* = ( — 52)?

This expression may be further simplified as follows. As shown in the Appendix of
Ref.[ 3], the matrix element g, . can be evaluated to the lowest order in (x5 — 5)/%
= (% — 1)hQe0/x by integration along the classical Z(f) orbit: g.,. = [dtg(2(2))

e~ (ks — K)t/R [see Eq. (2.35)]. In order to avoid an exponentially small result, we
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k

require that > O(ﬂ), where p;/v is the time scale during which the function

Kt — K v

9(2(t)) changes and v = /2x/p. Then we obtain the ordering i S (ﬂLL r
' EQ

c0 pi vhleg
and therefore

Qo — (202 + 1 -
o — (207 + )(;if n):1+0(rq__r,)‘
EQeo — (ks — £)2 /B8 o

Using the same argument, we find that

o 4+ (2v — 1)(ky — K1) 1 rar
(R0 —(rg—may g T

AQup+ (2v+1)(k—k) 1 ez
(0P —(n-m w0 T Cp )

Ao O( p )). This implies

that the term in Eq. (2.53) involving the sum over x; is approximately equal to

so the difference between these two expressions is of order

> Guymr (G nFifleo) - O(T;—L) which is higher order in 7;;—[' than the other terms in Eq.
P i i

1
(2.53). Combining the above results yields

2

" T Or:n TgL
<l—1,af|a|ll,a > :#_2"“_ 15y 4 022 )3
fla T2y - 25 1 O
2 2 2
TqL€ pL— 2z
= 2.54
", -0 ((p?+z2)5/2)n,n (2:54)

We may easily calculate the other matrix element < [ 4 1,a¢]a* |, > fol-
lowing the same procedure as for < I — 1, ay|a|ll,a >. This matrix element can be
written as M + M, + M3 + M, + O(‘r—'JE )® where M} to M) have the same form

Pl
as M, to M, except that @ is changed to @* and h;j

o apa’t

determine the order of magnitude of the matrix elements M, to M; in order to

|

|

\

-

» is changed to —h? We |
show that they are negligible. First, M] = 0 since £y # k. For M,, the term
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< la'lat|la > yields the selection rule: v/ = v + 1, &' = k. Then aq,or = 0 since
<vgledlv +1 >=< yylzlv + 1 >=0for y; = v — 1, and

5 < vskglztlv + 1,k > fn,;<vf|ﬂ=2|v+1> oL
Bogor = g*‘“fo RS, flzty+ 16> fey ~ O(T2E s
Ky — k— 2R Ky — Kk — 2R o

r
since < vyle®lv + 1 >~ O(rly). Similarly, we have caor ~ hagar ~ O(fﬁ)3 and
!
therefore M, ~ O(r—q—é)a. One may also check that M; ~ O(Tq—L):’. Turning to M},
P P

the term < lo/|a*{la” > implies the selection rule v’ = v”+1, &’ = " and therefore in
analogy to My we have M; ~ O(r-‘!-ri )%. In conclusion, we find that the matrix element

<l+1,a4lat|l, @ > is of O(%—L)s, which is negligible compared to < I—1, ay|a|l, o >.
pi

2.8 Appendix 2B: Evaluation of the Elliptic In-
tegral Expression for t(z, p)

In this appendix we obtain a closed-form analytic expression in terms of
elliptic integrals for the parallel guiding center motion (z, p) given by Eq. (2.16).
This simplifies numerical evaluation of the function I(z,p). Although alternative
expressions for {(z, p) are possible, the one derived in this appendix has the advantage
* that it avoids (removable) singularities and is then useful for numerical calculations.

From Eq. (2.16), ¢ can be expressed as

iz, 5) = fm dz/\/l - (ﬁ) (2.55)

where Z,, is the z value at the distance of closest approach:

0 forp>1
Vv1i—p® forp<1

For g = 0, the integral in Eq. (2.55) can be easily calculated and the result
is that #(z,0) = vz* — Z +In(v/Z — 1 + /Z).
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For p # 0, we introduce the new variable u = § arctan(z/p); then Eq. (2.55)

becomes

v du
um (1 — 2sin2u)2\/(1 — %) + -::sinzu

(2.56)

t(u,p) = 2p

Um = < arctan(zZm,/p).

B k=

We now proceed to evaluate £(u) separately for the p > 1 and p < 1 cases.
(A) p > 1 case. .br We rewrite £{u) as

j.‘[—[P_ (,5) — P-a(tim, P)]

where we define

o 1 .
Po(u,p) _=_f0 d’u(—§ +sin® u)" /A,
A; = /1 4+ p?sin’u,

p=2/(p—1).

Notice that P_, can be expressed in terms of Py, through the identity!'®

2

2
1
_szI = '—Al tan 21!. —|— p—P_1 —|— 5(1 —|— p—

2 5 YP_, (2.57)

Now we relate Py, to elliptic functions. First, we note that
—z +sin‘u 1
e

] .
L 1 F +_z[ 14+ p?E) — p’sinucosu/A,],
p

A e

P

il
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where E;, Fy denote the first and second kind elliptic integrals: Ey = E(8,k,);
=F (ﬁ 3 kl): and

. (V14 pPsinu
B =arcsin | ——— |,

Ay

ky =p/+/1+ 12

For P_; we use identity

1 . —4 A, 2p’
(I +sin’w)d; P L2l 2snlu (B2 +2)A,

and obtain

4 1 g, F L g
FravIag R VIR

where II; denotes the third kind elliptic integral:

P_.l =

5 2+

2: 1)

Finally, substituting the elliptic integral expression for Py; in Eq. (2.57) yields

o 22(u) 7 2
P_y(u,p) = oA, +[1+ (2+P2)2]WF1

4,/1 + p? 4p? 1
- —— &+ I,
2+pP)P VIt

T 5 (2.58)

where Z(u} = ptan2u.

(B) p < 1 case. We rewrite Eq. (2.56) as

tv,p) = \/—(Q ~2(¥m, P) — @-2(v, 7))
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where

Qn(v,p) = j: dv(—% + sin® v)*/ A,

Ay = 4/1 ~ k2sin v

M
|

Um

T T 1 1
E—um E—Earctan ;,5"1‘

In analogy to Eq. (2.57), we have, for Qy,

‘ 2 2
k%Ql B —Agtan2v—%Q_1+%(1—~§-)Q_2 (259)

where

Q. = /jj—Aanvdv
2

1 11
e 4 (= — O\F,.
k§E2+( 2) 2

k3
Here E, and F, denote elliptical integrals of the first and second kind: E; = E(v, ks);

Fy = F(v,k;). For

dv
= —2/ = _9M(v,2,k
Q-1 (1 — 2sin® v)A, (v:2, k),
we havell”
1 t A
Q_y = 20, — 2F, — _.._1n|M_”+_2|

P ptanv — A,
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where II; denotes the elliptic integral of the third kind:

1
1k ]
145 2)

“Vr+1

Finally, substituting the elliptic integral expression of @1 in Eq. (2.59) yields

].-.[2 = H('U,

and

1 1 1
Q—Z(U7 -5) = 2(1 - E)Fz - 2(1 + —p)Ez + EHZ

- 14 )ia, - Lt A
p'p

2.60
M Plta—nv—Azl (2.60)

where Z(v) = —ptan 2v.

This chapter has appeared as an article in Phys. Fluids B, 5, 691-710(1993).
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Chapter 3

Temperature Equilibration of a
1-D Coulomb Chain and a
Many-Particle Adiabatic Invariant

3.1 Temperature Equilibration of a 1-D Coulomb
Chain and a Many Particle Adiabatic Invari-
ant

The one dimensional Coulomb chain is a form of condensed matter consisting
of charges of a single species trapped in a linear configuration through the application
of strong external magnetic and/or electric fields. Recently, such chains have been
realized in two experiments,''] in which the charges have been cooled into the
regime of strong correlation where the correlation parameter I' = ¢?/aT is much
larger than unity. (Here g is the ion charge, T is the temperature and a is the
average intercharge spacing). The 1-D chain has been suggested as an advantageous
configuration for a novel type of atomic clock based on trapped ions.?®! It has also
been predicted that such chains may form in heavy ion storage rings provided that
sufficiently strong electron or laser cooling is applied.[*! Such cold 1-D chains would
provide an attractive low emittance ion source.

Although the charges are strongly bound to the axis of the trap or the stor-
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age ring by the applied forces, high frequency transverse motions still occur and the
temperature T, associated with these motions need not be the same as that asso-
ciated wii';h the motions parallel to the axis, Tj. For example, when laser cooling
or electron cooling is applied along the chain axis, the transverse oscillations are
not directly cooled and come to equilibrium with the parallel motion only indirectly
through Coulomb collisions.l®) In this case the overall cooling rate depends on the
rate at which collisions cause T, and Tj| to equilibrate. This equilibration rate has
been examined via numerical simulations.®] However, the regime in which both par-
allel and transverse motions are of small amplitude (near harmonic) has not yet been
explored, and it is often in this regime that the experiments operate.

In this paper we calculate the rate » at which an anisotropic temperature
distribution relaxes to thermal equilibrium in a strongly-correlated (I' > 1) 1-D
chain in the strong focusing limit, where the motions transverse to the axis are of
high frequency compared to the parallel motions. Because of this timescale sepa-
ration we find that a many particle adiabatic invariant exists, equal to the total
action associated with the transverse motions. If this approximate invariant were
_ exactly conserved, equilibration could not occur. However, we find that N body col-
lisions cause small changes in the invariant, leading to a slow rate of equilibration,
exponentially small in the ratio of transverse to parallel frequencies.

Our model for the trap consists of a harmonic radial confining potential
of the form mw?(2? + y*)/2 where r = (z,y, z) are Cartesian coordinates with 2
oriented along the beam axis. In the strong focusing limit of interest here, the
parameter € = wp /w, is small, where wy = 1/¢%/ma3 is a plasma frequency associated
with parallel oscillations. This radial potential is an excellent approximation for the
linear and circular® Paul trap experiments, and is a useful first approximation

for the comoving frame of ions in a storage ring.!! The Hamiltonian for the N-ion




system is then written as

N
H(ry,p1,.-.In,PN) = 2 (P5/2m + mw?[a? + 32]/2)

n=1

S @/ \Jeh + ¥ + [om + al —n))?

I>n
where r;,, = r; — r,, and for each ion r, is measured from its equihbrium position
in the linear chain. For simplicity we assume here that in equilibrium the ions are
equally spaced, as in the ring trap, and image charges and curvature effects, if any,
are neglected.

When the ions are strongly correlated, the dynamics is dominated by N
body processes rather than 2 body collisions. Here we assume that both I'} =
g’/aT. and I} = ¢*/aT) are sufficiently large so that we may describe the ion-ion
interaction as emission and absorption of phonons. The ideal phonon limit is then
attained by expansion of the Coulomb potential in |r,,|/a to second order in this small
quantity. The resulting harmonic Hamiltonian Hy then describes N eigenmodes with
polarizations parallel to z and 2N transverse modes. The parallel and transverse

mode frequencies are given byl® w,(k) = wo[8 =2, sin?(nk/2)/n®]'/2, and w, (k) =
\/m respectively, where k = 2rn/N(n = 0,1,..,N — 1) is the parallel
wavevector of the eigenmodes normalized to a.

Even at low temperatures, anharmonic terms neglected in Hy but present
in H couple the parallel (or transverse) phonons to one-another, e.g. through 3
phonon collisions. This low-order phonon-phonon coupling is expected to cause the
distribution of parallel (or transverse) energy to relax to a Maxwellian described by a
temperature Tj)(T ). However, when € < 1 energy conservation does not allow these
low order processes to create or destroy transverse phonons, because annihilation of

a single transverse phonon requires creation of many parallel phonons.
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The total number of quanta (i.e. the total action) associated with the high
frequency transverse motions is then an adiabatic invariant. In order for the trans-
verse and parallel i:empera.tures to equilibrate this invariant must be broken: trans-
verse phonons must be created or annihilated. In fact, the symmetry of H in  and
y implies that transverse phonons must be created or destroyed in pairs. The rate v
for parallel to transverse equilibration can then be estimated using an order of mag-
nitude estimate based on Fermi’s golden rule: v ~ wy < (AH/H,)? > where AH is
the interaction energy for a process which annihilates two transverse phonons, and
< -+ > denotes a statistical average. Recognizing that about M parallel phonons
must be created in this process, where M = 2w, /w,, and wy, = Huy is the maximum
parallel phonon frequency and 5 = \/'T(:%) We crudely approximate AH as a Tay-
lor expansion of H: AH/Hy ~ zM(2* + y*)/a™+2. We perform the average using a
harmonic Einstein approximation for the distribution of displacements, proportional
to exp{— (22 + 'L (2® +y?)/€?)/a?]. Neglecting an unimportant multiplicative con-

stant, the average yields

v ~ (woe* /T Jexp[—2{1 + In(nel}y/2)} /ne] (3.1)

which is exponentially small, as expected. Note however that eI'j must be greater
than unity in order for the result to be sensible, because the average is dominated
by z displacements with a peak at z/a ~ 1/ \/E?Ii . That is, large displacements in z
would make a large contribution to the rate, but when Iy > 1 such displacements
are improbable. When e[ > 1 small displacements make the main contribution to
v, consistent with the assumption of harmonic fluctuations.

To calculate the equipartition rate more rigorously, we perform a series of

three canonical transformations in order to isolate the total transverse action variable
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Jo. We first transform to phonon coordinates (¥, i), through the Fourier relations
N-1 _ .
(T, Br) = N2 (e, pre®™), (3.2)
=0
In these coordinates Hy has the form of 3N uncoupled harmonic oscillators of fre-
quencies w;, where j refers to both wavenumber k and polarization direction (2,7 ,

or 2): Hy = ¥;[p2/2m + muwir?/2]. We next transform the 2NV transverse phonon

variables to 2N action angle pairs (35, I;) via the transformation
('f‘j,ﬁj) = 2Ij/mw,-(sin ’l/)j,ﬂWj COs 1/),) (33)

The angle variables 7; evolve on a timescale of order w;'. Finally, we apply the

canonical transformation!”
b0 = Y0, 0; =i — o, (G #£ 0),Jo = Y I;, Jj = L;, (§ #0). (3.4)
3

Now only 6, varies at w_!; all other variables are slowly varying. The total transverse
action Jy is therefore an adiabatic invariant.
We are interested in the time rate of change of Jp averaged over a suitably
chosen statistical distribution D of systems: d < Jy > [/dt = fdAD[Jy, H]» where
A is a point in the 6N dimensional phase space, and [-,-]x is a Poisson bracket. At
some time in the past, long compared to the relaxation time to a two-temperature
Maxwellian but short compared to the T, — Tj relaxation time, we assume that
D was a two-temperature Maxwellian, written as Dy = Z 'exp|—w,Jo/T1 — (H —
w,Jo)/T}j]. However, since J; is not an exact constant of the motion, a fluctuation
D, develops which may be obtained through solution of Licuville’s equation with Dy
as the initial condition: D:(M,t) = — [ dt/[Do, H]sq), where the Poisson bracket
is evaluated along the phase-space trajectory A(t') for which A(f) = A, and where

the slow time dependence of T, and T“ has been neglected. Substitution of D; into




d < Jo > /dt then yields

d<Jo> [t = [ dAD[Jo, H+ (1/T2 — UTy)29) ™" [ aor)  (35)

where we introduce the correlation function C(7) =< jo(t)jo(O) > 1= wt, Jo =
—8H/98,, and where < --- > represents an average over Dy. For a detailed derivation
for Eq. (3.5), see Appendix 3A. The first term of Eq. (3.5) vanishes because D,
depends on A only through J; and H; and the time integral in the second term has
been extended to £ = +oo using the symmetry C(7) = C(—7).

However, the time integral in Eq. (3.5) cannot be evaluated because it involves
the exact trajectory A(t). We follow standard practice!® by substituting approximate
trajectories A(°)(¢), in this case determined by the harmonic Hamiltonian Ho, and we
also replace Do(H, Jo) by Do(Hy, Jo). That is, we approximate the dynamics by that
of an ideal phonon gas, so the system must be strongly correlated, i.e., I')} > L
We also assume here that the parallel force due to transverse displacements, of
order g*r? /a%, can be treated as a small perturbation of the parallel motion, which

requires 'y > €2,/T||. The substitution of A(t) by A(®)(t) is a major assumption

_ of our calculation. Despite the fact that this type of assumption works well for a

weakly correlated plasmal”l, its validity needs to be tested for a strongly correlated
plasma. Furthermore, we expect that processes involving creation and annihilation
of only two transverse phonons will dominate the equilibration rate so we Taylor
expand 8H/08, in zf, and yj, keeping only lowest order non-zero terms: Jo =
(@/2) Cion 22072, /88y where v}, = 27, + yE, and Zp, = (I — n)a + zm is the 2
distance between ions ! and n.

With these assumptions we find that the averages over transverse and parallel




phonons appearing in C(7) decouple:

C(r) =T Y Canlr, €)Ch(7,T),

m
where m = (I,n,[,#), and the sum runs over all [ > n, [ > #. The (dimensionless)

parallel and transverse parts of C(7) are Clln(‘r, L)) = 4e® < Z;3(7)Z;*(0) >, and
Cil(7,€) =T7 < 0r],(7)/8600r},(0)/ 06, > /164"

respectively. Employing harmonic phonon orbits A®)(t) to determine Z,(7), the

average in Cp, can be performed explicitly (see Appendix 3B):
Co(7,€) = 26*([Sh(e7)]® — [SmleT))?) cos(27/€) + 257 (e7) S (eT) sin(27/€) (3.6)
where the functions S, and S, are defined as
* dk _ 2 2
St(r) = f g[cos k(I —1)+ cosk{n — @) — (I & n)] cosfw (k)7 /4w;]. (3.7)
0

SmlT) = fow -g—-f;[cos E(l—1)+cosk{n—7)— (I « n)| sinfw) (k)7 /4w]]. (3.8)

We now turn to the parallel correlation function. The use of harmonic phonons in

the parallel average implies

8
C)l:ln - fo dmldngm(mhm?)hm(ﬂ 2:1:12:2/P||)

where the functioll.ls gm and A, are given by

gm(21,22) = (2122)%exp|—21(l — n) — 2ol — 7)

+ 2[2] fi-(0) + 22 f-a(0)) /Ty, (3.9).




Figure 3.1: Plot of the parallel correlation function fi(7)

hm(r,@) = eapl—afif(r) + faa(r) — (L & )], (3.10)

Il

and where the time dependence enters only through the correlation function fi_n(7)
I < 2in{T)21a(0) > / 4a? which can be written in terms of the parallel phonon spec-

trum:

coskn

fulr) = j:r dk%riﬁ-(k)/—wgcos[qi(k)r/wg].

As shown in Fig. 3.1, f,(7) is an oscillatory function. Furthermore, as we derived in
Appendix 3D, when 7 — oo, the amplitude of this oscillation scales as 1/4/7 — 0.
In deriving this expression for Cll, we have employed the a technique discussed

in Appendix 3C. We replace Z;* by a smoothed function dependent on a parameter

3:

B
Zl_32/ dz, plexp(—21 21/ a) /243,
0

This is exact for 8 — oo, but for finite § it avoids the singularity in Z;7® which
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occurs for close collisions, i.e. when Z;,, — 0. This singularity is disallowed under
exact dynamics, but is allowed in the harmonic dynamics which we employ, and 1t
would lead to a singular result for Cll, [this can be observed in gm(z:,s), which
blows up as x; or z» approach co]. However, we will find that a range of large but
finite B values exist for which C,lll is independent of 3, provided that eI’ > 1. Ogly
then is C'h dominated by small z displacements, just as in Eq. (3.1).

To evaluate Eq. (3.5) we first perform the time integral

Im(e, a) = f+oo drCa (1, €)hm(T, a).

The function h,,, associated with parallel fluctuations, is slowly varying compared
to the rapid oscillations of C,; this leads to an exponentially small result for Ipy. It
is also important to note that C}, — 0 on a timescale of order (ewp)™" due to phase
mixing of the transverse phonons; that is, ST and S~ — 0 on this time scale, so the
integral is convergent. We evaluate Iy using the saddle point method in the complex
r plane. Since the integrand is an entire function of 7, we can deform the contour
through the saddle points. Their positions depend on m but after examining Im

for different m’s in Appendix 3E, we find that the integral obtained from nearest
| neighbor interactions, m* = (I,I — 1,1,/ — 1), dominates the final result for v so we
keep only this term.

In Fig.3.2 we show that the original integration path from —oo to oo is

o0
n=—oo

deformed to the new contour 3} L, ,where L, is the steepest decent path passing
through the saddle point r,. The saddle point positions are then solutions of the
saddle point equation f1(r) = —i/ea. Because f(Re[r]) is oscillatory, as shown in
Fig.3.2, there are an infinite number of solutions distributed symmetrically on each

side of the imaginary r axis, as well as one pure imaginary solution. However, for

small € only a few saddle points nearest Re[r] = 0 need to be kept, and in fact the
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Figure 3.2: Plot of the steepest decent contour in the complex 7 plane for the
saddle point calculation of Iim(€, &)
pure imaginary saddle point gives the main trend of the integral. A comparison of
the saddle point method and direct numerical integration is shown in Fig.3.3.

An important feature of Fig.3.3 is the abrupt steps in Iy, at integer ratios
between frequencies 2w, and the maximum parallel phonon frequency w, = nuws.
These steps are a consequence of the fact that the frequency spectrum of the harmonic
parallel dynamics [described by fi(7)] exhibits a sharp cut off at wy,, as shown in
Fig.3.4. This implies that a phonon-phonon interaction which creates or annihilates
two transverse phonons and M parallel phonons can only occur if Mw,, > 2w,, or
¢! < Mn/2. When e~! exceeds this value the process no longer contributes and the
rate decreases abruptly. For very large ¢! these steps are smoothed out and finally
disappear because the rate is then determined by many high order processes, each

of which has a small effect when taken individually.
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Figure 3.3: Plot of the time integral Ijn+(¢, &) for different « values. Solid lines:
saddle point calculation keeping 11 saddle points on each side of the imaginary 7 axis
and the pure imaginary saddle point. Dashed lines: saddle point calculation keeping
only the pure imaginary saddle point. Symbols: direct numerical integration; (O:
a=25 < a=05and O: o =0.25.

To complete the rate calculation we evaluate the integral
1<)
v(e,T))) = (45)_1/0 de1dorgme(21, 22)Ime (€, 22,22/ T))). (3.11)

" The integral is performed by direct numerical integration. The equilibration rate
v = T /T, can be written as v = we(l — T /T))p(¢,Tj} where the approximation
< Jo >~ 2NkT, /w, has been employed. The integrand in Eq. (3.11) is sharply
peaked near z;,z, ~ O(1/e), but begins to diverge at large z; and z; due to the
aforementioned unphysical singularity in Z® (see Fig.3.5). However, we find that the
integral is independent of 8 provided that we choose 1/e < 8 < Ty, which implies
el >> 1. Only under this condition will the harmonic phonon approximation be
valid.

The scaled equilibration rate (e, T);) is shown in Fig.3.6. The rate is strongly
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w/wg

Figure 3.4: Plot of the Fourier transform of fi(r), which shows a sharp cutoff at
the maximum parallel frequency wp, = 4/7((3)wo ~ 2.9ws.

reduced as e decreases. As we have discussed, the rather striking steps in the rate
stem from the existence of a maximum frequency in the parallel 'dyna,mics, and are
a qualitative signature of the strongly correlated regime. Such steps do not occur in

weakly correlated plasma where binary interactions dominate and no sharp frequency

cutoff exists in the relative parallel dynamics. Indeed, Fig.3.6 shows that the steps

decrease in magnitude as I'|| decreases. . .
The dashed line in Fig.3.6 is the result for #(¢, I|) when only the single pure
imaginary saddle point is kept in Im-. In this case a saddle-point evaluation of the

integrals in Eq. (3.11) yields

o)) = /n7e/8n(cwl))** (S (iem0) + Sp.(iema))” -

ezp[—2mo /€ + 200 fy(i70) — /2T 0] O (812)

where ag = (7/8 + 1/n¢)?/T|, iro is the pure imaginary solution of the saddle point




92

!
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o(Ty)

Figure 3.5: A schematic picture for the integrand in Eq.(3.10) along the z; = z,
direction.

equation evaluated at a = ap. When el > 1, 70 =~ v + (In7y)/29, where v =
In[+/mnIn2/eas]/n. Furthermore, for small erg,

St.(ien) + S (iemg) ~ 1,

. which simplifies Eq.(8.12). As either € or T'| decreases, Eq. (3.12) becomes a bet-
ter approximation to (e, I'j) (see Fig.3.6). To lowest order in € and (el'y)™" the
exponential dependence in Eq. (3.12), exp[—21In(el')|)/n¢], is the same as the crude
estimate of Eq. (3.1)-.

In order for our calculation to be valid, the aforementioned conditions € < 1,
ey > land I > ez\/I‘T, must be satisfied. In fact, these conditions are not fully
satisfied in the previous molecular dynamics calculation [6] (the last condition in
particular) and therefore a detailed comparison between that calculation and the

present analysis is not possible. However, Ref.[6] does document a decrease in the

equilibration rate as € decreases. New simulations are underway in order to test our

—



vi{o,(1- T/T)}

Figure 3.6: Plot of #(¢,I|) = v/w,(1 — T./T;) for different values of Iy = ¢*/aTj).
Here v is the equilibration rate, and € = wp/w,. The dashed lines represent the
results given by Eq.(3.11). Equation (3.5) becomes a better approximation for larger
1/€ and smaller T}
results. We also note that other mechanisms, such as scattering with gas molecules or
heating due to the 1. f. micromotion in the trap, may contribute to the equlibration
process in a real Paul trap or storage ring.

In addition, when the ion chain is confined in a ring configuration, it will be

bent and in this case, between neighboring ions there exists a slowly time varying

component of the transverse perturbing force:

5fi=§§m+q—¢:z(m+0(%(?))+o(%)zi

where R is the curvature radius and 6z(t) is the relative parallel displacement and
7(t) = roe™rt is the relative transverse displacement. Furthermore §f, causes a

change of the transverse kinetic energy given by

dE 1 QPiw,r
#Nafl'r(t‘)w q [1)

[E ]

2R|a+ 62(t)]
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which shows the coupling between one (rather than two) transverse mode and M/2
(rather than M) parallel modes. One may thus expect that the curvature effect
causes a rate v ~ %u(2e,r). When % is not sufficiently small , the curvature may
play an important role. For example, the circular Pgul trap experimentsl!! @ ~ 5um
and R ~ lem so % ~ 5 X 10'.4. In storage ring e?cpeﬁmént's[sl, typically @ ~ lum,
R ~ 1m and % ~ 107% is so §ma.ll that v is r-l-egligible compared with », and in
linear Paul trap experiments!? % =0.

Finally, it is worth ﬁoting that there is a strong similarity between the present
problem and the perpen;iit_:ula.r to parallel temperature equilibration of a crystal-
lized single species pla.sm-a in the strong magnetization limit, where the cyclotron
frequency is large compared with the plasma frequency; now the cyclotron frequency
assumes the role of w,. This equilibration process has been examined by O’Neil and
Hjorth for a weakly correlated plasma where the equilibration is driven .by binary
collisions.l”] However, a calculation analogous to that described here should also make

it possible to extend our understanding of the equilibration process of a magnetized

plasma into the strongly correlated regime. We discuss such a calculation in the next

chapter.

3.2 Appendix 3A: Formalism for the Rate of the
Breaking of an Adiabatic Invariant

In this appendix, we consider a Hamiltonian given by H = Hy + §H, where
Hy and §H are the unperturbed and the perturbing Bamiltonian:

N 2

Hy, = ;2—;1'*"1’11
.=

§H = ® &y
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Here @5 is the harmonic potential energy, which is a quadratic function of the parti-
cles’ displacements and ® is the total potential energy. In order to make connection
to Chapter 3 and Chapter 4, where our formalism applies, we assume that Hy de-
scribes 3N eigenmodes with large frequency separation, namely, one or two branches
of the modes are high frequency modes and the rest of the modes are the low fre-
quency modes. Therefore there must exist an adiabatic invariant associated with the
high frequency modes. Supposing that there are n high frequency modes and 3N —n
low frequency modes, then, as we derived in Chapter 3 and Chapter 4, through a
series of canonical transformations, we can transform H, into the following general

form in terms of the action-angle variables:

n-1 3N-n Pz 1
Ho=wodo+ D (wj ~wo)J; + Y. (= + ZmwiQ}),
i=1 =1 2m 2

where Jp is the sum of the actions of the n high frequency modes, and w; and
J;(7 # 0) are the frequency and action variable of the jth high frequency mode. w;
and (@, P}) are the frequency and generalized (coordinate, momentum) pair of the
[th low frequency mode. Since §H depends on all the angle variables 8; conjugate
1o Jj, J; = —85H |88, # 0 and so Jo is not exactly conserved. However, because
wo > |wj —wo|;wi, Jo 1s an adiabatic invariant.

In this appendix we derive a formula for the rate of the change of the adiabatic

invariant Jy averaged over the statistical distribution D of the system:
< Jp >= /d.AJoD(A)

where A is a point in the 6 N-dimensional phase space. We start with the Liouville

Theorem:

dD 8D
_— D H =
dt 8t+[’ }=0
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where [- - -] is the Poisson Bracket. Then

oD
E = _[D:H]

and hence

d < Jy> _ oD
<pe o fuit

S / dAJs[D, H]
Furthermore, we note that
Jo[D,H] = [JQD, H] - D[.]o,H]

which yields

d< Jo >

=27 = f dAD[Jo, H] (3.13)

where we have used the fact that fdA[J,D,H] = 0.

In what follows, we perform a quasilinear calculation for d < Jp > /dt. We
assume that, on a short time scale, low order {phonon) collisions which do not break
the adiabatic invariant keep the distribution function near a two temperature thermal
equilibrium:

_wOJo . H —_ Cu‘o.jo
T, Ty

Do(H, Jo) = Z7 " exp| ]

However, on a long time scale, since Jp is not an exact constant of motion, a fluctu-

ation D, of the distribution function develops which may be obtained through the
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solution of the Liouville’s equation with Dy as the initial condition:

4D _ dDy 4Dy
Cdt T dt At

o dD,
SRR [D"’H]JFT

= 0

and so Dy(t) = — fim[Do,H] A(ta).di',"\i*ilere [+ - ] ‘A(tl') denotes the Poisson bracket

evaluated at time ¢'. Substituting this expression for D; into Eq.( 3.13) we obtain

d<Jog>
dt

— [ aMDo(0)+ D)o Hlagy
= jdADo(t)[J-o,.H]};(gl) — jdA[Jo,H]A(:) ‘/fm[DO:H]A(t')dt’,

where dA means dA(t). Furthermore, since

.. 8D N
[Do, H] "= ﬁ{.fd, H]

R 7:.-; . 1 . 1

= “’O(fn— T_J_)DO[J"’H]*
we have o

Do, H
BTN ‘jdADﬂ(t)[Jo»fﬂA(:) =jdA%——j = Q.

Hence,

r

t
fdA[Jo,H]A(a)/;m[Da;H]A(c')dt' = /dA[Jo,.H]A(z)

¢ 11 |
| = — =)Dyt ndt'
/ woli = ) Dalt) o, Hlaendt’
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which leads to

d< Jy> . 1 1 t ! '
G = ) f dA[Jo(t), H] /- _ Do(t"){Jo, Hlawdt
11, ,
= wolr - ﬁ)/_m ot —t'), (3.14)

where

C(t - t') = /dADo(t’)[JO: H]A(t)[JOJ H]A(t’)

OH(t) OH (')

= <759, 06

>

= < Jo(t)Jo(t)) > .

Here <> denotes the statistical average [ dA.(¢)Do(t').

Since 8Hy /86y = 0, we may write correlation function C(t) as

85H(t) 856 H(0)
o) = 86, 06,
_ < 8(®(t) — ex(t)) 0(2(0) — 2u(0)) S
Od(t ggo(o) %o
39(0) go, > ~Celt)
where
Colt) = < 3‘2!;0(5) 3(‘1’(0)6—90‘1’3(0)) >4 < 3;(:)3‘1;%(()0)

Since Dy is (quasi) stationary, we have

99(t)09(0) ___ 58(0) 8%(~1)
80, 06, " 0. 065 (3.15)




9%(t) 9%r(0) ___ 8%(0)0%a(—t)

<

560 08, " 88, 08,

0%u(—t)
80,
associated with the two phonon collisions due to the harmonic potential. In the di-

We note that the time dependence of Co(t) is determined by , which is

agrammatic picture of phonon collisions, such low order collisions do not contribute

to the breaking of the adiabatic invariant, and we therefore neglect Cp. As a conclu-

®(t) 0%
sion, we can effectively write the correlation function C{t) as < 66 6( )9 6;0) and
o 0
making use of Eq.( 3.15) we may rewrite Eq.( 3.14) as
d < Jo> oo 6<I>(t 0%(0)
_Lr_or 16
dt T“ 25 .[ 06, 0bg (3.16)

where 7 = wpt.

3.3 Appendix 3B: Derivation of C(7,¢)

The perpendicular correlation Cp,(7,¢€) of the 1D Coulomb chain is defined

as
CL(r,e) =T2% < 8¢} (7)/08:0r7.(0)/86, > [16a°,

where 7 = wot, wp is the plasma frequency, and where the average is over an ideal
phonon gas distribution. In this appendix we perform the statistical averaging to
derive Eq. (3.6). All the notations in this appendix have the same meaning as that
in Chapter 3.

We start with 73, = 22, + 42, and then 97}, (7)/86p = 220z /000 + (2 < ¥).

In order to calculate 8zp,/88p and Oyi,/ 86y, we use the the inverse transformation
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of Eq. (3.2):

S(rp) = N72Y (Rre™, pre™™).
P

8—_11d_ write i, as
Ty = N2 Z ﬂtu(k)ik ' (3-17)
ok .
Wheré
p,h(k)'= gkl _ gitn

Furthermore, we transform (fx, px) to the action-angle variables through Eq. (3.3)

and Eq. (3.4). We then find

8% Pz
690 N mu.u_(k)

(3.18)

To calculate C(r, €) we write

c:Jfl(T: €) =< fo(7)£f=(0) + Fu(T)£u(0) > + < fo(7) £4(0) + fy(7)f2(0) > (3.19)

where
; r Oz,
fz(T) = T; fﬂ(") alg‘(:)
— PJ. 3‘9’!,1(7')
fy("') = ﬁ?ﬂn‘("’) ETA

Combining Eq. (3.17), Eq. (3.18) and using the equation of motion of the phonons:

Pz

mwl(k)

Zi(t) = &4 cosw, (k) + sinw, (k)t;

Pzr(t) = Por coswy (k) — mw, (k) sin w, (k)e,
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we obtain

falr) = zszzmn (B (W)@ coswr (B}t + - s siman ()1

[mfj_k('k') cosw, (k')t — &g sinw (k)]
= 2N - ZZ pin(R) pin (K)Z 1Pk coswy (k) + wi (k') (3.20)

In Eq. (3.20) the sum of the terms containing sin|w, (k) + wy(k')}t vanishes
because these terms are antisymmetric under the exchange k and &'

Furthermore, from Eq. (3.20) we have

< fo(7)fe(0) >

. 4;;4 N2 Z Y3 pin(E) (B Y e (k) (k")

kit i

< BrEpr >< ﬁmk’ﬁwk"’ >
mw_;_(k)wl(k')

= COS[w_L(k) + u.u_(k')]t

_ ;:Nf;z R IHOIRCACTAC )fj’ 72;1:;;;,‘;:’”*

= [GE PO (2l
- [ il T ), (3.21)

where we have used

< ﬁzkfﬁmki >= me_(k)wJ_(k') < Epp >
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= [mwl(k)]z < (Ei > 6kk1 = mTJﬁkk.-.

We also find that < fo(7)fe(0) >=< fu(7)fy(0) > and the cross terms <
f=(7)£,(0) > and < f,(r)fz(0) > vanish because

< ékﬁzk"gk”ﬁyk”’ >=0

for any k, k', k" and k™. Therefore we have Cp(7,¢) = 2 < fo(7) f2(0) >

We next substitute the perpendicular dispersion relation
wy (k) = Jw? —w2(k)/2 ~ w, — bw,

where dw = w?(k)/4w,, into Eq. (3.21) and obtain

r.r,.,

< fo(T)fo(0) > [—F s =1 ([(S"’) — (S )7} cos 2w,t + 285, S sin 2w,.t)

where

z pin (B ) cos bwt

Z pin(k ) sin bwt

One may easily check that S and Sy, are equal to Sf,(e7) and Sp(er) defined
by Eq. (3.7) and Eq. (3.8) by changing ¥} to ¥ [ dz with 2 = ka. Furthermore,
since I'y = ¢*/kT, and w? = ¢?/ma®, one may see that [I'\ T\ /ma®]*> = &*, where
€ = wp/w,. Finally, noticing that < fo(1)f(0) >=< fy(7)£,(0) >, Eq. (3.19) can be
written as Eq. (3.6).
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3.4 Appendix 3C: Calculation of the Parallel Cor-
relation Function —— < e 12n(te~t22rw(0) >

In this appendix we calculate the correlation function < e~ t#n(tle~ta21ar(0) >
where ¢, and £, are parameters which can either be real or complex and 2z, and 2z,
are the relative displacement of particles in the Z direction. This correlation function
is important because it appears in the calculation for the rate of the breaking of the
adiabatic invariant in both Chapter 3 and Chapter 4. In Chapter 3 the Z is direction
is along the chain axis while in Chapter 4, the # axis directed along the magnetic
field. In both cases, the displacements are written in terms of the Fourier components
through either Eq. (3.2) (complex form) or through Eq. (4.4) (real form). The result
for this correlation function does not depend on which form we choose. In order to

simplify the algebra, we here choose the real form :

2 2(0) .
zin(t) = i > ([zk(O) cos w, (k)t + wI:(k) sin w;(k)t]cr

k>0

[2_x(0) cos w,(k)t + ;uz(k) sin wz(k)t]sln) (3.22)
cm = cosk-R, —cosk-R;

sin = sink-R,—sink: Ry

where R;’s are the equilibrium positions for the charges. In Eq.(3.22), Y i, denotes
the sum over half of the Brillouin zone. We note that when the total number of the
particle N is an odd number, the sum over k may leave out a single point on the
edge of the Brillouin zone. However for large N, this single point makes negligible

contribution and is therefore ignorable.
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In the harmonic approximation the phonon coordinates (2, zx) evolve along

the trajectory of a simple harmonic oscillator with frequency w.(k):

2k(t) = 2k cosw, (k) + sinw, (k). (3.23)

Zk
ws(k)
The statistical average is taken for the distribution of a ideal phonon gas:

m(2 +w? (k)22 ]
Do = [ e,
0 > 2_”1-,” 3

which is normalized as

f f . f I;I(dzkdék)Do =1

Then we can write < e~t%n(tle~%20n(®) > a5 the following integral

j f s f T1(dzicdiy) Doetr5(®) g taznu®),
k

To evaluate this integral, we substitute Eq. (3.22) and Eq. (3.23) for 2im(2) .

and zpn(0). By completing the squares in the exponent, we obtain

< e—t;z:,t(t)e-tgzgru:((]) >

ZL{B i 0(0) + Bfom(0)}

jonenc} e 1]

o U+ Foow(T) = (D) = fonl D}

where wy = 1/¢?/ma® (ais the inter-particle distance) is the characteristic frequencies
of the parallel plasma oscillation for a 1D chain, and 7 = wet. The function fi_,(7)

is defined as

fien(r) = = g R kz(l(()z B.) cos w, (k)7, (3.25)




where @, (k) = w.(k)/wo.

In order to uncover the physical meaning of the function fi_n(7), we let
t, = t3 = 0 after taking the derivative §%/8t18¢, on both sides of Eq.( 3.24) and we

are left with

_ T
< 2ia(t) 2 (0) > ”

[ﬁ n(7) + fon(T) — fie(7) — fr-n'(7)]

In particular, for the diagonal case: I =I',n = n’, we obtain

2

mwg

T nll)zm .2
T, < zi(t)z (0)) (3.26)

fion(T) =

which implies that, fi_,(7) is effectively the correlation function of the particles’
relative parallel displacements.
To calculate the function fi_.(7) given by Eq. (3.25), we will convert the sum

of the wavevector into an integral form. Specifically, we will replace > k.o by

j?f/ a Nadk
0 2r

We note that when applying Eq.(3.24), Eq.(3.25) and Eq.(3.26) to a crystal-
lized 3D plasma, we will replace wo by the plasma frequency w, = \/*2 (n is the
density). Also, for the 3D case, we transform 3 )., into an integral in the Brillouin

zone:

1 Nvdk
2Jp.z. (2r)3°

where v is the volume of the Brillouin zone which equals 4ad for a body-centered

cubic lattice. Here ag = a/2 is half of the lattice constant.
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3.5 Appendix 3D: Asymptotic Expression for
fi(it) in the || > 1 Limit

In this appendix, we derive an asymptotic formula for the correlation function
fi(3%) in the || > 1 limit, where fi(if) is defined by equation ( 3.25) for a one-
dimensional Coulomb chain.

For a 1-D system, fi(it) can be written as

da:l coslz N
(i) = j o cosh(@:d) (3.27)

where z = ka is the wavenumber normalized by the inter-particle spacing a and the

normalized longitudinal oscillation frequency @, = w,/wp is given by

W, = 2J 2 Z sin? /n3 (3.28)

which is plotted in Fig.3.7 as a function of . Furthermore, in terms of the special

function &(z, s,v)¥], @, can be written as

@, = 2¢/9(1,3,1) — Re®(e'®,3,1).

" when |£| > 1, fi(it) is dominated by the contribution from the stationary phase point
corresponding to the maximum value of w,(x), which occurs at 2 = x. In order to

obtain an expression for w, near the maximum, we first calculate the derivatives:

ik
&
I

0 .-
Sin ne
1) —
n=1

> cosna

=W
)
[X]
—
)
~—
I
V-9

= —21n[2(1 — cos )]

n2
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Figure 3.7: Plot of the parallel dispersion relation @,(z) for a Coulomb chain, where
z =ka

d4
pry

-2y 2,
wt) = csc(z)

With these derivatives, we can expand 7,” in terms of A =7 —z < 1 as

4

A
w2~ — 2pbA? + o1

" and hence
W, ~ 7 — bA? + cA*
where
1= V@)= e = (57~ B)/(2n)

Finally, we substitute the approximate expression for «, into Eq.( 3.27). By

changing the integration variable from z to A and changing the upper integration ‘
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limit from 7 to oo, we obtain

o dA 1— cosl{r — A)
it) = f i cosh[f bAZ 4 cA®
f(it) 2n 7 ampar 5 &5 [E(n — bA® + cA®)]
nt 2 2 - TAZ
~ e_f dA[1 — (-1) cos(lA)][l-i—2bA2+(§-——C)A4][1+ctA4]e‘b’A
47 7? n
e ml—(-1)} m 1
- 471'172\/%[ 2 3 +O(P)] (3.29)
where

1 B

=1 — (=1}l — -1y =
In Fig.3.8 we plot both the asymptotic result given by Eq. (3.29) and the
result of direct numerical integration for fi(if). We see that two results approach

each other for large {.

3.6 Appendix 3E: Discussions of the time inte-
gral I (e, a)

In this appendix we discuss the function Im(e, @) defined in Chapter 3 as
+oo .
Im(e,0) = f drOL (r, €)hm(r, @) (3.30)

for different m = (I,n,l,7), where C(r,€) and hm(r,a) are defined by Eq. (3.6)
and Eq. (3.10) respectively. We first perform an analytical saddle point analysis
for Im(€, @) in the ¢ <« 1 limit and then we present the result of the numerical
integration. As a conclusion of our discussion, we find that m = m* = (I,i-1,1,1~1)
gives the largest result for Im(e, a).

In order to make the algebra simple, we replace 7 by it in Eq. (3.30) and we




Figure 3.8: A comparison between the asymptotic expression and numerical inte-
gration result for fi(it), where 5 = 4/7{(3). The exponential factor in the asymptotic

expression of fj(if) (see Eq.(3.29)) has been pulled out by e™™. In this figure, the
solid line represents the asymptotic result and the dotted line represents the numer-
ical result.

may then write the saddle point equation as

L 1nlil) + Furtli®) — oti®) — Frca(iD)] = — (3.31)

In the e « 1 limit, the solution for ¢ is expected to be large and so we employ

Eq. (3.29) for the asymptotic formula of f;(i?) (see Appendix 3D):

F(iD) ~ - ol e - 2y o)l (3.32)

47n?

where
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Taking the derivative for Eq. (3.32), we obtain, to the lowest order in 1/¢,

8 _,. e w1 (-1) 1 1—(-1)
5 1(it) = \/;—E_[T +3n———)

arn 2n

Eq. (3.31) then becomes

%\/g(,um + ﬁT’“) = 6% (3.33)
where
_ 1 -7 n—n
prn = ZU(-1) T+ (1) = (1 o )
i = (5 + g + Tl =1 =70 + (<1 Tn D7 ~ (L )

Since pm can be either 0 or £1 for different m’s. we discuss these three cases
separately:
(1)For ptm = 1, which occurs when both { — n and [ — % are odd and [ — [ is

even, an iterative solution for £ is

- 1299 1 27§
t_,,-':'yz-i-zm-l-—ln(‘)’z-i-zm)—ﬁ——m (3.34)
2 i nt;
where 7 =0,4+1,+2,---, and
1 Vv
Y2 = ~1n (417 bﬂ-) .
7 Ea

According to the saddle point method, Im(e, @) is determined by the expo-
nentially small factor ezp{—2Re(t)/e]. From Eq.(3.34), we have




—1/2nE

eopl—2Re(F;)/e] _ [1 s (Eﬂ)]

exp[—2Re(to)/e] ~ Y21
which is exponentially small for j # 0 and ¢ < 1. Therefore, Iy (€, @) is dominated

by the 7 = 0 saddle point, which has a real part
RE(EU) >~ Y9 + —1In Y2 — — (335)

(2)For pm = 0, which occurs when [ — n is odd (even) and I ~ # is even
(odd), or both I — = and I — # are even, by the same argument used for the pm =1
case, we find that I (e, @) is dominated by the pure real saddle point which has the

minimum real part given by:

- 1 1
Re(to) ~ 72 + %ln Y2 ~ -"-]-Re[ln ﬁf—m . (3.36)

0

(3)For pi = —1, which occurs when I~ n , I —# and [ — [ are all odd, by the
same argument used for the um = 1 case, we find that Im(¢, o) is dominated by the
pair of the saddle points closest to the real ¢ axis. They have the (equal) minimum
~ real parts given by:

Re(fo) ~ 72 + %111 N RN gt_—“; (3.37)

By comparing Eq. (3.35), Eq. (3.36) and Eq. (3.37), we find that the pm =1
case gives the smallest Re(p). Here we have assumed that |8m/t; < 1{, which is
the condition that must be satisfied in order for the asymptotic expression given by
Eq. (3.32) to be valid.

Furthermore, for the pm = 1 case, Re(fp) reaches the minimum when S,
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4.5 & 5.5 ] 8.5 7
1/¢

Figure 3.9: A comparison of Im(e, @) for different m’s. Curve 1:
m=(L,I-1,,1-2),pm = 0; Curve 2: m = (I,I — 1,1,1 — 3),pm = 1; Curve
3 m=(,l-1,1-1,1—2), pm = —1. Here we see that Curve 1, Curve 2 and Curve
3 are all below the Curve m*.

given by

b = 5 + g5 ~ gL = A + (=D + (=D + (a =)

is the maximum, which occurs for m = m* = (I, —1,1,1 —1). This proves that in
A the ¢ < 1 Limit, m = m* gives the largest Im(¢, @).

For a general case, Eq. (3.32) is no longer a good approximation for fi(if) and
we must check our conclusion numerically. The result of |Im(¢, a)| for several typical
m’s are plotted in Fig.3.9 for a = 0.5, where |In(e, a)]’s are calculated through
direct numerical integrations. Here we take the absolute value of Im(€, a) because
for pm = —1, Im(€, @) 1s oscillatory and could be negative for some values of the
argument (e, a). From the figure, we see that m = m* indeed gives the largest result
for Im(e¢, @).

The saddle point calculation for Jm+(¢€, ) is straightforward. For e < 1, we
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only need to keep the contribution from #;, by using the approximation fy(ito) ~

fi(ilo) we obtain

T, @) = v/Te[Siku(ieho) + S (icho)%e ¢~ + @falia) (3.38)

3.7 Appendix 3F: Derivation of the Equilibra-
tion Rate o(e,I'))

In this appendix, we derive the equilibration rate z(e, I'|) given by Eq. (3.12)

in Chapter 3. We begin with equation Eq. (3.11):

B 18 . 2f1(0)¢ 2 2
lj(f; I‘H) = (46)_1 L [) d:z:ldmg(a:lzzz)ze ot Ty (331 + mZ)Imt(E, 2.‘81.‘82/1-‘”)
(3.39)

By changing the integration variables to (u,v) = (21 + 22, 2122), we rewrite (e, )

as

2 £,(0 B+v/B —u+ 2 f1(0)?
r"fl( )Im-(e,2v/r||) ____‘Ef_’“_,_e -+ rufl( Ju
Vi u? —4v

We perform the u integral first. As shown in Fig.3.10, the integrand for the
u integral goes to oo at u = 4/4v due to the Jacobian 1/4/u? — 4v. It also starts to

B2 —
(e, T)) = (46)_1/0 dvve

blow up at u =~ I};/4f,(0), corresponding to the contribution from the close collisions,

which must be avoided in the harmonic approximation. We thus choose 3 such that

1< B +v/B < T)/4£(0) (3.40)

In this case, we may neglect the small term 1%“_)"'1(0)1@.2 and take B +v/B — co. We

then obtain

]ﬁ-w/ﬁ du_ ~wt HAOR o (3.41)

Vv \/u2—4'ue




Figure 3.10: Plot of the integrand of the u—integral

b 4

v (T4 &) | v

Figure 3.11: Plot of the integrand of the v—integral
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We next complete the v integral:

7(e, T))) ~ (4¢)™" ./:2 dvvze_r_;fl(O)Ko(2\/1—J)Im.(e, 2v/Ty) (3.42)

Using Eq. (3.38) for Im+(¢, 20/T|) and the asymptotic formula for the Ko(2+/v),

Ko(24/v) ~ \/— e~2V*, we have

-2 e AL
17(6, I‘l“) ~ %€—1f2 A d’U \/_ + I‘".fl(z 0)

Here we have neglected the small term e:cp[——f1( )] in the integrand of the v

integral, and ; is defined as the root of the saddle point equation:
d ., .~ T
&t =55,

As shown in Fig.3.11, the integrand of the v integral is peaked at v = vy,
where vp is the solution of the equation & 2[1lnv — 2y/v — -2-59 + 3 fl(ztg)] = 0. By
making use of the saddle point equation and the asymptotic formula. of fi(it), we
find wo = (7 + % )7, where 7 = /7((3).

In order for the result of (¢, I}|) to be independent of the choice of 8, we

_ must require 8% 3> vo, which, combined with inequality (3.40), yields

I > 8f1(0)(7 + 1)_86)’ (3.43)

which is the condition must be satisfied for the harmonic approximation to be valid.
Notice that since f;(0) =~ 8.82 x 1072 and ¢ < 1, inequality (3.43) can also be

written as el > 1.
2t9 4v

7
—Inv — 2/v — — + —f1(ito) near v =
4 T

vp and performing the saddle point calculation for the v mtegral, we are left with

Finally, by expanding the exponent —

(¢, Tj) given by Eq. (3.12).

This chapter has appeared, with only minor changes, as an article in Phys. Rev. Lett.,




116

71, 2721 (1993).

3.8 References

1. G. Birkl, S. Kassner and H. Walther, Nature 357, 310 (1992)
2. M.G. Raizen et al., Phys. Rev. A 45, 6493 (1992)
3. W.H. Itano and N.F. Ramsey, Scientific American, July, 56 (1993)

4. J.P. Schiffer, Proc. Workshop on Crystalline Jon Beams 1988, edited by R.W.
Hasse, I. Hofmann and D. Liesen (GSI, Darmstadt, 1989), p. 2.

5. J.P. Schiffer and P. Kienle, Z. Phys. A. 321, 181 (1985)
6. R.W. Hasse, Phys. Rev. A 45, 5189 (1992)
7. T. M. O’Neil and P. Hjorth, Phys. Fluids 28, 3241 (1985)

8. L.D. Landau and E.M. Lifshitz, Mechanics, (Pergamon Press, New York, 1988),
p. 161

9. 1.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and Products
(Academic Press, Iﬁc., 1980)




Chapter 4

Temperature Equilibration of a
Strongly Magnetized Single
Species Crystallized Plasma

4.1 Introduction

Recent experiments!! have trapped a cloud of N ions (N ~ 10 — 10} at
a sufficiently low temperature T so that the correlation parameter I' , defined by
g?/ay,kT, is much larger than unity. (Here gis the ion charge and a,, is the Wigner-
Seitz radius defined by ?ﬂ-nai, =1). In this regime the system becomes strongly
_correlated and transitions to liquid and crystal states are observed. Theoretically,
computer simulation and analytic theory for an infinite one component plasma pre-
dict that for T' > 2 the system begins to exhibit local order characteristic of iquid,
and for T' > 172 there is a first order phase transition to a body centered cubic (bec)
crystall?l,

In experiments the plasma is confined in a2 Penning trap, which utilizes a
strong magnetic field in order to confine the ions. Since the ions are laser cooled to
low temperatures, the distance of the closest approach b = ¢*/kT can be much larger
than the Larmor radius, and the cyclotron frequency {1, is the largest frequency of

the dynamics. In other words, the plasma is in the strongly magnetized regime.

117
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As for the case of the 1D chain discussed in the previous chapter, an adiabatic
invariant then exists which greatly decreases the rate of equilibration of parallel
and perpendicular temperatures, where now T} and T, are associated with motions
parallel and perpendicular to the applied magnetic field. In this chapter we study
the rate at which T and T, equilibrate in a plasma that is both strongly magnetized
and strongly correlated.

This equilibration rate has been investigated by O’Neil and Hjorth® and
verified by Beck etal.¥l experimentally, for a weakly correlated and strongly mag-
netized plasma where the equilibration is driven by binary collisions. In that case,
the cyclotron frequency is large compared with the characteristic frequency wy; of the
collisional dynamics, which is on the order of v|/b. Here v is the relative parallel
velocity and b is distance of the closest approach. The large frequency separation
implies that the total action of the cyclotron motion is an adiabatic invariant. Due
to the existence of this adiabatic invariant, the equilibration rate is an exponentially
small function of 1/ey, where €; = w) /). < 1 is the small adiabaticity parameter.
Specifically, the exchange of the perpendicular cyclotron energy and the parallel en-
~ ergy that occurs during a single collision was found to be on the order of e /%1
and after many collisions, an average of e~™/2€: over the distribution yields the equi-
libration rate vy ~ exp(-~2.04/?:f/5), where &, is the average of ;. However, in
the strongly correlated regime, particles interact collectively with each other and
1/wy is characterized by the collective time scale associated with the slow paral-
lel oscillation, which is on the order of w,'. Correspondingly, €; is replaced by
£ = wp/fl. < 1. In this case, we find that for €Ty > 1 the equilibration rate scales
as v ~ exp|—(1 + Inel)/e], just as for the 1D chain. Here, Ty = ¢*/akT) >> 1 and
thus € = I‘H\/ﬁ—ﬂsl > €;, which implies that v > v,. Therefore, in the regime of

strong correlation, the rate due to collective interactions that we calculate is much




larger than that predicted by the binary collisional equilibration rate.

For a strongly correlated plasma, we may describe the ion-ion collective inter-
actions as emission and absorption of phonons. A conventional normal modes analy-
sis shows that the 3N harmonic phonon modes can be classified into three branches
of very different frequency regimes. The N highest frequency phonon modes are
associated with cyclotron motion perpendicular to the magnetic field with frequency
on the order of .. The next set of N phonon modes correspond to plasma compres-
sion along the magnetic field and the N lowest frequency phonon modes describe
E x B drift motion of the guiding centers. The frequency of the latter two modes
are on the order of w, and w? /S, respectively.

However, the crystal is not perfectly harmonic and even for very large T,
anharmonic interactions cause coupling between the normal modes. In other words,
the anharmonic interactions cause phonon-phonon collisions. For example, one cy-
clotron phonon may decay into another cyclotron phonon with lower frequency and
one plasma compression phonon. During the phonon collisions, the total phonon
energy must be conserved: ¥, w(® = ¥, w{f), where w{) is the frequency of the

mth initial phonon and w{/ is that of the nth final phonon. The low order phonon-
| phonon collisions are expected to cause energy equipartition between the low fre-
quency modes and between the cyclotron modes, causing the distribution of the low
and high frequency modes to relax to a Maxwellian with different temperatures, T
and Tj, in a short time scale on the order of w,", where T\ is the temperature asso-
ciated with the cyclotron phonons and Tj is that associated with plasma frequency
phonons.  However, when € = w, /). is small, energy conservation does not allow
these low order process to create or annihilate cyclotron phonons, because creation
or annihilation of a single cyclotron phonon involves the annihilation or creation of

many low frequency phonons. Therefore there is negligible energy exchange between



120

the cyclotron modes and the low frequency modes on a short time scale. In fact,
the large frequency separation of the phonons implies a many particle adiabatic in-
variant equal to the total quanta (action) of the highest frequency phonons, namely,
the cyclotron phonons. In order for temperature equilibration to occur between T,
and T} this invariant must be broken. As we will see, the rate of the breaking of
the adiabatic invariant is exponentially small and so the time for the equilibration
is exponentially long as a function of 1/e.

Based on the phonon collision picture, we can obtain a crude estimate for
the rate of the equilibration v. We first notice that the drift modes have small
amplitude and have frequencies even smaller than the plasma compression modes by
a factor € = w,/Q: < 1 and are therefore negligible for the temperature equilibration.
We consider two ions [ and n separated by a lattice constant a with equilibrium

separations of Zp, and p,, parallel and perpendicular to the B field (see Fig.4.1).

We write the jon-ion Coulomb interaction as ® = g%/ \/ (P1n + 61 )? + (Zin + b21n)?,
where 8p,, and 6z, are the relative displacements due to the cyclotron motion and
the parallel plasma oscillation respectively. Furthermore, as an crude estimate, we
~assume that the cyclotron motion and the plasma oscillation are characterized by
frequencies {1, and w, respectively. According to Fermi’s golden rule the rate v can
be estimated as ¥ = ¥, tinn, Where vipn ~ wp < (6H/Hp)? >. Here the sum is
over all the pairs of ions, Hy and 6 H are the harmonic and anharmonic part of the
total Hamiltonian, and < > denotes a statistical average. In particular we take 6 H
as the anharmonic Hamiltonian that annihilates a cyclotron phonon, which is the
lowest order process to cause the change of the cyclotron quanta. Recognizing that

M ~ 1/¢ low energy phonons must be created in this process, we can crudely write
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Figure 4.1: Schematic picture for the ion-ion interaction in a strong magnetic field
B. In the strong B limit, each particle executes fast cyclotron motion as well as
slow parallel plasma oscillation and extremely slow E x B dnft motion, where the
cyclotron motion causes the perpendicular relative displacement §py, and the parallel
oscillation causes the parallel relative displacement §z1,. §p1n and 6z, furthermore
induce a perturbing Coulomb force 6f and the perpendicular component of this force,
8fin1 , modifies the cyclotron motion, causing the breaking of the adiabatic invariant.
In the figure, ¢, 1s the azimuthal angle of the relative equilibrium positions between
! and n with respect to B.

§H/H, as

ul M 53 _bpin, bzin

6H/Hg ~ 6Pln(67’ln) E@Z{W@pl = o ( o

Y C(05m, M) (4.1)

%M+1 aM 5‘1‘
® 8ZMop’

ClOm, M) = (4.2)

Here §,,, is the angle between the magnetic field and the relative equilibrium positions
between particle ! and particle n.

To perform the statistical average, we employ a (two-temperature) Boltz-
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mann distribution for Hy:

- 3 3., _
zr! eXP[—§P||(521n/aws)2 —glue 2(861n/ 0ws)’]

where T} = ¢°/a,,kT,. We then obtain

2

2 _ €
< (8p/aws)” >= 3T
and
P(M -+ 1/2) 2 I‘“
2M . M ~ M- In=l
< (82in/ws) NG (3I‘”) \/ie:r:p[ M nM]

where we have used the approximation I'(z) ~ /27 /z ezp[—z + zin(z)] for =z > 1.
Finally we obtain the rate vy, given by

Vi ~ wp(sz/I‘Lz)e‘(”’“Erli)/E|C(0,n, M)|2

which is exponentially small as we expected. Here we note several important features
of the above expression of v4,,. We notice that in order for the result to be sensible €
I, must be greater than unity. Physically this is because a large displacement in 8z,
_ would make a large contribution to the rate, but such displacements are not probable.
As a result, for small € the statistical average is dominated by §z;, displacements
with a peak at §zin ~ aws/ \/‘?H In order for the harmonic approximation to be
valid, we must require that the position of this peak to be small compared with the
inter-particle spacing, i.e., el)| > 1. One may notice that the same condition is
required for the one dimensional Coulomb chain (see Chapter 2).

A distinctive feature of the 3-dimensional plasma is that vy, depends on
the orientation of the magnetic field as shown by Eq.( 4.1). First, we will see that
C(bin, M) is an oscillatory function of 8;,, in other words, there is an oscillation in

the rate vy, as a function of the magnetic field direction with respect to the crystal
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structure. Second, we will see that the maximum rate occurs when the magnetic field
is so oriented that ;, is small but nonzero. Physically, this is easy to understand.
From Eq.( 4.1), we find that for M >> 1, the maximum value of vjn, occurs when
8z, is the largest. Furthermore, according to the phonon collision picture, vun is
dominated by the contributions from the largest frequency plasma modes, which, as
we will see, are long wavelength modes with k || B. For one such mode, the relative
displacement 8z, between ions with given equilibrium separation Zj, is |62im|
1 —coskZy ~ %kzzfn, and therefore 62, reaches the maximum when 7, is the
maximum, which occurs when i, = 0 assuming that we vary 6, keeping \/m
fixed. However, for small 8p,, C(8in, M )is proportional to 6., corresponding to the
vanishing of the perpendicular perturbing force éfj,1 (see Fig.4.1). As a result,
for small Oin, Vinn goes like ZEMp? = adM+%(cos 61,)*M(sin 61,,)%, which is peaked at
b ~ 1/V2M < 1.

It is important to note that the temperature equilibration rate calculated
for a perfect crystal does not apply to the present experiments, because in present
experiments the number of ions is relatively small (N < 10%) so that surface effects
~are important!®l. For large T, rather than undergoing a simple first order transition
from a liquid to a bec crystal, the ion cloud separates into concentric spheroidal
shells and it only exhibits a bec-like structure through nearest neighbor coordination
numbers. Moreover, for I' < 172, rather than forming a crystalline structure, the
strongly correlated plasma is in a liquid state, which consists of structures with only
short-range order!®. In this case, the temperature equilibration for this system can
not be predicted by that for a perfect bece crystal. However, in order to gain a physical
insight for the temperature equilibration process, we chose a simplified model where
the plasma is approximated by a bce lattice structure, which is a limiting case of

large I' and large N. Furthermore, as one may expect, the temperature equilibration
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process is dominated by the nearest neighbor interactions and this fact would allow us
to evaluate the temperature equilibration rate for a less ordered system by averaging
the equilil;ration rate of a local crystal over randomly varying crystal orientations,
or, equivalently, averaging over the randomly varying magnetic field directions with
respect to the crystal structure. We therefore expect that the general feature of the
equilibration that is exponentially slow in the parameter 1/e will apply in disordered,
possibly even liquid phases, provided that ¢ <« 1 and ') > 1.

In this chapter, we first develdp a formalism for the calculation of the tem-
perature equilibration rate, where the equilibration rate is written in terms of the
Fourier integral of a correlation function associated with the slow plasma compres-
sion motion. We then evaluate this integral, where, in order to simplify the physical
picture, the guiding center limit is taken. Finally, based on the result of this integral,
we discuss various important characteristics of the equilibration rate, for example,
the dependence of the rate on the magnetic field orientation with respect to the
crystal lattice. In section 4.2, by employing a series of canonical transformations,
we obtain the harmonic phonon modes. In section 4.3, we derive an expression for

the adiabatic invariant J, which equals the total action of the cyclotron phonon

modes. This invariant is further shown to have the same form as the conventional

cyclotron adiabatic invariant(®]

. In section 4.4, we derive the formula for the rate
of the breaking of the adiabatic invariant in terms of the time integral of the cor-
relation function < J(£)J(0) >. In section 4.5, we evaluate the equilibration rate in

the guiding center limit and the important features shown in the result is thereby

discussed.
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4.2 Normal Modes Analysis

In this section we derive the harmonic phonon modes by employing a series
of canonical transformations for the harmonic part of the total Hamiltonian: H =
3
Z{L(%) + &, where & is the total potential energy given by
1 2
‘I’=§ZZ‘1 /I — ral (4.3)
i n#l
and where II, = p; — 2A;, p; and A; the canonical momentum and the vector
potential of the lth particle. Following the conventional approach by assuming that
charges are confined to small excursion u,, about the equilibrium positions R,, we
expand ® as ® = &y + AP where ®y is the harmonic expansion of ® and A® is the

anharmonic correction, writing

H o= sy =% 1Y ()t oy
2 ‘n#llRl—Rﬂ‘ 2m

1 N
(I)H = EZ ul'Gln'un

AP = &— &y

where the matrix Gy, is given by: G, = ViVa(¢?/|Ri — R,]), where V; denotes
8/0R,. In order to make further calculation simpler, we choose the coordinate system
such that 2 is pointed along the magnetic field direction. The first term of Hp is
the Madlung energy of the crystal and will be ignored as having no effect to the
dynamics.

To uncover the normal modes, we first introduce the phonon coordinates (ux,
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I} ) through the Fourier relations!”:

2

37 2 [(me, Pr) cosk - Ry + (u_x, px) sink - Ry (4.4)

k>0

(uy, Pl) =

where k = T’:Ill-bl + T"}?:bz + Iﬂv’a—ba (0 <n; < N; — 1,2 = 1,2,3) so that the periodic
boundary condition: u{R; + N;a;) = u(R;) is satisfied for any lattice vector R; =
Lhay + haz + Lag (0 < I; < N; — 1,4 = 1,2,3). Here a; and b; are the primitive
vectors of the direct and reciprocal lattice, I; and n; are integers, and N; are large
integers satisfying N = N; N;N3. In addition, the notation k > 0 in Eq.(2.1) denotes
the sum over half of the Brillouin zone. We note that when the total number of the
particle N is an odd number, the sum over k may leave out a single point on the
edge of the Brillouin zone. However for large N, this single point makes a negligible
contribution and can thus be ignored.

In terms of the phonon coordinates Hy becomes a sum of independent Hamil-

tonians for each k:

Hy = Y Ho(k)
k

HK) = ok +&u(k) (49

where the harmonic potential ®g(k) is given by

Su(k) = %uk G(K) -y (4.6)

where G(k) = ¥, G e’k (Ri-Ra),

After employing the Fourier transformation, Hg is decomposed into a sum for
different k’s. This allows us to diagonalize each Hy separately. In order to proceed,
we choose the vector potential A; to be %B x u; and then the Fourier transformed

vector potential is Ay = %B X ug, which, with the relation IIy = px — 2Ay, leads




to the following specific form of Hy

ptp+pe; 1

Ho(k) = om T3™3

1 Q. 1
)2 + Gu]:ﬂi + E[m(?)z + Gw]ylzc + EGzzzlnz:

£,
+—2—(ykp, — zxPy) + Gey@ix¥k + G2k + GyoYk2k (4.7)

where (@, ¥x, 2k) = Uk and (pz, Py, P:) = Pk and in Eq.( 4.7) the subscripts 'k for
(Pe, Py, P2 ) have been suppressed in order to save space.

In order to derive the phonon modes from Ho(k), we need to find a canonical
transformation from (zy, ¥k, 2k, Pz, Py, Pz ) to new canonical variables (@1 k, @2,x, @3k,
P x, Po x, P3 ) such that Ho(k) is diagonalized into the the Hamiltonian of three in-

dependent harmonic oscillators:

P:Zr'k 1 22
Ho(k) = > —*= + ;muw;(k)*Qjy (4.8)

=123 2m 2
Then we may identify (@;x, P;k) to be the canonical variables describing the jth

normal mode and w;(k) is the mode frequency. Obviously (@;x(t), P;x(t)) evolve

according to the trajectory of a harmonic oscillator and are given by

Qu(t) = Qua(0)cos(ws(i)) + 2 ) i )

Pix(t) = P;x(0)cos(w;(k)t) — m @;x(0)sin(w;(k)t) (4.9)

and furthermore through the canonical transformation we may write the particle’s
orbit (x(£), yk(t), 24(2)) in terms of (Q;uk(t), P,x(t))

As shown by Eq.(2.5), the coordinate variables and the momentum variables
are mixed due to the existence of the magnetic field. Therefore, although the Hamil-
tonian is harmonie, the usual point transformation approach, which only transforms

the coordinate variables, can not diagonalize Hp(k). In order to diagonalize Ho(k), a
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full canonical transformation must transform both the coordinate variables and the
momentum variables simultaneously. As a consequence, the new canonical variables
(Q;x, P;x) are generally linear combinations of both (x,yx, zx) and (pz, Py, P:)-
The procedure to find such a canonical transformation is nontrivial. In fact,
as far as we know, the general transformation for a 3-D crystal in a magnetic field has
never been written down previously. In appendix D, we discuss this transformation
by using the Bosonic Bogoluibov formalism. We define the following variables in

order to put Ho(k) in a symmetrized form.

\/chm i P
2 k vmSd.

& =

vmfl, ipy
€2 = ¥kt
2 vml.

™Mo,

4P
€3 = z
3 2 k V2mw,

(4.10)

where w, = /G, /m.

Furthermore, in order to simplify the algebra we introduce a dimensionless
- dynamical matrix g = G/mw,® and dimensionless frequency &, = /g, = w./w,. In

terms of the base vector c defined by

5]
c=1| g
C3
We may write Ho(k) as
Ho(k) = %(c‘,c)" h ‘ :
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where the Hamiltonian matrix h is given by

N M
h =
M* N*

and
Ezgzz Ezgzy E\/E-amz

Ezga:y Ezgyy 5\/E§yz

EVEGz: E/EQy O

% + Ezgzz % + 52gmy s‘\/gga:z
N = & _% + &%gay % + &gy EVEDy:
EA/EGzz EA/EGy: £,

where §u; = gzz/v/20; and gy, = g,./ V23,

In what follows, we proceed to find a linear canonical transformation de-

scribed by
_s. (4.11)
such that in the representation of the new variables (e, e*) the Hamiltonian matrix

h is diagonalized, i.e., S'hS is diagonal. Furthermore, according to Eq.(3.6) and

Eq.(3.7) of Appendix 4B, in order to ensure the transformation is canonical, matrix



S must be of the form

A B’
S =
B A’
and S must satisfy
S~ = ASIA (4.12)
1 0
where A and B are 3 X 3 matrices and A = , where 1 denotes the 3 x 3
0 -1

unit matrix. As a conclusion of Appendix 4B, such a transformation matrix S can

be constructed in terms of the eigenvectors of a 6 x 6 matrix K = Ah:

S = (m,m2,m3, (Zm1)", (Bn,)*, (Bm3)*) (4-13)

with normalization condition:

nlAg; =1 (4.14)

-for j = 1, 2, 3, where ¥ = , A= , and 7;(7 = 1,2,3) are the
1 0 0 -1

eigenvectors corresponding to the three positive eigenvalues of K. Furthermore, we
show in Appendix 4B that these positive eigenvalues correspond to the w;’s (j=1,2,3)
in Eq.( 4.8), which are the frequencies of the normal modes.

After some algebra we find that the eigenvalue w of matrix K is determined

by

w® — (1 + e®)w? + 2w, + e?0)Jw? — P det(g) =0
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where

2 2 2 -2 - 2
0 = Gy + Gz + Gy: — Gralyy — Go=lWz — Gyyl:

Evidently, the solutions for w appear in pairs with opposite signs. As we have
mentioned, the calculation of the exact eigenvalue problem for matrix K is rather |
tedious, however, because € is small, it would be useful to do expansions about £ so
that the calculation can be simplified. After conventional, but rather complicated
computations for the eigenvalue problem of matrix K, we obtain the following results
for the eigenvalues w; (z = 1,2,3) and the corresponding eigenvectors 7; :
(@)
7"
2
7
3
"

7

i

)

\ TI.(G) }

as following, where only terms up to the second order in ¢ are kept:

1—w,?

W = ﬂc[]. +
M _ 4 E V2
m’ o= [1+ E(gzz — Guy)|/ V2

, i
B = =i+ £ (2gay + -2'(9w ~ g/ V2

1 = €(Gar — iG,2)/ V2

:



and

(5)

T

(8)

Th

Wy

7

7

7

)

75

7

W3

75"

1

.3
= —(§gzz + Vo gmy)/‘/i

= -

52
Wyt [1 + 5(@2 —1+—

Vesipl + €22 sy(pypa + pa)

i/Esypt + 16328y (—pap + pia)

SZAZ

2624

1

—\/Esuu,l + 63/232(11;#; + #3)

in/Esit — 1% 28a(—pf g + p13)

o det(g)

)

w,t



H1

H2

Ha

81

82

83

S4

(1:!’.5233 + 22‘€2A1|’5z234)A0

(—‘\/533 — 63/2A034)A2

- 2 -2
—wzﬂaAl — 2 W S4A3

. _ -2
10,830\ — 267,281\,

(-'\/533 + 63/2A034)A2

gzz + igyz

—2 .
— W, + 1Gxy

gy‘ygzz - igzmgyz

(2w, )7t

(2@22)—3/2

1/(Agw. D)

det(g)/ (A3, D)




Ao

Ay

Ay
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det(g)p] + @, (igeyptr + p3)

det(g)u1 + o (igaypt] — p3)
232,95z — 490y P02 8yzPz + 222,
det(8)(@2, — 2.) + 11/ det(8) [Gux(Geyfer — Fuedye) +
+3§yz(gzy§yz - §mz9yy)] + 2“7z2(9=y§yz — Gzz9yy )2
2det(g)Gozdys + |/ Det(8):[Gosdys (92s — Gyy) + 920 (G2, — §2.) +
2192, 9y — oo )]
+5,*[2(92y9229uz — evFazIuy + GoeGeeGyyFuz — rageyde,)

Where 7;’s have been normalized according to Eq.( 4.14) and D is determined by

the normalization condition of Eq. (4.14):

21 + 08" + 57— oV ~ 1 — (a7 = 1

To lowest order in ¢,

D = /2(|&o|? — |A1]?) /0. (4.17)

One may easily identify w;, w; and wa to be the frequencies of the cyclotron



135

mode, the plasma compression mode and the E x B guiding center drifting mode

respectively. In terms of the (e, e*), the Hamiltonian takes a diagonalized form as

Ho(k) = wi(k)ejes + wa(k)eje; + wa(k)ezes (4.18)

and furthermore we may define the final new canonical variables (Q;x, P;x)(j =

2, 3) through

mw;(k) 1P;x
P Klinei (ST, BN LY | S 4.19

In fact, substituting the above form for (e, e*) into Eq.( 4.23), we find that Hp(k)
then takes the form given by Eq.( 4.8).
Finally, combining Eq.( 4.10),Eq.( 4.11) and Eq.( 4.13), we can write down

the harmonic trajectory (zx(t), yk(t), 2x(2)) as

zx(t) =

yx(t) =

2x(t) =

7 + 18)e;(t) + e.d] (4.20)

1
Vs 21




where according to Eq. (4.19) and Eq. (4.9), €;(t) is given by

= 4 f QJ. —lw (k)t 1’P (0) uuj(k)t (421)
+/ 2muw;(k)

We notice that the expressions for w;’s and #;’s are quite complicated, and so

we’d better examine them before making further progress. One of the useful methods
to check these results is to evaluate the mean square of the particle’s displacements
<z} >,< yf > and < 2z} > for a thermal equilibration system. We may write the
distribution function as [Iy fx with fx = ezp[—Ho(k)/kT]. The statistical average
can be obtained by two approaches, namely, using the old canonical variables and
using the new transformed canonical variables. These two approaches must yield the
same results.

We first evaluate < zZ > in terms of the old canonical variables (zx, yx, 2k,

Doy Py, P=)- Substituting Eq. (4.5) and Eq. (4.6) for Ho(k) into fi, we have

e
_-—n—zmw L] .
2 Jaye wr e B ey,
L2k > = ol
i SR
fe T U B Uk oy,

mw2
L 2%T a;,, [f R T T - u’“d"'uk]

2 mu?
T, — P . .
P f e 2kT U - § - Uk d3 ug

32 BBz g,
det(g)

where A = ,/kT/mw? and we have used formula

(4.22)

mw’
/e—m‘?“k‘g'“kf’uk_—. = [2“1“?]3/2
det(g) ™%

An important observation is that < #} > is independent of the magnetic field though

the plasma is magnetized. This is because that the magnetic field does not alter the
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particle’s energy and it only enters the Hamiltonian in the velocity term, so the
magnetic field dependence vanishes after the averaging.

W;a now proceed to evaluate < zf > through the second approach, that is, by
using the new transformed canonical variables. In order to make the algebra simpler,

we introduce the action-angle variables (Il(:): ‘PE)), which are defined by

= Lali)
es(k) = \/I](:)emk
Then Eq.( 4.18) becomes

Hy() = 3w ()1 (4.23)

i=1

Inserting this form of Hy(k) into fi and using Eq.( 4.20) for zy, we obtain

. (i)
T i) poo i _w,(k):
<> = L I, 2 499 2o d19 T3 [0 + 9 )es(e) + c.cffe—wr"
- mf, , L willnrd)
. ozrd‘I’g:) I dIl(:)e“_‘ﬁL
3 .
= X<y > (4.24)

=1

- where < (‘BE ))2 >= %Ingl) + n§4)|2 is the mean square z-displacement due to the
clly

jth mode. Making use of our results for w; and 7;, we have

<@ > = a2
4-2
<(a:§{2))2> = )«262%23
20,
< (P> = — = _X2@,s5(A0 — A,)

\/det(g)
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sg  det(g)
4,2 ( w,?

— 62[2(3334133 + e U)(Ao - Al)”z

where only terms up to the second order of £ have been kept. We note that because
A < ay, for a strongly correlated system, < ('.t:gf))2 > are small compared with the
inter-particle spacing for all the three modes(j = 1,2,3). In particular, the lowest
order term in ¢ arises from the guiding center drifting mode and is given by

2w, x| Ay — A
\/ det(g) AoD

<zi> = I+ O(e?)

_ W, 2 |A0 — Allz 2
- \/det(g),\ [Aof? — |A4]? 0l (425)

where we have made use of Eq.(4.17). Furthermore, Eq.(4.16) allows us to simplify
|Aol? — |A1]? as Jﬁ(g)AﬁQz and to rewrite |Ag — A1|? as (gyygz: — gﬁz)Az/cﬁz.
Using these relations in Eq.(4.25) leads us to Eq.( 4.22) for < 2% >. However, since
our results of w; and 7; are valid up to the second order of ¢, < z} > given by
Eq.( 4.24) must agree to that given by Eq.( 4.22) up to the second order of ¢, rather
than just the zeroth order. We have performed the tedious calculation for < z} >
“with the help of the symbolic algebra package MATHEMATICA and as a result, we
indeed found that the term on the order of £? vanishes.
In addition, we have also performed the similar calculations for < y§ > and
< zf >. As expected, the < y > displacements is similar to that of < z3 >, while
the < zf > displacements is determined to the lowest order in ¢ by the parallel

phonons.
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4.3 Many-Particle Adiabatic Invariant

As we have seen, there exists a large frequency separation between the three
branches of the phonon modes: w; > ws,ws and we thus expect an adiabatic invan-
ant associated with the high frequency cyclotron modes to exist. In particular, from
Eq.( 4.23) we see that the angle variables ¥y (n = 0,1,2,,-, -, N) corresponding to
the action variable I](:) are rapidly varying compared to the other variables and so
there must exist an adiabatic invariant due to the presence of this fast time scale.
Indeed, after we introduce the final canonical transformation

N-1
bo = 0,0, = ¥(n #0),Jo = 3 Iy, du = I(n #0),
n=0
o is the only rapidly varying variable and so the total action of the cyclotron modes
Jo 1s the adiabatic invariant.

In order to gain a physical insight into the adiabatic invariant J3, we note
that according to Eq.( 4.5) and Eq.( 4.6), the Hamiltonian Hy(k) is exactly the same
as that of a single particle confined in an anisotropic electrostatic potential well ®5.
We thus expect that Iy must take the same conventional form of the cyclotron
- action of a single particle, which equals the cyclotron kinetic energy divided by the
cyclotron frequency €2.. To prove this, we recall that in terms of (e, e*), Ix, = eje;

according to Eq.( 4.23), where according to Eq.( 4.11) and Eq.( 4.12), (e;,e}) are

related to (c,c*) via
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c
= (ASfA)
c‘

Substitution of Eq.( 4.13) for S yields

er = nie; + 01V + 1¢ — niVe — 1Pes — 9{¥cs (4.26)
where 'q( 7) are given by Eq.( 4.15), which leads to

. ci —ic; | gptatcs . &2 g 1, 3 1
€ = ““"\7—5"“ +¢€ 2\/—— (gzz - zgyz) + \/igzz( ) + Ecg + zcl - 102)

2 * : .
€ c i, 3. 1 . 1 2
+ Egyy(—gl —5¢— it ga)+ \/—gmy(%z —yat )
We next express ¢; and ¢ in terms of particles’ displacement (2, yx, zk) and velocity
(e, vy,v;). Noticing that the canonical momentum mvy = py — 2Ay with vector

potential Ay = (—%yk, %azk,ﬂ), we can rewrite Eq.( 4.10) as

v/mf), ) 1my,

& = 2 (ex —yk) +

:

€ = —‘@(?}k +izy) + i:r:;;c
¢ = mwz \;m%
and consequently Eq.( 4.26) becomes
e; = —MQT{“&?} + € m2§2 =21 (Ger — 1gy2) + 52\/@1:1((5;" iay)

. o M, s MU, 1 3 oy

—ie*y/ = Uy +100y) + £ o= Q(4gu+z4gyy+7)
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2 MYy

Gyy
¢ 2mil.

3 .3
+ (T + ng - zigwy)

with this form for e}, up to the second order in €, the action variable Iy takes the

form

. m{vl+o?)
I =eler = “‘“2‘52—"2” + €2m[%(2kgyz + Yk Gyy + Tk Gzy) — Vy( 2k Yoz + YkGey + TxGez)]

(4.27)
Recalling the physical meaning of the dynamical matrix, we write the Fourier compo-
nent of the electrostatic restoring force gBy = —8%g/fuy = —G.ux = —mw,g-uy,
where $g is given by Eq.( 4.6). Ex can be understood as the Fourier component
of the electric field induced by the Fourier component of the particle displacement,
uy, from the equilibrium position. Using Eq.(4.6) we can relate the second term in

Eq.(4.27) to Ey:

Vo (2xGy: + Y + Ek.(v':resa') — Vy( 2k Gz + YkGoy + 3kgm)

= — quy + v ——quE
Tmw,?  Tmuw,?
qu ”
o —mwpg(VJ_ X EkJ.).b
_ Vi -V
- €28},

where v4 = cEi x B/|BJ? is the guiding center drift velocity, v, = v — (b - v)f) is
the perpendicular velocity and Ey, = Ey — (f) . Ek)f) 1s the perpendicular electric
field. Substituting the above results into Eq.( 4.27) yields

m(v, —2va-vi) m[(vi—vd)®+O(e?)

e = 20, = 2.
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which equals the cyclotron energy divided by the the cyclotron frequency (.. Finally,
we note that since Ey is the Fourier component of the harmonic electric field at
wavevector k, one may easily check that to the first order of £, the adiabatic invariant
Jo, Jo = X Ik, is also equal to the sum of the cyclotron actions of each single

particle.

4.4 The Guiding Center Limit

Here and in following sections, we will focus on the ¢ — 0 limit, specifically,
we will only keep the leading order terms in ¢ in the guiding center approximation
in order to simplify the problem and also to make the guiding center picture more
clear. In this case, the results of the eigenvalues and the eigenvalues of matrix K is

reduced to

\/det(g) ‘

wy =l wa = wpd,; wy = Ewp ;

w;

() () ()

1 0 &
y . 1A
1) 0 ' = 1 0
] I R I o]
0 . iA,

\ ¢ \ 0 \ 0 )

In this guiding center limit, as we have discussed, the adiabatic invariant J,
simply becomes the particle’s total perpendicular kinetic energy divided by the cy-
clotron frequency €).. Also, in this limit, the particle’s harmonic trajectory becomes

simple. It consists of the rapid cyclotron motion perpendicular to the magnetic
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field B, a slow oscillation along B and a very slow guiding center drifting motion.
Since the guiding center drifting motion has much smaller frequency than the other
motions and its amplitude is small compared with the inter-particle distance (see
Eq.( 4.25)), it has negligible contribution to the breaking of the adiabatic invariant
and so will be ignored in our calculation.

The trajectory of ux(t) = (zx(t), yx(t), zx(t)) can be obtained by substituting
the above expression for w; and 7;(j = 1,2,3) mto Eq.( 4.20) and Eq.( 4.21), which

yields

:Bk(t) = rksin(ﬂct+1llk)

yk(t) = —rrcos(Qct+ i)

zk(t) = Qaxcosw,(k)t+ sin w, (k)t (4.28)

2,k
mw,(k)
where ry = /2Ix/mf., ¥y is the initial cyclotron phase. Having obtained the

expression for the harmonic trajectory uk(t), we now proceed to evaluation d <

Jo > /dt

4.4.1 Integral Expression for the Breaking of the Adiabatic
Invariant

In this section, we will derive an integral expression for the rate of the break-

ing of the adiabatic invariant d < Jo > /di. In Appendix 3A, we have derived a

general formula for d < Jo > /dt, which can be written as the following time integral

(see Eq. (3.16) of Appendix 3A):

d< Jo > ___f & () 08(0)
dt J_ T" 2e 890 690

(4.29)
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where 7 = wpt and the statistical average is performed by using distribution function
DU(H ) Jo):

WOJ() _ H —WQJU]
T, T

Do(H, Jo) = Z7" exp[-

In order to evaluate the time integral, we follow the standard practice of substituting
approximate trajectories determined by the harmonic Hamiltonmian Hy, and we also
replace Do(H, Jo) by Do(Hy, Jo). That is, we approximate the system by an ideal
phonon gas. As we have mentioned in Chapter 3, this approximation is only expected
to be valid for a strongly correlated system, i.e., I' must be large. Moreover, despite
the fact that the approximation of integration along the unperturbed orbits works
well for a weakly correlated system, the validity of using the harmonic phonon orbits
needs to be tested for a strongly correlated system.
To calculate the time integral in d < Jy > /dt, we start with ® given by
Eq.( 4.3), where r; = R;+u;, and the displacement u; is related to the Fourier compo-
nents uy through the transformation given by Eq.( 4.4) with uy = (2 (2), yx(t), z(¢))
determined by Eq.( 4.28). As we expect, the process involving the creation and an-
nihilation of one cyclotron phonon will dominate the equilibration rate so we Taylor

expand 8®(t)/56p in z and y keeping only the lowest order nonzero terms:

a‘I’(t _ Z Z Xln 828139 Y;n. !g;o
390 B I n#l [(Zln + Zln) -+ X'n + Yﬁ]s/z

The correlation function appearing in Eq. (4.29) splits into parallel and perpendicular

parts:

<a§9(:)a§éf)> = 4g;§;E<htn (£)hem(0) >

£l

Ounlt) , o Oun)

3:!:1:“:(0) ayll“f(o)
690 630 + lfl’n‘ >

< [Xim 56, 86, |

J[Xpoms



where we have used the notation

3
29

: 4.
[(Zin + 2in(t))? + XE, + Y23/ (4.30)

h'ln (t) =

Here ag = a/2is half of the lattice constant, 7 = wpt, Xin = X-Rin; Yin = ¥-Rin; Zin =

b-Ri,, Ry, =R, — R;and
:z:;n(t) = X- (ll; — un)

2

i Z[rkc;,, sin(Qet + Uy) + r_ksin sin(Qet + ¥_i )]

k>0
v (w—u,)

2

5 > [~ TKCin cos(ct + ¥y) — r_k 51 cOS(et + V)]

k>0
b- (v —u,)

2

.
N g:o[cm(Zk cosw,(k)t + (k) w;(k)t)

stn(2z_x cos w, (k)t + 2k gin w.(k)t)].

w, (k)

where notations ¢, and sy, are defined as

Cin cosk - R; —cosk-R,

sink -R; —sink-R,.
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In order to evaluate < %(?%(09 >, we first simplify < B—g—géﬂ%ﬂ >:

02 (t) Ozims(0)
<96, 86

2
= 5 Z E [< e >< cos(Qet + Ty ) cos Uyr > Cincims
k>ok'>0

+ < r_xr_ g >< cos(Qet + U_)cos U _ys > 81n80m0]

cos .t

T,
= (611’ + 6nn' - 6111’ - 6ﬂlf)mnc2

where we have made use of the fact that < sin Uy sin Uy, >=0; < cos Uk cos P/ >=
26 and that < r?(k) >~ m—i;;t—, , where as an approximation, Do(Hp, Jo) has been
used for the statistical average of r?(k).

By the same argument, we also obtain

Oyin(t) Oyew(0) _ T, .
860 800 = (6{1! + 6"'“‘ - 6‘"‘ - 6"1')mnc2 cos nct:
Oz in(t) Oy (0) _ T, .
0, 06, = ~(ut b = b — bu) oy sin Ot
‘We then have
0%(t) 0%(0)
T T
T o
J-(12 6 Z ZZ Z (b + bny — b — b)) < Byn(t)hpin(0) >
4mﬂc G [ ngl U nizl

[(XlnXl‘n' + },ln},l‘n") cos Qct - (XInYi’n‘ - YEnXl'n') sin Qct]

Furthermore, as we will see soon in the following section, the correlation function
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< hun(t)hins(0) > is symmetric under exchange (In) < (In') and so the sum of the
terms proportional to sin (.t vanishes because these terms are antisymmetric under
the exchange of the dummy indices. Finally, substituting < %?% > into Eq.( 4.29)
for "L;?Z we obtain

d< Jg >

1,3
dt ;(;)1/3(1 - —T TJ.EI‘J.- ZZ Z XlnXIn -+ YEnY;n. )

1 n>ln'#l

j:: dr cos(7/€) < hin(t)hin(0) >

where X = X/ao,Y = Y/ao, and we have used the relation between the density n
and ao : 4a3n = 1 for a bec lattice. Here we define 32,5, to be the sum over lattice
sites n with Z,, = Z, — Z; > 0 and define 3, to be the sum over all the lattice
sites except .

We note that it appears that the time integral in %"3 is not convergent
because as T — 00, < hin(t)hin(0) >—< hin(t) >< hin(0) >, which does not vanish
(see Eq.(4.30)). However, when summing over the lattice, for every (I,n) there exists
a point (I,7) for which X;z = —Xi, (i.e. a reflection) but < kg >=< hm >, so the
. sum is antisymmetric and vanishes as 7 — co.

Physically this can be understood from the picture in Fig.4.1. From Fig.4.1
we see that the adiabatic invariant is broken by the perpendicular component of
the slowly varying electrostatic force §fi,1, which has the form of ¢*(Xin, Yin)hin.
Obviously while < &fi,; ># 0 since < Ay, ># 0, the total averaged perpendicular
force 3, < 8fin1 > does vanish because the system is in equilibrium.

However, we will evaluate the time integral before we perform the lattice

sums, so it proves useful to write down a form for %“2 where each term is explicitly
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convergent. This can be done by integrating by parts:

+o0
/ dr cos - < hun(t)him(0) >= asinTE- < hun (ki (0) > 72

-0 [

* drsin T2 < by (t)hinr(0) >
Ef TS]II.EdT In Int

—00

We neglect the first term because it’s contribution to d4<h2 vanishes after performing
the lattice sum, since < hyp(00)hin(0) >=< hyn(00) >< Ry (0) >. However, we will
soon see that the second term is a convergent integral and it gives the rate of the

breaking of the adiabatic invariant. We can now write the rate of temperature

equilibration v = T, /T as

V= Z Z Vinn! (4.31)

n>lni#l
Q..3 T o
Vit = —;(;)1/3(1 - ‘fﬁ)fleP:nP:nr cos(¢tn — Pint)

fo:o dr sin(7/¢) r;i'r < b (t) b (0) >

" where we have used the approximation < Jo >~ NT, /Q. and where p,, = /X2 + Y2
and ¢y, is the azimuthal angle of Ry, with respect to the magnetic field: ¢, =
tan{¥i,/Xin] (see Fig.4.1). Note that since v only depends on /,n and »’ through

the relative positions, we have changed 33 3,51 gy to N X0y Yy

4.4.2 Asymptotic Expression for v in the Limit ¢ < 1

In this section, we derive an asymptotic expression for v given by Eq.( 4.31)
in the € <« 1 limit. We first derive an asymptotic expression for vi,,:. Since € < 1,

the integrand of the time integral in 24n. consists of a rapidly oscillating func-



149

tion cos(7/e) associated with the cyclotron motion and a slowly varying function
Ed; < hin(t)hi(0) > associated with the parallel oscillation. This behavior of the
. integrand leads to an exponentially small result of the rate v.

As discussed in section 4.1, the equilibration rate of the amorphous systems
in the experiments is determined by averaging v over the randomly varying crystal
axes orientation. Since the result of such an average is dominated by the peak
values of ¥, which occur at small but nonzero p /Z, we will therefore focus on the
tanfi, = py,/Zin < 1 and tan O = P/ Zin < 1 case. Here 01 (O1ns) is the angle
between Ry, (Rin) and B.

In order to evaluate the correlation function < hin(t)hin(0) >, we note the

following identity:

1 -
hin == | dozJi(z)e = Fntinl/Pi (4.32)
Pin /0

When 0, is small, {Z1,| ~ O(Rin) > |Z1,| in the harmonic approximation. In this

case we can make the approximation:
|Zln + Eln| =~ IZlnl + sgn(zln)zln: (433)

| which yields tractable Gaussian integrals when < hin(t)hine (0) > is evaluated. How-
ever, in the harmonic approximation there is an exponentially small but nevertheless
finite probability for |Zm| + 8gn(Z1.)Zi. < 0. In this case, substitution of Eq.(4.33)
into Eq.(4.32) yields a singular result. In order to remove the singularity, but still

use Eq.(4.33), we introduce a cutoff 8 to the integral:
1 B8 5 5 s
hin = ?[ da:a:Jl(m)e_’(|Z‘“|+'9"(z‘“)z'")/ph. (4.34)
tn V0

The expression for the rate will be dominated by values of |Zin| < |Zia| so use of

approximation Eq.(4.33) is justified. The small measure of conditions for which
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Figure 4.2: Plot of the parallel correlation function fi,(7) for a 3D magnetized

plasma

| Zgn| + sgn(zﬂ)ﬁﬂ < 0is suppressed by 8. We will find that there is a range of large

but finite B values for which the rate is independent of 3, provided that eIy > 1.
With the form of hi,(t) and Ay, (0) given by Eq. (4.34), we can easily perform

the statistical average for < hin(t)hin(0) > by using the results derived in Appendix

3C, which allows us to rewrite v in the following form

Q.. 3 T o B 8
Vinnt = ?(;)1/3(1 - ﬁ) rlplnzplnz' COS(¢'!ﬂ - ¢!n')‘[0 /(; dz,dz,
— 2| cot | — 0] + 2 (3P Fi_n(0) - + fini(0)Z2
Jl(:cl)Jl(:L‘z)C 21| cotfia| — 2| cot by |-I_"FII(") Lfin( );ft-[-ﬁ ( )Pma]

2.731:32 i 2/3

'Iltm"(f:sgn(z_hz;n’):}r”p e T
inFin’

(4.35)

2

Here, the correlation function f;_,(7) = 4Tp < zin(t)zin(0) > is an integral over the
[
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Brillouin zone (see Fig. 4.2):

1 vd®k 1 — cosk - Ry,
- 2Jpz (2n)  w,(k)?

Jin(7) cos(@, (k)7).

The function i (e, @) is defined as
I _ o0 s T.d
mnt(6,0) = —sa/im -rsm(;);[f;_n('r) + fient(T) = fren'(T)]

lfion(T) + fion(T) = fane(T)] (4.36)

Asymptotic Formula for i, (¢, ) in the e < 1 Limit

To evaluate Vi, we first need to calculate the time integral Ij,./(€,a). We
note that Ij..(e, &) is a convergent integral because the envelope of f;_,, approaches
zero like 1/77/2 as T — oo (see Appendix 4A).

For ¢ <« 1, the integral can evaluated using the saddle point method by
deforming the integration contour into the complex 7 plane. By changing the variable

T to t = —it, Eq.(4.36) becomes

) oo _ . . . d .
Inn(e,a) =alm | dt e"‘[f‘-“(‘a”‘-"'(‘a'f"""(‘md—f[fz_n(iﬂ + fieni (88) — froni(i1)]

(4.37)
Since the integrand is an entire function of £, we can deform the contour through

the saddle points. The saddle point positions are the solutions of the saddle point

equation:

L {ronli) + oo (i) — Fumli)] = — (4:38)

As we will see, the integrand of v, given by Eq.(4.35) is peaked at (z;,z2) ~

( el 1 Gl € 1 7 I), where 6, is the angle between Ry, and the magnetic field
cot Upn| €| cOt Bpyy




152

(see Fig.4.1). Using the o value given by Eq.(4.35), this peak corresponds to
22, 29 E 2/3 1

8L pinpin' eT)|Zin Ziw |

der for Eq.(4.35) to be valid, we must require 1/ ‘/ET” & Zin, Zin, which yields

EQ =€ Furthermore we will also see that in or-
ea < 1. We thus expect that the solutions of the saddle point equation satisfy
£} > 1, which allows us to use the asymptotic expressions for fi_n(if), fi—n/(if) and

fa-n(it) derived in Appendix 4A, for example,

Finlif) = 3V2r Zf, €
i—-n _— 8172 cg‘{zt—'?/z).

(4.39)

where only the lowest order term in 1/t has been kept and the parameter ¢ is equal
to 1.583 x 1072 4 0.102(b% + b4 + b}). Then to the lowest order in 1/f and using the

form for a from Eq.(4.35), the saddle point equation becomes

et

7= po(ez122) (4.40)

r
po(z) = TV 2#(%)2/302/2-—il| tan 01, || tan G|

and where we have used the identity ZZ, + Z2, — 22, = 2Z1,Z;v. There are an
infinite number of saddle points distributed symmetrically on each side of the real £
axis as well as a pure real solution (see Fig.4.3). However, for small ¢, as we show in
the following, only the real saddle point gives the dominant contribution.

For large po(ezi1z2), Eq. (4.40) has an iterative solution
- oo T -
t; > lnpp + 4275 + 2 In[ln po + 1275] (4.41)

where j = 0,£1,£2, .-+, po = po€ex122). By employing the saddle point equation and

using the approximation f]_,(if) ~ fi_n(¢f) for large |f|, we can rewrite the exponent
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Figure 4.3: Plot of the steepest decent contour in the complex ¢ plane for the saddle
point calculation of Irp+(€, @)

in Eq. (4.37) at = t; as

hi =~ o+ olfinlil) + fiow(iE5) = foort ()
~ —%({,- ~1)

According to the saddle point method , the magnitude of Ijnn(€, @) is dominated by

the exponential factor exp[Re(h;)], which is given by
eRe(h_,') ~ 8_‘.1_: 1n[41r2j2 + ].l‘l2 po]e——%(lnpg — 1)
277 (2 —7/4
~ 14 (— ¢
1+ (oL

Obviously efiel?) « efe(h) for j £ 0 and this allows us to neglect the j # 0 terms.
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Making use of the approximation fi' _(ito) ~ f/_.(sfs) for large &, we obtain

Lipnt(€, @) = ”gg-e_%(%"l) (4.42)

We note that the largest I, comes from the smallest £,. According to Eq. (4.40),
fo is the smallest only when pg is the smallest, which occurs when tan ;, and tan 8,
are small. Therefore, we expect that vy, is dominated by the contributions from
the terms with small 8;, and small §;,.. However, at 8;,, = 0 and 61, = 0, g, and
pir vanish and thus vy, vanish. Therefore, as we discussed at the beginning of this
chapter, the maximum rate occurs at small but nonzero 8, and 8. In this case,

the sum in Eq.(4.31) can effectively be replaced by the sum over lattice sites with
small 8, and 8;,.

Sum Over Lattice Sites

For a bec lattice, for each lattice site n’, there always exists another lattice
site #' which is the reflection point of n' with respect to [ (see Fig.4.4). Because
|tan 8| = |tanf,;| and ¢ = ® — i, We can easily show by using Eq. (4.42) that
. Upnt = —,v for each n/, which leads to » = 0. However, this conclusion is actually
not correct. In fact, v, and v, are not equal and one is much smaller than the
other. In order to see this, we must keep the next order term in the asymptotic
expression of fi_,(i7). This next order term §f;_n(i7) is given by Eq.(4.65) derived
in Appendix 4A. By taking § fi-»(iT) into account, we can rewrite the saddle point

equation as

e’ b 1 Zf 4+ fo — 24 ' €3  H-n + Bi—nt' — fn—n
= - 1 o n in’ nn _ 1 e il i 4
T7/2 poll + 24 ¢or ZinZpm ) Oco‘T( Zin D ) (443)

1

In order to focus on the difference between Ij,, and I, terms on the order of 1/

which only depend on Ry, or Ry, through ZZ or Z2, have been ignored because



Figure 4.4: Schematic picture for a lattice site n and its reflection point 7.

they cause no difference between Ijnn and I,,;. In Eq. (4.43), cs ~ 0.102 and p;_n
is defined by Eq.(4.67) of Appendix 4A as:

HPin = Zlnptn[bg\/ 1-82 cos(gb;n-gb,,)-}-bi\/ 1-— bi c°5(¢ln—¢y)+b3\/ 182 cos{bin—b:)]

Here (b;,by,b:) are the components of b = B/B projected on the crystal axes
(&,9,2). (e, by, #.) are the azimuthal angles of (2,7,2) with respect to b sepa-
rately (see Fig.4.19 in Appendix 4A). As we expected, only the relative azimuthal
angles appear in fi;_n, etc.
We note that for small 8;, and 8;,/, we have Z, > p,, and Zin > py,, and
therefore we expect that the third term in the bracket of Eq. (4.43) is small compared

with the second term. We may therefore write the saddle point solution as

- i Ginn’

t_ﬁ' s e 444
t 24 cot, ( )

where £, is the solution to Eq. (4.40) and ginn = 4(2& + an,) — 6721, Z1y. Obviously

Gin? — Ginn' = 1221 Ztne, which show;s. that for Z;, - Zyy > 0, o is smaller than
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Tt ‘by a factor ¥ = ezp[—5Z, 2 [(2¢cot,)]. Furthermore, as ¢ — 0, Eq.(4.41)
implies ef, — 0 and so v is exponentially small for ¢ <« 1. Because v < 1, v, =~
O(7Winnt <€ Vinw for Zy, - Zppp > 0 and € < 1.

Another important observation for Eq. (4.44) is that when Z, and Z;, be-
come larger, ¢ becomes larger. We therefore expect that vy, is only dominated
by the contributions from the nearest neighbors. We will see this in our numerical
analysis in the next section.

We have seen that the rate is dominated by small §;, and 8;,;. Counting only
nearest neighbors, for a bee lattice, 8, and 8,y can both be small only when n = n’.
Therefore, as a conclusion of our discussion, we rewrite Eq.(4.31) as a sum over the
nearest neighbors:

v= Z Vinn (4.45)
n>l

To calculate vinn, we substitute the leading order term in Eq. (4.41) for the

pure real saddle point £y ~ Inp, into v, given by Eq. (4.35) and obtain

Vinn = %(E)Usu - ﬂ)e@rlp,—;e[l — Inpo(€)] /¢ fo * dedn(z)?  (4.46)

™ T

where

ol ot linl + 35 (2 fin(0)7

A (z) = 2o g () Pin (4.47)

Ain(2) is a oscillatory function with the envelope sharply peaked at z, ~ (3 +
1/€)/| cot Oi|, before starting to grow at zp ~ Z(g)zf"'p!nz,nr”/ﬁ_n(o) (see Fig.4.5).
This growth is due to the aforementioned unphysical singularity arising from the
approximation for the absolute value in the integral transform for Ay, (see Eq.(4.32)
and Eq.(4.34)). However, we find that the integral [ de A, () is independent of

the choice of B provided that z, <« B <« @, which implies that ')y > 1/Z
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Figure 4.5: A schematic plot of Aj.(z)

for € « 1. The physical meaning for this inequality is clear. According to our
crude estimate based on the phonon éollision picture, the equilibration is dominated
by the displacement §z with a peak at 8§z, ~ 1/ \/ﬁll and thus in order to use
Eq.(4.33) we must require 63, < Zin, which leads to inequality el'y > 1/ZZ. This is
a validity condition for the use of the integral transform Eq.(4.34) under the harmonic |
" approximation. In particular, for nearest neighbors ! and n with 8, < 1, this
validity condition is reduced to the validity condition of the harmonic approximation:
el'y > 1, which was derived at the beginning of this chapter (see section 4.1).
When condition eI')j > 1 is satisfied, we may ignore the O(z?) term in the

exponent of Eq. (4.47) and take the # — co limit, we obtain®

B ) oo
j dzApm(z) ~ j dma;”l/ﬁjl(m)e—ml cot 8y, ]
0 0

= (=1)"C(G1n, 1/ €)prr ) Rin




158

where
C(bn, 1/¢€) R o o* ! (4.48)
iny1/€) = in p = .
Opim 82,1 \[22 + 72
= (~Rin) VT3 4 1/€) P}/ (cos bin) (4.49)

where P, +11 /e (z) is the associated Legendre function of the first kind. By comparing
Eq. (4.49) with Eq.(4.2) one may easily identify C(6i,,1/¢) defined here as exactly
equal to that defined by Eq.(4.2).

We now substitute Eq. (4.49) into Eq. (4.46) and obtain

T -
T'lLl)I‘Le_gfze_&feR,_:[(cosBgn) “Prlyye(cos 61 )2  (4.50)

Vinn = A4V 27(~ )”3(

where

& = In] \/_( TSR 41 (4.51)

and we have used the approximation I'(z) ~ \/27!'7623})[—23 + zin(z)] for z > 1.

From Eq. (4.50) we obtain the final equilibration rate: v = ¥, .5; vin,. We

find that v, given by Eq. (4.50) does show several important characteristics verified
by the numerical results of the next section. For example, v}, decreases like R;;f a
Rin increases, which implies that the dominant contributions are from the nearest
neighbor interactions. As we have already discussed, next order terms in the saddle
point position ¢, reduce the effect of distant ions even further.

We also find that the factor (cos fj,) /¢ shows an exponential decrease in Vi,
as 8, increases for € << 1. As an extreme case, Vj,, = 0 for §;, = % because in this
case §2,(t) vanishes for those modes with k || B, by which the equilibration process
1s dominated.

Moreover, the Legendre function exhibits a rapid oscillation in 8y, associated
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with the Taylor coefficient C'(tan§;,,1/€) of the interaction potential energy. Fur-
thermore, as in the crude estimate of Eq. (4.1), smaller ¢ corresponds to a higher
order Taylor expansion and thus is expected to lead to more rapid oscillations. In
fact, for small §,, we may approximate Pl—_}_llfe(cos 61) by J1((34+2/€)sin %’*)/(3—{—2/6),
which oscillates faster in §;,, for smaller e.

In order for our calculation to yield a quantitatively good result, the validity
condition for the asymptotic expression of fi_,(iT), coto > 1, L.e., colnpo(ez?) > 1,
must be also satisfied (see Appendix 4A). This condition, for the largest possible value

of ¢, becomes €'} > 1.25 x 10°. Notice that this is a very strong condition which

is not satisfied by current experiments and therefore the asymptotic approximation
can only be expected to provide us with qualitative information for ». In the next
section we will calculate the rate numerically.

As we have discussed, Eq.(4.34) is only valid for the 6;, < 1 case. In order
to be complete, in what follows we consider the 8;, > 1 case. When §;, > 1, we use

another type of integral transform:

hl"(t) — ‘n‘:;? ‘/:: dmmKl(m)e"z(ztn-i-fln(t))/ﬁ:n (4_52)

For this case, we will see that a singularity occurs when p,, — 0 due to the
contribution from Zi, 4 z,(t) = 0, which corresponds to the close collisions between
thelth particle and the nth particle. After performing the statistical average for
< hin(t)hin(0) >, we obtain the equilibration rate given by

Q.,3
(=

1/31__ T -4
- ﬂ_) ( )eL1p

Vipn = 4

o poo __2 (3y2/8 =3+
/ ./ deydey K (21)Ky (22 )e any () i-n (00552
0

0

| 1
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[cos{(z1 — z2) cot 81) 1nn(€

2:31:32 3 2/3

+ cos|(z1 + @) cot bin) finn(€, — (4.53)
2..":1:52 3 5 /3)
3Typ2, '

imaginary parts of these saddle points make I, oscillatory. On the other hand, we

We found that the saddle points of [j,.(e, — are all complex, and the
found that the first term in the bracket of Eq. (4.54) is nonoscillatory because of the
existence of the pure real saddle point, which dominates the integral. Furthermore,
as we will show, this nonoscillatory term gives the trend of the variation of vy, as a
function of §;,. This may provide a way to check our results for v, determined by
Eq.(4.35). We therefore focus on this nonoscillatory term in the following discussion.

By dropping the second term in the bracket in Eq.(4.53), we write

. Q..3 T B
Ban = 4S(S)(1 - )T ipyt

— 5 (22 fia(0) %

j j dﬂ:ldﬂ':zK](ﬂ':l)Kl(ﬂ':z)e
0 0

2:01:82 é 2/3

- t 0] L (€, .54
cos[(2; ~ T3) cot Oin) Iinn(e A (4.54)
By substituting Eq. (4.42) into Eq. (4.54), we obtain
Q.
Sim = 4502 (33131 = Ty p, 2T~ Inpol(e)]/ejg2 4 52 (4.55)

T T Il €

where

2 2/3 P
Czn=p2+1/e_/ / dzK1(z) cos(z cot b;,)e 31“[;() fien(0)23/pE
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o oo 2/3 2752
Szn=ﬁ2+1/ef f dz K1 (z) sin(z cot 6}, )e 31""( Y fin(0)er/ i

For large I'| we may neglect the exponentially decaying factors in Cj, and S, and

we obtain

3 1 1 1 3 1
_+_

1 11
Cin ~ 2Y5. YT (S + )T F(E+ ==+ —;=;—(cot 1)) (4
’ P TG+ TG+ PG+ 505 + g9 —(eotdn)’) - (4.56)
o glH1/e 5=8-1/¢ 1 1 1r,,13 2
Sim 2 2 T2 + )P+ P2+ oy 1+ o S —(cot 1)) (4:57)

where F(a,;v;)is Gauss’ hypergeometric function.

Some important features of Zi,n given by Eq. (4.55) should be noted. In
the limit of small tanf,, the p,, dependence of F(g + %, % + %; %; —(cot 812)%)
is (tanfp,)*'/¢ and so C, ~ p;!. Similarly, we have S;, ~ p;! and therefore
Dinn ~ P. — o0 as p, — 0. As we have discussed, this singularity is due to the
improper inclusion of the close collisions.

In order to make comparison between Dy, and vi,,, we employ the following

asymptotic formula for the Gauss’ hypergeometric function for € < 1:

3 11 11 cot 6
F(Z4+ - 4+ = —(cotip)?) ~ -
1 1 3 cot 8;
— —: = —(cot B, )?) ~ esi = n
F(2+ 26,1 + 505 (cot f1n)*) ~ €sin( . )/ cot 6,

and then

72 _4ez/e 2lnl — cot 0, . ., cotb,
(Ch 82) = St et &~ Dicost((27m) sin?(©227))

Furthermore substitution of C}, and Si, into &y, yields

Q 3 T_L I‘_L 211'__ _&
an = d— ()31 — —=)== 4(cot Oy, )2 ce~ /e 4.58
7 (7 T”) —/ = Pin (cot f1)* " (4.58)



where @ is defined by Eq.(4.51).

We now see that #,, is nonoscillatory despite the fact that both C}, and
St are oécillatory. In order to make a comparison between ¥, and vy, given
by Eq.(4.50) and Eq.(4.58), we substitute the asymptotic formula for the Legendre
function for e « 1:

I'(1+1/e
( / )P1+1/C(COS Orn)

Fasdeost) = 1E1/9"

= 2 5/2
2+ 1/5\/(71-1- 1/€)m sin O1n cos[(3/2 +1/€)b, + m/4] + O(e”")

into Eq. (4.50) and obtain

Vo = (51010~ 14[1 — n(3 + 2/ Yol (1 + O(6))

which shows that 7, represents the trend of the oscillation in 6, of vi,,. This

full oscillatory behavior is expected to be recovered when we take into account the

second term in the bracket of Eq. (4.53).

4.4.3 Numerical Calculation of v and Discussions

Though we have derived the asymptotic expression for the rate in the e €' 1
and €[] > 1 limit, for a general parameter regime of ¢ and I, the asymptotic
expression only gives the qualitative behavior of v and the rate must be determined
numerically.

To perform the numerical evaluation of v using either Eq. (4.35) or Eq. (4.54),
3T, (71_) . Fur-

thermore, in order to calculate Ij,.(g, @), we must obtain function fi_n(if). As

we must first calculate the time integral Jj,.(g, @), where a = +

a first step, we calculate the frequency w.(k). In our calculation, we write k as




k = z;b; + z3by + z3bs, where by, b, and b; are the reciprocal lattice vectors:
by = #(0,1,1); by = 7(1,0,1); bs = w(1, 1,0).

where the lengths are scaled by ao and the wavenumbers are scaled by 1/ap. We
tabulate the dynamical matrix elements G.y(k) and G:.(k) given by Eq.(4.62) in

Appendix 4A on a 31 x 31 x 31 grid, where on each grid point (I, m,n),

l1—-16 m — 16 n— 16

=(l) = 31

The other matrix elements can then be obtained through the permutational symme-

tries:

Gey(l,m,n) = Gu(l,n,m) = Gy(n, m,1)
and

G::(l,m,n) = Gpa(n,m,1) = Gyy(l, n,m).

With these matrix elements, we thus obtain the frequency given by v, = b -G - b,

where b is the unit vector of the magnetic field. In Fig.4.6, we plot the numerical

results of w,2, where the solid lines represent «,%(k) with k along [001] and [111]

respectively.
After obtaining «,, we may furthermore calculate the value of the integrand

of fi_n(1t) on each grid point (I, m,n), where fi_n(:%) is given by

1 vd’k 1 — cosk - Ry,

finlit) = 3 f, @r) @, (k)?

cosh(@.(k)?)

1/2 1/2 1/2 1—cosk-Ry
_ " cosh(a .
f—uz dz, [1/2 dz, f—lfz dzs 2. (K)? cosh(@.(k)t) (4.59)

Here we have taken v = 4 for a bec crystal and we have changed d°k to dz,dzydzs
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Figure 4.6: Plot of the parallel dispersion relation «,%(k) for a 3D strongly mag-
netized crystallized plasma, with k // b // [1,1,1] and [0,0,1] respectively. Here
frequency W, is scaled by plasma frequency w,, wavevector k is scaled by 1/a,, where
aq is half of the bec lattice constant. The solid lines represent the numerical re-
sults and the dotted lines representate the approximate analytical results given by

Eq.(4.54).

with Jacobian §°k/(0z18z,8¢3) = 2n®. The three dimensional integral is performed
in the following way. We first evaluate the z3 integral by applying the extended
~ Simpson’s integral rule to the grid points z3(n)(n = 1,2, - -,31) while treating
z1 = z1(l), 22 = 22(m)(1 < I,m < 31) as parameters. The estimated relative error
for the Extended Simpson’s Integral Rule is on the order oft® 1/31* which is small.
After performing the 3 integral, we are left with the integrand of the z,, ¢, integral
in a form of a 2D array (I, m)(1 < l,m < 31). We repeat the same technique used
for the z3 integral holding z;, fixed, the resulting 1D array is also integrated via
Simpson’s rule. We also evaluate the derivatives a‘% fi_n(it) and % fi_a(2f), by taking
derivatives of Eq.(4.59) analytically and then numerically integrating through the

same procedure.



Figure 4.7: Plot of fi_,(if) for B// [111], Ry, =[0,0,2], where £ is scaled by 1/w,. ‘
Solid lines: asymptotic results (Eq.(4.65); dotted lines: numerical resuits.

10 — T T

Figure 4.8: Plot of fi_,(it) for B// [0 0 1], Rin = [0,1,1]. Solid lines: asymptotic
results (Eq.(4.65); dotted lines: numerical results.
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Figure 4.9: A comparison between [j,,(€, @) and Iinn(e, &), where Iip,(e, a) and
Iinnt(€, @) are evaluated by direct numerical integration (see Eq.(4.36)). The upper
solid line is for Ry, = Ry, =[1,1,1], the upper dotted line is for Ry, = Ry =[2,0,2],
the lower solid line is for Ry, = [1,1, 1], Ryv =[2,0,2] and the lower dotted line is for
Rin 2[11111]: Ri = [13'131]'
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Figure 4.10: A comparison between |I1,,(¢, @)| and |Iia(e, @)|, where Ry, =(1,1,1]

and Ry =[-1,-1,-1]. Her we plot the absolute value of I, and I;n; because Ijn is
oscillatory and can be negative.
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The numerical results of fi_,(:t) for k along [001] and [111] are plotted in
Fig.4.7 and Fig.4.8, where dotted lines and the solid lines represent the numerical

and asymptotic results respectively.

After obtaining fi_.(it) and its derivatives, we may now evaluate the time

integral Ijn.{e, a). We first compare the numerical result of Ij,,/{¢, ) for different

I,n and n' and as we found in the asymptotic analysis, the nondiagonal term, n # n/,
is much smaller than the diagonal term, n = n’ (see Fig.4.9).

Furthermore, we calculate [,z and Ij,,, numerically, where i is the reflection
point of n with respect to n (see Fig.4.4). We find that, [,z is much smaller than
Iinn (see Fig.4.10), as we discussed in our asymptotic analysis.

The fact that |fjnn| < |Iinn|(n # n’) allows us to focus on the n = n’ case.
We then proceed to calculate the time integral Iy, using both the saddle point
method and direct numerical integration. First we discuss the saddle point method.
As we discussed in the asymptotic analysis, we only need to keep the saddle point

on the real axis, which is the root of the saddle point equation
d . 1
—=Jl-n t —_
dt fi-n(it) €

" In order to evaluate Iinn, we first tabulate ﬁ..."(‘iﬂ,% fi-n(it) and Jﬂi{ fi—n(it) for £
varying from 0 to 20 with steps Af = 0.1 for £ < 10 and At = 0.5 for £ > 10. Here we
take nonuniform steps because fi_,(it) and its derivatives vary faster for smaller #’s.
Using these discrete values at different ¢’s, we make the cubic spline approximation for
fi_n(if), % fi_a(éf) and f%- fi—n(it), and we can then solve the saddle point equation
numerically. In our calculation, the saddle point equation is solved by using the

SLATEC subroutine DZERO.F. Having obtained the saddle point position = {,,
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Figure 4.11: Plot of the time integral Jinn(e, ) with B// [0 0 1], Ry, =[1,1,1]. Solid

lines: the results from the saddle point calculation keeping only the pure real saddle
point; Dotted lines: the results from direct numerical integration.
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Figure 4.12: Plot of the time integral Ijn.(g, ) with B//[1 1 0], R, =[1,1,1]. Solid

lines: the results from the saddle point calculation keeping only the pure real saddle
point; Dotted lines: the results from direct numerical integration.




the time integral is then evaluated by the saddle point method:

Iinn(€, @) ~ 1 __%ﬂe—%mﬁ_u(ﬁ,l
EN afi_n\t,

In order to compare our result of saddle point calculation with the direct

numerical integration result, in Fig.4.11 and Fig.4.12 we plot Iina(€, @) as a function
1/¢ for different o, Ry, and b’s. From these figures, we see a good agreement between
the saddle point calculation and the numerical integration. Furthermore, as we
expected, we see that I, decreases exponentially for small e.

An important feature shown in Fig.4.11 and Fig.4.12 is that, in contrast to
Fig.3.3 for the 1D Coulomb chain case, the steps in I, as a function of ¢ is strongly
suppressed for large 1/e. From the point of view of the saddle point method, the
oscillations are due to the contribution of the complex saddle points. They play
important roles for the 1D case but are negligible for the 3D case. As a result, the
abrupt steps appeared in Ij,, for the 1D case are suppressed for the 3D case.

This can also understood through the following physical argument. Accord-

ing to Eq.(4.36), the integral I, is
Iipn = —2€af ditﬁn(f)eza'ﬁ"(.r) sin(Qct)dt,

which can be written as

Iipn = —260!/ dt-&%fm(r)i (20

3=0 j!

[fgﬂ(‘r)]j sin(ﬂct),

where 7 = wyt. Thus Ijn, is the w = Q. Fourier component of a sum over products
of fi, and it’s derivative. This can be written as a convolution of the products of the
Fourier transform of fi,.

As shown in Fig.3.4, the Fourier transform of fi,(7) for the 1D case has a

sharp cutoff at the largest parallel frequency and this sharp cutoff causes the abrupt
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Figure 4.13: Plot of the Fourier transform of the correlation function fi,(7)

steps in Jj,,. However, for the present 3D case, as shown in Figure 4.13, instead of
the sharp cutoff, there only exists a gentle bump near half of the maximum frequency.
This gentle bump only causes smooth oscillations in I, for small 1/¢ as shown in
Fig.4.11 and Fig.4.12. For large 1/¢, these oscillations disappear because I, is then
determined by many high order terms, each of which has a small effect when taken
individually.

We evaluate the z,,z, integral to complete the rate calculation. Recall that
we have two versions of the rate calculations, one is given by Eq.(4.34) valid for small
f1n, the other given by Eq.(4.54) valid for 8;, > 1. We first calculate the rate for small
fin by performing the z,, 2, integral in Eq. (4.35). As we discussed in section 4.4.2,
we must choose the upper integration limit 8 such that z, < 8 < ®,, where the
integrand is peaked at (z,,%;) = (2a,z,) and the integrand starts to grow along the
@1 = 2, direction when ;5 > @;. Here 2, ~ (1 + 1/¢)/Z;, and zy ~ Z;,,I‘n/ft_,,(O).
In our calculation, we find that the rate is independent of the choice of 8 provided

that €P|| > 1.




Figure 4.14: Plot of 1, as a function of cos 0;,,, where R =[1,1,1] and b varies in
the plane spanned by lattice vectors [111], [002]. The solid lines represent the results
of Eq. (4.35), which is valid for small ;,, and the dotted lines represent the results

of Eq. (4.54).

Figure 4.15: Plot of v, as a function of cos §,, where Ry, =[0,0,2] and b varies in
the plane spanned by lattice vectors [200], [002]. The solid lines represent the results
of Eq. (4.35), which is valid for small 8;,, and the dotted lines represent the results

of Eq. (4.54).
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Figure 4.16: Plot of vy, as a function of cos 8y, where R;, =[2,2,0] and b varies in
the plane spanned by lattice vectors [200], [220].The solid lines represent the results
of Eq. (4.35), which is valid for small ;,, and the dotted lines represent the results
of Eq. (4.54).

For 6, > 1, the rate is given by Eq. (4.53). In this case, as we did in the
asymptotic analysis, we performed the z;,z; integral for Zi,. given by Eq. (4.54).
The numerical integration is straightforward since the behavior of the integrand is
regular.

The results for our numerical calculations for ¥, are plotted in Fig.4.14 and
Fig.4.15 and Fig.4.16 as a function of cosf,, where the solid lines represent the
results given by Eq. (4.35), and the dotted lines represent the results of Eq. (4.54).
We can see that the numerical results do exhibit the qualitative features predicted
by the asymptotic analysis. For example, the dotted lines give the trend of the
oscillatory solid lines. The rate 1,, is an oscillatory function of the angle 8;, with
a rapidly decaying amplitude. And as £ decreases, these oscillations in 6}, becomes

faster. Also, recall that in our order of magnitude estimate (see section 4.1), we found

that the maximum rate occurs roughly at 6, ~ 1/v/2M = ,/e/2. Here from these
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figures, we see that the angle 6}, at which the maximum v, occurs does decrease
slowly as 1/¢ increases. Moreover, we see that vy, decreases as |Rys| increases, but
it decreases much more rapidly than |Ri,|~*, which is predicted in our asymptotic
analysis if we had kept higher order terms in 1/7.

Finally, by summing 4, over different lattice sites (In), we obtain the equiki-
bration rate v of the crystal as a function of the magnetic field orientation (6, ¢) with
respect to the crystal axis. Since the rate decreases rapidly when |Ru,| increases, we
only sum vy, over nearest neighbor points Ry, = [+1,+1,+1], [0,0,+2], [0, £2,0],
[0,0,42], [£2, £2,0],[0, £2, £2] and [+2,0,+2)].

The variation of v with § and ¢ is presented in Fig.4.17. From Fig.4.17 we find
that the rate is strongly dominated by the contribution from the nearest neighbor
lattice site Ry, = [1,1,1] and is highly peaked when the magnetic field makes a small
but nonzero angle with the [1,1,1,] direction. As we have mentioned, in practice,
the system is not a perfect bee crystal and the overall temperature equilibration rate
may be approximated by averaging v(f, ¢) over randomly varying angles (8, ¢).

One may have noticed that the rate obtained is physically relevant to the
experiments only for 1/e ~ 3 — 5. For larger 1/¢, the rate may become so small
that it would make an experimental test quite difficult. On the other hand, for
1/e ~ 3—5, corrections to our guiding center approximation, for example, the terms
in w, of higher orders in ¢, may be important. Nevertheless, the present calculation
as a preliminary investigation for the temperature equilibration process in a strongly
correlated plasma is expected to provide the zeroth order result for the temperature

equilibration rate.
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Figure 4.17: Plot of (6, ¢) for different magnetic field direction {6, ¢), where 6 and
¢ are defined with respect to the crystal axes and run over the shaded region of the
inset. This figure repeats for (8, ¢) in other quadrants of the sphere. ’

4.5 Appendix 4A: Asymptotic Expression for

fi(it) in the |t| > 1 Limit

In this appendix, we derive an asymptotic formula for the correlation function
fi(ét) in the |f] > 1 Limit, where fi(it) is defined by equation ( 3.25) for a three

dimensional crystallized and strongly magnetized plasma.
For a 3D system, f;(i) can be written as a 3D integral in the Brillouin zone:

. 1 &#kl—cosk-R
flit) = 2Jp.z 2)21)3 @, (k)? - cosh(@, (kD) (4'60)

Here v = 4ad,f = wyt and k and R; are normalized by 1/a¢ and ae respectively,
where ay is half of the lattice constant.

For £ >> 1, fi(it) is dominated by the contribution from the largest frequency
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Figure 4.18: A schematic picture for the eigenmodes for a unmagnetized bcc
Coulomb crystal

@,{k). In the guiding center limit, &, is given by

(IJ': =b-G-b
where b is the unit vector along the magnetic field and G is the dynamical matrix
~normalized by mw,?. The condition for the largest @, can be found by maximizing
the Lagrange target function F(ﬁ) =h-G-b- A2|f1|2 subject to the constraint

|b|2 = 1, where X is the Lagrange multiplier. aF(E) /8b = 0 yields

G-b=)b
which means that the maxima of @, occurs when b is a polarization vector of G
with eigenfrquency A. The eigenmodes of G was found to be one longitudinal mode
and two transverse modes!'” as shown schematically in Fig.4.18. From the figure
we see that the maximum frequency comes from the long wavelength longitudinal

mode. At k = 0, the frequencies of the the transverse modes, A; and Az, vanish and
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As reaches its maximum value :A; = 1. Furthermore, this frequency must be the
largest possible frequency of the modes because of the Kohn rule: A2 + A2 + 22 = 1.

Before proceeding to derive the asymptotic formula of fi(it), we first need to
obtain an expression for @,(k) in the small k limit. We start with a formula for G

derived by Dubin®! using the Ewald sum technique:
G(k) = G(0) — G(k) (4.61)

with the matrix G(k) given by

I b 0i pip;
um et R Rk
(g_k)i(g‘”k)j _|g—-k[*R? H? e?
€ — P(x) — —]z= 4.62
SN 52:02; 7)o (462)

and Fy and F; are given by

°R’' " /xR
2 _{_F 2
Fz = 3€TfC(TI;B)+(3+§E2-)ﬁ€ ﬁﬂ)
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— 2 1

P = erfe( L)+ 2~ (Frm) 1

|
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Here R is the parameter introduced to break the Ewald sum into two terms; in fact, ]

1

Gi; is independent of the choice of R. ¥, ’ is the sum over all the lattice sites except |

P = 0 and > . is the sum over the reciprocal lattice points. The last term in
Eq. (4.62) is added to remove the singularity at z = 0.

Expansion of G;; up to the second order in k yields

@, (k) = b-(G{0) - G(k))-b

. (k'f))z k Bz k2 k2h? -|—k262 JRIX 4.63 :
- k2 —-C]_( ’ )-|—Cz —ca(mz yy+ zz) ( )
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where (k.., k,, k,) are the components of k along the crystal axes, (b.,by,b.) are the

components of b along the crystal axes, and where the coeflicients ¢, c; and ¢z are

given by

2 2 —R3g2

¢ RZ_Z%Zipzpsz_Zle

p P g 7

,+ 2R? 4929, R 89.9y
(1 ate g”’)(l R°g)) - 2 (g + gf) + 2B (14 g R) + =
g g g

2 2 02 —R3g?
“= S_WZ'(—FFl-i- pByFZ)JFZ' '

,3p2pl — Pt e B4
— v - mF '
c3 811' : ""—"'“-—-p5 2+ zg: 7

9R!g}(34% — g 34 o?R? 4 24° R? 93_93_2}22 4, 4y
9:(39, —9:) + 3+ g R+ 29, )= 57 (9= 1 9)

12g§g§R2)
g2
" The numerical values of ci, ¢z and ¢z for a bec lattice are calculated and are found

to be:
c1 ~ 7.491 x 107%; ¢y ~ 5.908 x 1072; ¢z =~ 0.102

We have tested our results by choosing different values of parameter R and we find
that the results are indeed independent of the choice of R. In Fig.4.6 @,(k)? given by
Eq. (4.63) is compared with the numerical result given by Eq. (4.61) and Eq. (4.62)
for k along [001] direction and [111] directions. We can see that for small k these

two results are in good agreement.
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Figure 4.19: A schematic picture for the Frenet coordinate system (n,t,b), where
b = B/B and (n,t) are two orthogonal unit vectors in the plane perpendicular to
b. (8,¢) are the polar and azimuthal angle for the wavevector k with respect to
(n,t,b). (£,%, 2) are the crystal axes.

We now proceed to calculate fi(st). It proves useful to use the Frenet co-
ordinate system which is described by three orthogonal base vectors: (n,t,b) (see
Fig.4.19). Here b = B/B and (n,t) are two orthogonal unit vectors in the plane
. perpendicular to b. In this coordinate system, the direction of any vector, e.g., k,
can be described by the the polar and azimuthal angle (6, ¢) with respect..to b.
Though the choice of (n,t) is arbitrary, we will see that our results only depend on
the relative azimuthal angle between two vectors, which is independent of the choice
of (n,t).

We rewrite Eq. (4.63) as

@,(k)? ~ cos® 4 — 5(8, )k’ (4.64)




where (8, ¢) are the polar and azimuthal angles of k.

5(8, $) = c1cos® 8 — ¢y + ca(k2bZ + k;bz + k202) /K.

Here (kg,ky, k;)/k and (b;,b,,b,) are the components of k and b along the crys-
tal axes (&,9,%). In the following calculation, we will write these components as
functions of the polar and azimuthal angles in the Frenet coordinate system.

From Eq. (4.64) we see that the maximum @,(k)? occurs for k=0 and § =0
or 7. We also see that for small 8, where the maximum @, (k) occurs, s(6, ¢) is always
positive.

We now substitute Eq. (4.64) into Eq. (4.60) and assume £ is large. Then by

expanding the integrand for small k, and for # near 0 or 7, we obtain

A ~ — f d¢f desmaf dkk’k R,)? gtlcosfl- —=1-HH1+0 1/%)]

4(27 )2 2(cos 9)2

3v2r 7} €

e s/z ]

12

=_[1+ O(1/%)] (4.65)

where co = 5(0,¢) = ¢1 — ¢z + ca(bl + b} + b),Z = b-R;.

The asymptotic formula given by Eq. (4.65), which is to the lowest order in
1/, is proportional to Z?. However, in our asymptotic analysis for the temperature
equilibration rate , we will see that keeping only terms proportional to Z? will make
the coniribution from R; cancel the contribution from -R;, causing a zero rate,
which is obviously not correct. In order to obtain a sensible result.in our asymptotic
analysis for the rate, we must include the O(1/t) term, particularly those terms not
in the form of Z7.

In order to find the O(1/t) term, we make use of the following formula:

k - R, = kR[cos 8 cos 8, + sin 8 sin 6; + cos(¢p — ¢y)]



k. = b cos 8 + sin 84/1 — b2 cos(¢ — ¢z )

k, = b, cos 8§ + sin 8,/1— bgcos(qb - ¢y)

k, = b, cos 8 + sin 84/1 — b2 cos(¢ — ¢.)

where (6;, ¢1) is the polar and azimuthal angle of R, and (¢,, ¢y, ¢.) are the azimuthal
angles of the three orthogonal crystal axis in the Frenet coordinate system. Substi-
tuting the above formulas into Eq. (4.60) and expanding the integrand to higher

orders in O(1/%), we obtain the next order correction to Eq. (4.65):

5¢2r € _, 15¢2me; €

o) = —321r2cg/2?9_/_2 " oon2dl)? prtt (4.66)

where
1 = P BT B2 cos(n — ba) + 82/ T— B cos(r — 6,) + (63T — b2 cos(gy — 4]
(4.67)

where terms which depend on R; only through Z? have been ignoréd‘

Fig.4.7 and Fig.4.8 show the comparisons between the direct numerical in-
tegration results and the asymptotic analysis results given by Eq. (4.65). We find
that the numerical and analytical results agree with each other only for sufficiently
large £. This is because that in order for the asymptotic formula to be valid, we must
require ££(0,0) > 1,i.e., £ > 1/cg ~ 10/(0.16+ b + b5 +b;), otherwise the boundary
of the Brillouin zone may play an important role. Notice that this is a rather strong
condition for . Furthermore, from this condition we see that the numerical and
analytical results would converge faster for a larger b3 +b% 4 b}. In the figures, we do
see a faster convergence for the b = [0,0,1] case compared with the b= [1,1,1]/ V3

case. In fact, from Fig.4.6, we find that &,(k) given by Eq. (4.64) is a much better
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approximation for the b = [0,0, 1] case than the b = [1,1,1]/4/3 case, this fact also
makes the numerical and analytical results converge faster for the b = [0,0, 1] case.

In addition, in Fig.4.7 (Fig.4.8) we see that the asymptotic result is larger
(smaller) than the numerical result for b along [1,1,1] ([0,0, 1]). This is because,
as shown in Fig.4.6, that the analytical approximation for w,(k) is larger (smaller)
than the exact numerical result for b along [1,1, 1] ([0,0,1]).

4.6 Appendix 4B: Formalism for the Canoni-
cal Transformation to Diagonalize a General
Quadratic Hamiltonian

In this appendix we derive a canonical transformation L which transforms

the canonical variables (q, p) to new canonical variables (Q,P) via

so that the Hamiltonian, which is generally in the form of

A, B q
H = (q,p)
Btr A-p p

is diagonalized in the representation of the new canonical variables:

H = zn:[P—"’2 + 1mr.uzQz] (4.69)
S m 2 Y '



\+ ) \m) @] B

and where A, and A, are = X n real matrices satisfying AT = Ag, and A} = A,
In quantum many-body theory there exists the well-known Bogoliubov trans-

formation to diagonalize a quadratic Hamiltoman in the creation and annihilation 1

operator representation. In classical mechanics, such a canonical transformation also ‘

exists if one notices that the creation and annihilation operators can be written as

linear combinations of the coordinate and momentum operators. In this appendix,

by closely following the quantum formalism we derive a classical canonical transfor-

mation which diagonalizes the Hamiltonian H. In order to manipulate the symmetry

~ of H and thereby simplify our argument, we define auxiliary variables ¢; through

. *
CJ+Cj

G = ome

. fmiw; .
p; = —i TJ(CJ'—CJ-) (4.70)

where @; 1s a properly chosen positive frequency from the coefficients A ;; and A, ;.
In principle, we can choose any positive numbers for &; and the result for matrix L
is independent of the artificially constructed variables (¢;, c;‘) However, in practice,

we find that suitably chosen @&;’s can simplify the algebra. We find that using (c;, c})
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formalism is advantageous because (g;, p;) appear in pairs in ¢;’s, the Hamiltonian

H 1s symmetrized :
H=(c",c")h (4.71)

where

Ca

c =
\
N M
h =
M* N*

where M and N are n x n matrices which are related to the matrices A;, A, and B

by
Agis m 1, [w; @y
My = —Taii_ M4t f%p. , [Yip.
2 2mm 2waAP:J 2( (I}iBJ+ (I}JBJ)

Agi /w /w.
N"’j = 2771\;0:;_% 9 w’-wJAP ij + . ”J BJ‘)

Obviously M and N satisfies M = M, N* = N, and hence h* =
In this appendix we derive a canonical transformation which diagonalize the matrix

h. Specifically, we need to find a 27 x 2n matrix S to generate a transformation



from {c, c*) to (e, e*) through

=S (4.72)

such that in the new representation,

w e
H= -?c(e*', e”)SThS

et

1s diagonalized i.e.
S*thS = diagonal (4.73)

In order to ensure the transformation to be canonical, we require that all the Poisson
brackets must be be invariant under the transformation. Specifically, because (g;, p;)

are canonical, we have
[e,c] =0; [¢,c*] = —i1; [c¢*,c*] = 0. (4.74)

Since the Poisson bracket is invariant, we require that the same commutation rela-

tions hold for (e,e*):
[e,e] =0; [e,e*] = —i1; [e*,e*] =0 (4.75)
Combining Eq.( 4.75) with Eq.(4.72), we have

A B*
, (4.76)
B A*

S =

where n X n matrices A and B are defined by

Ajr = icj, ef]




Bjk = i[c;, ei]

Moreover,because (e, e*) has the same commutation relations as (c,c"), the matrix
S—! which generates the inverse transformation must have the same form as shown

in Eq.( 4.76) with ¢ and e exchanged:

|
At _Bt |
S~ = ' |
_Btr Atr |
= AS'A
which, in turn, yields the condition for S:
STAS = A;or,SAST = A (4.77)
where A is a n X 1 matrix defined as
1 0
A=
0 -1

- and we have used the identity AA = 1 to derive Eq.( 4.77).
Here we must note that Eq.( 4.77) does not look the same as the conventional
symplectic condition'?. In order to show its equivalence to the usual symplectic
condition, in what follows, we prove that Eq.( 4.77) combined with Eq.( 4.75) lead

to the usual symplectic condition for the transformation matrix L. We begin with

the definition of (¢;,¢}) and write




|
|
=T, |
e* ‘
where
U, iUy
U, —iU;?

~where matrix U, has the same form as U; except that &; is replaced by w;, the
frequency appearing in Eq.( 4.69). With the aid of Eq.( 4.78) and Eq.( 4.79), we
find that

T;,2 = ET1'2 (480)

Ti’:zAT]_'z - '.'.J (481)




Due to the definition of the transformation matrices, L is found to be related to S

through
L = T;!ST, (4.82) |

or, equivalently, S = T,LT;!. In what follows, we first show that L is real. By taking
the complex conjugate of the Eq.(4.82), we have L* = (T$)-'S*T} = T{'ESET, =
L, which means that L is real. Here we have used Eq.( 4.80) and we have also
used the fact that XS = S due to Eq.( 4.76). We next prove that L satisfies the
symplectic condition if Eq.( 4.77) is satisfied by S. To show this, we substitute |
S = T,LT;? into Eq.( 4.77), and then obtain L*T{AT,L = T+AT,, which leads
to the symplectic condition L*JL = J due to Eq.( 4.81).
In summary, Eq.( 4.73), Eq.( 4.76) and Eq.( 4.77) are the three conditions
" which must be satisfied by S. In what follows, we will derive S according to these
three equations. However, before proceeding we first examine the number of the
equations and the number of the unknown variables. According to Eq.( 4.76), we
have a total of 4n? unknown variables that need to be solved from Eq.( 4.73) and
Eq.( 4.77). In order to see how many equations are implied by Eq.( 4.73), we make
use of the S given by Eq.( 4.76), and find that

N M
SthS =
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Here M and N are n X n matrices:

M = A'NB'+BtM*A*

N = A'NA+B*M*B.

One may easily check that M = M and N* = N. Since SthS must be diagonal,
we have n? — n equations from matrix N and n? + n equations from matrix M. For
equation ( 4.77), again we make use of the S given by Eq.( 4.76),and find that

AAt —B*Bt ABT —B*A'
SASt =

BAt — A*B* BBt — A*A*

Notice that the matrix on the right hand side is hermitian and we have »? equations
from condition AAt — B*B* = 1 and we have n? — n equations from condition
AB* — B*A?. So, totally we have (2 —n)+ (r2 +n)+n? +(n?—n) =4n? —n
equations and we have 4n? unknowns, which means that we have n free choices
left over. As we will see, these n free choices corresponds to the n phases of the
eigenvectors of matrix K = Ah.

We now proceed to calculate S according to Eq.( 4.73), Eq.( 4.76) and
Eq.( 4.77). We start with the following observation. From Eq.( 4.77) we have
St = (SA)!A = AS~'A. Substitution of this result into Eq.( 4.73) yields a diago-
nal matrix AS"'AhS. This shows that matrix K = Ah is diagonalized by S since A
is diagonal. Note that strictly speaking h is not diagonalized by S because 7;’s are
not the eigenvectors of h. This observation proves that matrix S may be constructed

by the eigenvectors of matrix K:

S= (111)7?2) M My Mty " '7]2n) (483)
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where mi(l = 1,2, - -,2n) are the eigenvectors of K. In order to confirm this conclu-

sion, we proceed to show that such S also satisfies Eq.( 4.76) and Eq.( 4.77).

We first show that the eigenvalues of K are real. We begin with the eigenvalue

equation
K = wm (4.84)
Multiplying the both sides of above equation by ni A yields
nihy = win] Any

which shows that the eigenvalue w; is real because both nthay and 7" Am are real
due to the Hermitean property of matrix h and A.
We next show that the eigenvalues occur in pairs. We notice that the form

of h given in Eq.( 4.76) is spécia.l and satisfies

01
Th =h" X =
10
which yields
K-=-3K*'X

Substituting this equation in Eq.( 4.84), then after taking the complex conjugate on

both sides , we are left with
K(Zm) = —w(Zm)* (4.85)

where identity ¥ = 1 has been used. Thus —w; is also a eigenvalue with eigenvector

(Zm)*. To be specific, we set wyyn = —w; and gy = By for I =1,2,3,---,n. Then
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Eq.( 4.83) becomes

S = (7]1: [/ TR T 27];: 27];: Ty 27];) (486)

which obviously satisfies Eq.( 4.76). According to Eq.( 4.86), we have §;; = nf,-'.),
where ng-i) is the tth component of the jth eigenvector. Finally, we show that S given
by Eq.( 4.86) satisfies Eq.( 4.77). We take the Hermitian conjugate of Eq.( 4.84),

yielding:
nthA = winf

where we have used the fact that ht = h. Furthermore, multiplying above equation

by Anp and inserting 1 = AA between n,f and h, we have:
(wi — wr)(nf Aque) = 0 (4.87)

where the eigenvalue equation for m: Kqp = wpn has been used. We assume that

matrix K is nondegenerate, then Eq.( 4.87) implies that

A = nf Ambu
* which leads to Eq.( 4.77) provided that the normalization condition
o Ame = A

is satisfied.
Finally, in the (e, e*) representation, S~'KS is diagonal with the diagonal elements
Wy, Wa, ¢+ e, —wh, —W,, ¢, ,—ws, and h becomes SthS = A(S™'KS), which is

also diagonal with the diagonal elements wy,wy, - - -,wn, w1, Wa,, *, *,wn and then the



Hamiltonian take the following form.

H = ije;-'ej (488)
i=i

The final new canonical variable can be constructed in terms of (e, e*) through
Eq.( 4.70 ) with (g;,p;) replaced by (@;, P;) and w; replaced by w;. Also, by writing
(e,e*) in terms of (Q;, P;), we find that Eq.( 4.88) becomes Eq.( 4.69). Evidently,
the time evolution of (@;(2), P;(t)) ié a linear superpositions of the three simple har-
monic oscillators determined by Eq.( 4.69). The particle’s trajectory (g;(t), pi(t))
can thus be obtained from Eq.( 4.68) with L given by Eq.( 4.82) and the particle’s

motion is then completely solved.
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