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Abstract of the Dissertation

Temperature Equilibration and

Many-Particle Adiabatic Invariants

by

Shi-Jie Chen

Doctor of Philosophy in Physics

University of California, San Diego, 1994

Professor Daniel H.E. Dubin, Chairman

The temperature equilibration of single-species plasmas is investigated in both weakly

and strongly correlated limits. The correlation strength of a plasma is determined by

the correlation parameter F = q2lakT, where q is the charge, T is the temperature

and a is the inter-particle spacing. Strong correlation corresponds to I' > 1 and weak

correlation corresponds to I' < 1.

For each equilibration process that is investigated, a many-particle adiabatic

invariant limits the equilibration. The first process examined is the equilibration

of spin temperature with kinetic temperature in a weakly correlated pure electron

plasma in the strongly magnetized limit, where the distance of closest approach is

large compared to the Larmor radius. In this limit, the spin precession frequency is

large so the component of spin along the magnetic field is an adiabatic invariant which

is broken only by resonant magnetic fluctuations at the spin precession frequency. In

this case, we find that the most important spin flip mechanism stems from electron-

electron collisions in a spatially inhomogeneous magnetic field. Such collisions cause

pciv



an exchange of spin and cyclotron quanta, and consequently the conventional many

electron adiabatic invariant (i.e. the total number of cyclotron quanta) is broken and

is replaced by a new adiabatic invariant, equal to the sum of the spin and cyclotron

actions. A quantum Boltzmann equation is derived to describe the equilibration

process.

The second process studied is the temperature equilibration of an ordered

Coulomb chain of ions, where the charges have been cooled into the regime of strong

correlation 1. We calculate the rate of irreversible energy transfer between

the transverse and parallel degrees of freedom in the strong transverse confinement

limit. In this limit, the transverse motions are much higher frequency than the

parallel motion, and so the total action of the high frequency transverse motion is

approximately a many-particle adiabatic invariant. Only when this adiabatic invari-

ant is broken can thermal equilibration occur. We find that Coulomb collisions can

couple the perpendicular to the parallel degrees of freedom and cause a breaking of

this invariant,leading to an exponentially small equilibration rate.

The third process calculated is the equipartition rate between parallel and

perpendicular motion of a single species plasma which is not only strongly magne-

tized, but also strongly correlated so that the plasma is crystallized. In this case,

we classify the crystal's collective modes into three branches: a cyclotron mode, a

plasma mode and aExB drift mode. We find that the total action of the cyclotron

modes is an adiabatic invariant, which can be broken via the resonant coupling be-

tween a single (high frequency) cyclotron mode and many (low frequency) plasma

modes, leading to the equilibration between the parallel and perpendicular temper-

atures. We calculate the rate for this process and find that the rate is exponentially

small and is an oscillatory function of the magnetic field orientation with respect to

the crystal structure.
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Chapter 1

General Introduction

1.1 Overview

This thesis addresses the role of many particle adiabatic invariants in the tem-

perature equilibration of single-species plasmas. Three specific examples are studied.

Chapter 2 presents the calculation of the rate of spin temperature equilibration in a

strongly magnetized and weakly correlated pure electron plasma, Chapter 3 presents

the calculation of the rate of the temperature equilibration of a one-dimensional

Coulomb chain and Chapter 4 presents the calculation of the temperature equilibra-

tion in a strongly magnetized single species crystallized plasma.

These calculations have several features in common. First, in all three cal-

culations, the plasmas consist of a single charge species, i.e., they are nonneutral

plasmas. In experiments confinement times of several hours to several days have

been achieved 01 for nonneutral plasmas, so states of confined thermal equilibrium

are possible. This unique property of nonneutral plasmas provides an experimental

opportunity to test our temperature equilibration calculations. Another significant

difference between neutral and nonneutral plasmas is that nonneutral plasmas can

be cooled to very low temperature without the occurrence of recombination. When

le7" drops below q2 la, where q is the charge and a is the distance between neigh-

boring charges, the plasma becomes strongly correlated and as the temperature is

1
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reduced, one expects the plasma to become a liquid and then a crystal. This second

property of a nonneutral plasma makes the experimental test of our calculations for

the strongly correlated plasma possible.

Second, our three calculations have an essential feature in common, that is,

the temperature equilibration is limited by the existence of an adiabatic invariant.

Generally, an action J which is canonically conjugate to an angle variable 0, where

varies on a timescale faster than any other timescales in the system, is an "almost

constant of motion" and this approximate constant is called an adiabatic invariant.

If J is an adiabatic invariant, then on a short timescale during which J is well

conserved, the (partial) equilibrium distribution of the system has the form

D = rie-PH-Ra

where H is the total energy of the system and 2,a,f3 are constants related to the

temperature and the total number of particles. In order for the system to approach

the thermal equilibrium state, which is described by the distribution D = ATle-0°11

with (30 lIkT and T is the equilibrium temperature, the adiabatic invariant J

must be broken. However, as a general characteristic of the breaking of the adia-

batic invariant, dJ/dt is exponentially small and scales as exp[-4)1e], where is an

algebraic factor determined by the dynamics, and where the adiabaticity parameter

E, which equals the ratio between the fast timescale and the slow timescale of the

dynamics, is small compared with unity. As a result of the exponentially small rate

for the breaking of the adiabatic invariant, the time for the temperature equilibration

is expected to be exponentially long as a function of e. Here we see two very different

timescales during the temperature equilibration process : on a short timescale, J is

well conserved and the partial equilibrium with the distribution function described by

Eq. (1.1) is established; on a exponentially long timescale, the breaking of J occurs,
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causing the system to equilibrate toward the final thermal equilibrium. Obviously

the overall temperature equilibration time is mainly determined by the second pro-

cess. In Chapter 2, Chapter 3 and Chapter 4, we calculate this exponentially small

rate of temperature equilibration for three specific processes.

In Chapter 2, we present a calculation of the equilibration rate of spin tem-

perature in a pure electron plasma, where the plasma is assumed to be weakly corre-

lated, i.e., I' g2/akT << 1. Furthermore, the plasma is in the strong magnetization

regime where the cyclotron radius rL is small compared with the distance of the

closest approach t = 2g2 /kT. Supposing that initially the plasma has a temperature

associated with the distribution of electron spins, which is different from the per-

pendicular kinetic temperature T1 and parallel kinetic temperature T1, we determine

the rate at which T,, TH and 71 should relax to a common value.
11 x._ geB

The spin temperature T, is defined by — = ln —, where = 
T, x+ 2mc'

g = 2.002 • •• is the Lande g factor, x+ and x_ are the concentrations of electrons

with spin up and spin down respectively. Spin up and spin down are defined in terms

of the electron spin vector s: sz = s • B/IBI = +h/2. where B is the magnetic field

vector. In order for the spin temperature to equilibrate, processes which flip the

electron spins must occur. In order to understand the spin-flip process intuitively,

it is useful to consider a classical model of the spin dynamics in which the quantum

spin is regarded as a classical magnetic moment. In a magnetic field, the direction of

the magnetic moment precesses around the magnetic field line at the spin precession
eB 

frequency 12,, = Sle, where ft= i— s the electron cyclotron frequency. In the
me

regime of strong correlation, 14 is large and hence sz is an adiabatic invariant. In

order to flip the spin, this adiabatic invariant must be broken. We found that,

except for collisions with neutrals, which are negligible in cryogenic experiments, the

only way to break the adiabatic invariant is through the coupling with a fluctuating
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magnetic field 8B(t). Furthermore, it is the Fourier component of 8B(t) at frequency

equal to the spin precession frequency flp that causes a spin flip.

The spin flip Hamiltonian can be written as 8Hof =  
eg

2ntc
s • 8B(t). When

6B(t) is associated with an electron's orbital motion, the coupling between spin and

8B(t) leads to an energy exchange between spin and orbital degrees of freedom, caus-

ing energy equipartition for the system. After examining several mechanisms that

couple the spin and kinetic degrees of freedom, we found that the dominant spin flip

process is an electron-electron collision in a spatially nonuniform B field. The basic

idea for this collisional depolarization is the following. As an electron moves in a

nonuniform magnetic field, in its rest frame the electron sees a time varying perturb-

ing magnetic field 8B, which to the lowest order of the inhomogeneity, has the form

8B(t) r(t)• VB, where r(t) is the position of the electron. Therefore, the spin flip

is driven by the resonant component of r(t) at frequency Op. Notice that the elec-

tron's g factor is almost equal to 2 and so the electron's cyclotron motion has almost

the right frequency to cause resonance. However, Qp — fie = (-
2 

— 1)11c 0.0011le is

still a large frequency for a strong magnetic field, and thus a perturbation of the

cyclotron motion must occur to make up the frequency difference and cause a reso-

nance. In the regime of strong magnetization, we found that such a high frequency

can be introduced in an electron-electron collision.

An electron-electron collision in a strongly magnetized plasma is quite differ-

ent from conventional Rutherford scattering. The cyclotron radii for the two colliding

electrons are small compared to distance between the electrons, and the electrons

spiral toward and away from each another along tight helical orbits that follow field

lines. During each collision, the cyclotron motion suffers a small time varying phase

shift 88(t)121, which varies at a characteristic frequency 0(v11 /b), and the cyclotron

orbit is thus of the form rLei(fict+60(0) irL80(t)einet. Here, vit is the initial
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parallel velocity between two electrons and b is the distance of the closest approach.

Here, we may see that the term ri,80(t)einct , which has a characteristic frequency

C/c 0(v11/b), can be in resonance with the spin precession frequency, causing a kick

in the spin direction during each collision. Over many uncorrelated collisions the

spin direction gradually diffuse in a random walk, leading to spin depolarization.

Based on this physical picture, for Iflp —ILl < o(vi1 /-6), we estimated that

the spin flip probability amplitude I Ac I scales as

AO  gle
°IL fip _ fze (1.2)

where 1), rL are the averaged values, L is the scale length of the magnetic field

inhomogeneity, and AG is the change of the 80(t) during a collision, which is roughly

on the order of the small parameter t tii/bric. After many collisions, the spin

depolarization rate is given by vipin r•-• i'4a,e12, where vc = rniA2 is the collision

frequency. For Ill,, —11.1 > 0(v/1/19), we will see that the rate becomes exponentially

small.

The problem of spin relaxation in plasmas has not received much attention.

It was only recently that this problem was considered for fusion plasmas131. The

motivation there was that the cross-section for D-T reactions is enhanced when the

reacting nuclei's spins are aligned, and so an increase of the fusion power output

is achieved if the plasma ions are spin polarized. It was found that, except for the

effect of plasma waves, collisional depolarization in an inhomogeneous magnetic field

is also the dominant depolarization effect in fusion plasmas. However, the collisional

depolarization effect in fusion plasmas is quite different from that for a strongly

magnetized pure electron plasma. For collisions in a fusion plasma, the timescale on

which the orbit changes, or the effective duration time of collision, is much shorter

than the gyroperiod. So the detailed dynamics of an individual collision, which
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may be termed an "impulsive" random kick, is expected to be unimportant and

consequently it suffices to take M 2r in Eq.(1.2). On the other hand, in a

strongly magnetized plasma, 1-2 1 < Will and thus during the effective duration time

of collision the electron gyrates over many cycles and M is small. Evidently, the

detailed collisional gyrodynamics is important for the determination of this change

during a given collision.

In Chapter 2, we first calculate the spin temperature equilibration rate vspin in

the classical limit kT >> Me. We find that for > 0.001, ',spin r•-i 1.5 x 104ve(efaL)2.

For a typical plasma density of 108cm' and B = 10kG, this implies that the mag-

netic field inhomogeneity must satisfy L(cm) < 7.15T5/4(K) in order for tcplin to be

less than the plasma confinement time, which is typically on the order of 105.sec.

However, we must point out that in the classical limit, the kinetic energy is

assumed to be large compared with the spin energy hilp and so the kinetic energy

behaves like an infinite heat reservoir supplying energy to flip spin. In this case, the

orbital state of the electron is not affected by the spin flip and thus the spin flip

transition from 1+ > to I— > and from 1— > to 1+ > have an equal probability. This

implies that a thermal equilibrium state is reached only when the number of electrons

with spin up equals the number of electrons with spin down, which corresponds to an

infinite spin temperature. Therefore, we can not rely on the classical process to reach

thermal equilibrium and we must treat the orbital motion quantum mechanically.

In fact, the parameter regime of strong magnetization is quite unusual. For

711 T the condition for strong magnetization fr, < b, can be written as

T(K) < 10013213(T esla), which requires a strong magnetic field and a low temper-

ature. When B is sufficiently strong and 7I1 is sufficiently low such that kT <

a quantum mechanical treatment is necessary. In this case, not only the cyclotron

energy is quantized as Ej, = (n 1/2)h12e, where the non-negative integer n is the
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quantum number of the Landau levels, but also spin flip would cause an appreciable

change in the orbital state. Specifically, when spin is excited from 1— > to 1+ >

state, the spin energy is increased by an energy quanta hap and this amount of en-

ergy is supplied by the cyclotron energy (hilc) and the parallel energy (h(1/ —

Consequently, n is decreased by unity while sz is increased from —h/2 to h/2. Simi-

larly, for the opposite process, ii is decreased by unity while sz is flipped from h/2 to

—h/2. This type of energy exchange between the spin the kinetic degrees of freedom

is crucial to cause spin temperature equilibration.

The result of the quantum analysis shows the equilibration rate TB/TB is

proportional to

[1 e— tle±k " )  
h

P ckT
pa [ [  ilc /2k71 

sinh(h1/2k71)J.

ht2c /2k71 ,
Here we note two important quantum effects. First, the term [Isinh(hitc/2kTj )i
introduces a notable suppression in the rate when kT << hit,. This is because

almost all the electrons stay at the ground state of the Landau level in this case and

they are forbidden to further give up energy to excite the spin flip. Second, in the

thermal equilibrium state, TB/TB = 0, we have

hap hOlp — 12e) (1.3)
kT, k71+

Certainly we can not conclude that T, = T1 = TH from Eq. (1.3). This implies

that the spin flip collisions which we calculated can not drive the system toward a

common equilibrium temperature, rather, it only drives the system toward partial

equilibrium with temperature satisfying Eq. (1.3). The physical reason for this can

be understood as follows. When spin and and orbital dynamics are decoupled, both

sz and cyclotron quantum number ii are adiabatic invariants. However, when spin

is coupled to the orbital dynamics, the invariants sz and n both are broken. In the
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mean time, the exchange between spin and cyclotron quanta leads to a new adiabatic

invariant, which equals to the total action of spin and cyclotron motion: sz nil.

Furthermore, one can generalize this new adiabatic invariant to a many electron

adiabatic invariant IL( N) = E(S zi nih), where the sum is over all the electrons.

Substituting J = µ(N) into Eq. (1.1), one may easily obtain Eq. (1.3) by rearranging

the terms in the exponent.

In order for the complete equilibration to occur, the invariant Ii(N) must

be broken. One of the most important collisional p(N) - breaking processes is that

involving collisional perpendicular and parallel energy exchange without spin flip,

which has been discussed in another paper. For a weakly inhomogeneous field, this

kind of p(N) -breaking collision is the dominant mechanism and these p(N)breaking

collisions cause equilibration between T1 and To on a relatively fast timescale. If one

assumes that T1 = Ti during the spin-kinetic temperature equilibration process the

condition T1 = = T, follows directly from Eq. (1.3).

The spin temperature equilibration is an important fundamental transport

process in nonneutral plasmas. Besides the intrinsic interest of this problem, it

also has several important practical applications. For example, according to our

calculation, the temperature equilibration rate depends on the scale length L of

the magnetic field inhomogeneity through L 2. In the experiments, L ranging from

10cm to 103cm can be easily achieved by confining the plasma at different distances

from the end of the solenoid which produces the confining magnetic field. This

suggests that the rate at which the electron spin temperature approaches the kinetic

temperature can be relatively easily controlled. If this rate is reasonably fast, it might

be possible to use a measurement of the plasma spin polarization as a thermometer for

the kinetic degrees of freedom. Since the electron spin distribution becomes polarized

as kT falls below h,f2e, measurement of the degree of polarization of the electron spins
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could indirectly provide the kinetic temperature in a range of temperature on the

order of h110/k. For B 10 — 60kG, this temperature is on the order of 1K, which

is over an order of magnitude below the minimum temperature which have been

measured using current techniques.

On the other hand, if the temperature equilibration rate is slow, one may

use the spin of an electron as a tag in order to perform various test-particle mea-

surements. For example, one might place a small sub-population of the plasma in

the opposite spin state from the bulk of the plasma, and follow this population's

subsequent dynamics in order to evaluate test-particle spatial and velocity diffusion

coefficients.

We now turn to the problems discussed in Chapter 3 and Chapter 4. First of

all, we note that the plasmas discussed in Chapter 3 and Chapter 4 are completely

different from that discussed in Chapter 2, which is weakly correlated. In Chapter 3

and Chapter 4, the plasmas are in the strongly correlated regime, where the correla-

tion parameter I' elakT, is much larger than unity, where q is the charge, a is the

inter-particle spacing and T is the temperature. Compared with a weakly correlated

plasma, there are some rather distinctive properties for a strongly correlated plasma.

For example, as I' increases, the plasma undergoes a transition from a gas-like state

in the weakly correlated regime to a liquid and even crystallized state in the strongly

correlated regime[51. Furthermore, as the condensed state is formed, the particles

interact with each other collectively rather than via binary collisions. These features

determine that the dynamical process causing the temperature equilibration is very

different from that for a weakly correlated plasma.

We first discuss the problem studied in Chapter 3— temperature equilibration

of a one- dimensional Coulomb chain. The one-dimensional Coulomb chain is a 1D

form of condensed matter, consisting of charges of a single species trapped in a linear
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configuration through the application of strong external magnetic and/or electric

fields. In at least two of the recent experiments, where the technique of laser cooling

or electron cooling was applied to the trapped ions, the formation of one dimensional

Coulomb chains has been observed(6M71. In one of the experimentsM ions are trapped

in a linear Paul trap, where ions are held together against their Coulomb repulsion

by an external radiofrequency field, while in the other experiment, a Paul trap

in ring configuration has been used to trap a toroidal cloud of ions. In addition,

it was predicted that an ordered Coulomb chain may also be realized in a storage

rine, where ions are confined by a external magnetic quadrupole field. For all these

experiments, ions are attracted to the chain axis by an external potential of the form

- trico,?r2, where r is the distance from the axis and cv,. is the (large) radial oscillation

frequency.

The motivation of our investigation of the temperature equilibration of the

1D Coulomb chain is the effort to obtain a cold, quiescent chain and a low emittance

ion source, which is highly desirable for high precision atomic physics and high en-

ergy physics experiments. In the experiments, when laser cooling or electron cooling

is applied along the chain axis, TH, the temperature associated with the longitudi-

nal motion is cooled, but the temperature associated with the transverse motion,

T1, is not cooled. TL can only be cooled through Coulomb collisionsE91, where the

perpendicular energy is scattered into the parallel energy, which is removed by laser

cooling or electron cooling. In this case, the overall cooling rate depends on the rate

at which T1 equilibrates with TH.

We calculate the rate v at which T1 and T0 relax to thermal equilibrium in the

strong focusing limit, where parameter e = coo / cor is much smaller than unity. Here

cao Vq2/ma3 is the characteristic frequency of the longitudinal plasma oscillation.

For large I', the collective interactions between ions can be well described by the
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emission and absorption of phonons. In the ideal phonon limit, the ion's motion

can be described by N longitudinal eigenmodes at frequency of order wo and 2N

transverse modes at frequency approximately equal to co,. In this case, the inequality

E < 1 implies that the transverse motion of ions is of much higher frequency than

the longitudinal motion. Therefore, one may expect that the total action, or, the

total quanta, of the transverse phonons is an adiabatic invariant. In order for the

temperature equilibration to occur, this adiabatic invariant must be broken.

We find that the adiabatic invariant is broken by the anharmonic terms in

the ion-ion interactions, which cause phonon-phonon collisions. The basic idea is

as follows. According to the law of the conservation of energy, Ern LoW = E. (41),
where cog) is the frequency of the rnth initial phonon and coW) is that of the nth

final phonon. We may then classify the phonon collisions into two types. The first

type of phonon collisions conserve the adiabatic invariant while the second type

of phonon collisions break the adiabatic invariant. For the first type of collisions,

the number of (high frequency) transverse phonons are conserved. This type of

phonon collision may involve only a small number of phonons and thus is a low-

order process, which has a large rate. On the other hand, during the second type

of phonon collision, the number of (high frequency) transverse phonons is changed

before and after collision. In this case, since wo < (.44., annihilation (creation) of

one transverse phonon requires creation (annihilation) of M 0(1/0> 1 parallel

phonons and thus the collision is of high-order, which has an exponentially small

rate. Due to these two types of collision, the overall temperature equilibration can

be thought to evolve in two stages. On a short timescale, the first type of collisions

dominate and the energy equipartition occurs between parallel phonons and between

transverse phonons, causing the distribution of parallel and transverse energy to relax

to Maxwellian distributions described by unequal temperature TH and T1 separately.
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However, the evolution does not stop at this stage. On a long timescale, the adiabatic

invariant is broken due to the second type of collisions, which cause the temperature

equilibration between transverse and parallel degrees of freedom.

In Chapter 3 in order to obtain the rate of the breaking of the adiabatic

invariant, we calculate the rate for the lowest-order process of the second type of

phonon collisions, that is, two high frequency transverse phonons decay into many

low frequency parallel phonons. The transverse phonons are destroyed in pairs be-

cause of the symmetry of the Hamiltonian. Our result shows that for sufficiently

small e and sufficiently large r, the rate v(e, r) scales as exp[-2(70 —1)1 e— \121"lictol,

where oto = (7/8 + 1inc)2ir11,n V7C(3), q2/ak711 and 70 at' 7 + (ln -y)/2y, -y

in 2/eao]. Here we see that v(e, F) is exponentially small as we expected.

Our calculation also shows that in order for the harmonic approximation to be valid,

we must require ail > 1. To understand this condition, we notice that large parallel

displacements are desirable in order to obtain a large adiabatic invariant breaking

rate because large displacements yield large anharmonic interactions. However, such

large displacements are improbable for low temperature and the competition be-

tween these two effects causes the rate to be dominated by parallel displacements

with a peak at a/ Vero. To ensure the harmonic phonon approximation is valid, we

must require al feT < a, i.e., ail > 1. Another important validity condition for

the harmonic approximation is 1"1 > e2r1"11, where 1"1 = e/akT_L. This condition

guarantees that the parallel force induced by the transverse motion, which is propor-

tional to the square of the transverse displacements, is small compared to the linear

restoring force.

A striking feature of the equilibration rate v(e, F) is the abrupt steps at

integer ratios between frequencies 2to, and the maximum parallel phonon frequency

= nwo. This is because a phonon-phonon interaction which creates or annihilates
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two transverse phonons and M parallel phonons can only occur if Mcam > 2co7, or

2/77c < M. When 2/ne exceeds this value the process no longer contributes and the

rate decreases abruptly. For very large E-1 these steps are smoothed out and finally

disappear because the rate is then determined by many high order processes, each

of which has a small effect when taken individually.

In fact, the temperature equilibration rate of a 1D Coulomb chain has been

examined via numerical simulations1161. However, the validity conditions for the

harmonic approximation are not fully satisfied in that work. In particular, the con-

dition >> e2X1 is not satisfied and the transverse displacement is not small,

which causes a nonperturbative driving force of the parallel motion. This makes a

detailed comparison between that calculation and the present analysis not possible.

Nevertheless, Ref[1O] does document a decrease in the rate as c decreases. We also

note that in the actual experiments, other mechanisms, such as scattering with gas

molecules or heating due to the r.f. micromotion in the trap, may contribute to the

equilibration process in a real Paul trap or storage ring.

In addition, when the ion chain is confined in a ring configuration, it will

be bent and in this case, the symmetry of the Hamiltonian is changed, causing a

process where one (instead of two) transverse phonon decays into M/2 (instead of

M) parallel phonons. Therefore, the rate vi for this process is expected to be on
a

the order of —a v(2e, 1), where R is the curvature radius. When —
R 

is not sufficiently

small, the curvature effect may play an important role. For example, the circular

Paul trap experimentsE61 a n. 5inn and R lcm. so —a 5 x 10-4. In storage ring

experiment?', typically a lpm, R

negligible compared with v, and in linear

lm and —a •-•-, 10-6 is so

Paul trap experiments[71

small that lis is

= 0.

We now turn our attention to the problem discussed in Chapter 4 — the per-

pendicular to parallel temperature equilibration of a crystallized single species plasma
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in the strong magnetization limit, where the cyclotron frequency lie is large compared

to the plasma frequency Wp. As we have mentioned, when a plasma is cooled to an

extremely low temperature at sufficiently high density, the plasma becomes strongly

correlated and furthermore, the strong correlation causes the formation of liquid and

even crystallized structures. Theoretical calculation has predicted that a first-order

phase transition should occur from a liquid to a body-centered-cubic (bcc) crystal

at I' _eL-E 172 for an infinite homogeneous one component plasma. Moreover, recent

experiments have trapped a cloud of 102 — 104 ions at a sufficiently low temperature

so that the correlation parameter I' is largetill. In this regime the system becomes

strongly correlated and the transition to spatially ordered states has been observed.

However, it is important to note that in the actual experiments, the number

of ions are relatively small so that surface effects may play an important role. Sim-

ulations involving these relatively small number of ions predict that the ion cloud

will separate into concentric spheroidal shells[12]. This prediction has been verified

in experiments[11I. In this case, instead of a sharp phase transition, the system is

expected to evolve gradually from a liquid state characterized by short-range order

and diffusion in all directions, to a state where there is diffusion within a shell but no

diffusion between shells (liquid within a shell, solidlike in the radial direction), and

ultimately to an overall solidlike state. Therefore, the temperature equilibration for

the system can not in general be predicted by that for a perfect bcc crystal. How-

ever, in order to gain a physical insight for the temperature equilibration process, we

chose a simplified model where the plasma consists of randomly oriented local bcc

lattice structuresM. As one may expect, the temperature equilibration process is

dominated by the nearest neighbor interactions. This fact allows us to evaluate the

temperature equilibration rate for the system by averaging the equilibration rate of

a local crystal over randomly varying crystal orientations, or, equivalently, averag-
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ing over the randomly varying magnetic field directions with respect to the crystal

structure.

Specifically, the problem proposed in Chapter 4 is as follows: Suppose initially

the plasma is characterized by unequal temperature Ti and T0, where Ti and T1

are the temperature associated with the motions perpendicular and parallel to the

magnetic field respectively. We calculate the rate at which 71 and T1 should relax

to a common value.

This equilibration rate has been investigated by O'Neil and Hjorth141 for a

weakly correlated and strongly magnetized plasma where the equilibration is driven

by binary collisions. In that case, the cyclotron frequency is larger than the charac-

teristic frequency Loll of the collisional dynamics, which is on the order of v0/b, where

v11 is the relative parallel velocity and b is distance of the closest approach. This

large frequency separation implies that the sum of each individual cyclotron action

is an adiabatic invariant. Due to the existence of this adiabatic invariant, the equili-

bration rate is an exponentially small function of 1/el, where ei = L'11/2. << 1 is the

small adiabaticity parameter. Specifically, the exchange of perpendicular cyclotron

energy and parallel energy that occurs during a single collision was found to be onn

the order of e-rMel, and after many uncorrelated collisions, an average of c-

w

over a Maxwellian distribution yields the equilibration rate exp(-2.04M2/5),

where el is the average of e. However, in the strongly correlated regime, particles

interact collectively with each other and 1/w11 is characterized by the collective time

scale associated with the slow parallel oscillation, which is on the order of cc'. Cor-

respondingly, el is replaced by e ceplfIc <1. In this case, we find that for an > 1

the equilibration rate v exp[—(1+ lner 11)1 Here, r11 q2 I akTo >> 1 and thus

e = 1'ilV6r11e1 >>el, which implies that v > v1. Therefore, in the regime of strong

correlation, the rate due to collective interactions that we calculate here is much
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larger than that predicted by the binary collisional equilibration rate.

In the regime of strong correlation, particles interact with one another col-

lectively. In this case, the eigenmodes for the crystallized plasma can be classified

into three branches with very different frequency regimes, namely, N perpendicular

cyclotron modes with frequency on the order of ft, N parallel plasma oscillation

modes with frequency on the order of cop and NE xB drift modes with frequency

on the order of 4/11c. The. condition of strong magnetization implies the ordering

lit > cap > cap2/1/e. Furthermore, since the E x B drift modes have much smaller

frequencies than the other modes and the amplitude of the drift modes are small

compared with the inter-particle distance, we may neglect the contributions from

these modes to the temperature equilibration. We can now easily see the strong

similarity between this 3D magnetized problem and the 1D Coulomb chain problem,

where ca,. assumes the role of gic in the present problem. By analogy with the 1D

Coulomb chain problem, we expect that the total action (quanta) of the cyclotron

modes (phonons) is an adiabatic invariant and the breaking of this adiabatic in-

variant leads to an exponentially small equilibration rate as a function of the small

adiabaticity parameter E cop/fic. However, despite the similarities between the 1D

and 3D problems, in what follows, we emphasize that there are distinctive features

of the 3D problem.

One of the most distinctive features is that the abrupt steps in the equilibra-

tion rate of a 1D chain now disappears for the 3D plasma. This can be understood as

follows. As we have mentioned, the rate is dominated by the processes involving large

frequency parallel phonon modes. For a 1D chain, the largest parallel frequency

occurs at the shortest wavelength mode with k = 7r/a, which has a divergent density

of states proportional to 1/1k — —> oo, causing the abrupt steps in the rate.

On the other hand, for a 3D plasma the maximum parallel frequency tap occurs at
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the long wavelength modes with k —) 0, which has a density of states proportional

to k 0. According to energy conservation, a phonon collision which creates or

annihilates one cyclotron phonon and M 0(11e) plasma phonons can only occur

if M > 1ic/o.5,. However, as M —> flelw„, k —> 0, and the number of the plasma

modes --> 0, causing the abrupt steps to be smoothed out.

Another distinctive feature of the 3D problem is the dependence of the rate

v on the orientation of the magnetic field with respect to the crystal structure. This

dependence can be understood from the following physical picture. In the guiding

center limit, one may think of particle's motion as fast cyclotron motion in the

perpendicular plane and relatively slow oscillation in the parallel direction. In this

case, as a particle 1 oscillates slowly along the field line, it produces a slowly varying

perturbing electrostatic force 8f on another particle n. The perpendicular component

of bf, of WI sin Obi, where Oh, is the angle between the magnetic field and the

relative position for 1 and n, would modify particle n's cyclotron motion causing

a change of the cyclotron action, and leads to an energy equipartition at rate Liu,.

This type of interaction between different pairs of particles acts cumulatively and

leads to the breaking of the adiabatic invariant at a rate v = E741 vh,. The rate v1n

can be obtained by expanding the interaction Hamiltonian, keeping only the lowest-

order process, which corresponds to the annihilation of one cyclotron phonon into

M 0(11e) > 1 parallel phonons. In the e << 1 and >> 1 limit, we find that

vim depends on e and Oh, as

e-sieRcosOin)11€13-1 
1+116(cos 9in)]2

where P-1-1/6 (x) is the associated Legendre function of the first kind,1-1 

r2
ln[‘/r( 3 )2/3c05/2cr11] + 1,

(1.4)
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where co is a positive constant weakly dependent of the magnetic field direction. As

for the 1D case, here we see that the rate is exponentially small and in order to

make the result sensible, we must require the validity condition for the harmonic

approximation ail > 1 to be satisfied. Furthermore, as a unique property of the 3D

problem, v is an oscillatory function of Oh, shown by the Legendre function. Also,

v decays exponentially as Oh, increases due to the factor (cos 01 )*. Notice that

Pc+11/e(cos Bin) = 0 at Oi„ = 0. We therefore expect that the largest rate occurs at

small but nonzero Oht. Physically, this is easy to understand. In order to obtain a

large rate, a large parallel relative ion displacement is desirable. Furthermore, the

rate is dominated by the largest frequency plasma modes, which, as we will see,

are the long wavelength modes with wavevector k II B. In this case, the largest

parallel relative ion displacement obviously occurs at Gj, = 0. As an extreme case,

the relative ion displacement would vanish for Oh, = 7r/2. However, when Oh, —> 0,

8.f-L e. 1 61. 1 sin Om, —> 0. Therefore, we expect that the competition between the

tendencies of small and large Bin yield a peak in v at small but nonzero Oh., for large

1/E.

Finally, as a caveat, we must point out that in both Chapter 3 and Chapter

4, when calculating the rate of the breaking of the adiabatic invariant, we assume

that the particle's exact trajectory can be approximated by the unperturbed trajec-

tory determined by the harmonic Hamiltonian. The approximation of integration

along the unperturbed trajectory works well for a weakly correlated plasma. How-

ever, its validity in the strong correlation regime needs to be tested. In fact, when

the anharmonic terms become important, J can no longer be approximated by the

total action associated with the high frequency (perpendicular) harmonic motion.

Consequently, the constants a and 0 in Eq.(1.1) are not simply related to the per-

pendicular and parallel kinetic energies. Moreover, the particle's orbit is perturbed
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by the anharmonic interactions and in this case, the perpendicular and parallel mo-

tion can be thought of as nonlinearly coupled harmonic oscillators. This nonlinear

coupling will introduce a frequency shift which will effectively change the acliabaticity

parameter c, causing a change in the exponential of the rate for the breaking of the

adiabatic invariant. Also, this nonlinear coupling, if sufficiently strong, may cause

the parallel and perpendicular dynamics to become chaotic. This could produce high

frequencies in the parallel motion (due to, say, close collisions), and low frequencies

in the perpendicular motion (due to nonlinear resonances) which leads to strong cou-

pling between the parallel and perpendicular degrees of freedom. Presumably, such

effects are responsible for the relatively rapid equilibration rates observed in the

previous simulationsM, where the amplitude of the perpendicular motion is large

(r, <E2070. However, in the regime of nearly harmonic phonons discussed in this

thesis, we believe that the use of harmonic orbits, while not rigorously justifiable, is

a useful first approximation.

Chapter 2 of this thesis has been published in The Physics of Fluids[14].

Chapter 3 of this thesis has been published in Physical Review Lettersi").
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magnetic moment. (It is well-known that this classical picture is rigorously correct
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' electrons. In the regime of strong magnetization ap is large and hence the component

of the magnetic moment along the magnetic field is an Adiabatic invariant. In order

to flip the spin this adiabatic invariant must be broken. If collisions with neutrals

are neglected (and we will see that this effect is unimportant in Section 2.2), the only

way to break the invariant is through a -resonant fluctuation in the magnetic field

• (that is, a fluctuation at frequency Op in the electrons' rest frame. Electron cyclotron

motion in a spatially nonuniform (but time-independent) magnetic field is almost of
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Chapter 2

Equilibration Rate of Spin
Temperature in a Strongly
Magnetized Pure Electron Plasma

2.1 Introduction

Recent experiments have confined and cooled a pure electron plasma to cryo-

genic temperatures, T 1 — 102K, in a strong solenoidal magnetic field, B

10 — 60kG[11. This range of temperatures and magnetic fields places the plasma

in the novel regime of strong magnetization, in which the average distance of clos-

est approach t 262/k711 is large compared to the average Larmor radius ft, =

VkTiirain, (where e is the electron charge, T0 and Tj_ is the kinetic temperature

associated with the distributions of velocities parallel and perpendicular to the mag-

netic field, m the electron mass and (2, = eB I mc is the electron cyclotron frequency).

In this paper we consider a strongly magnetized pure electron plasma which

initially has a temperature associated with the distribution of electron spins, T,,

which is different from the kinetic temperatures Tii and 711. We calculate the rate

at which T,, T0 and 711 should relax to a common value. We assume throughout

that the plasma is weakly correlated (i.e. that nAt, > 1 where it is the density and

AD = VkT/471-6277, is the Debye length).

21
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After examining several mechanisms which couple the spin and kinetic de-

grees of freedom, we conclude that the dominant spin-flip process is an electron-

electron collision in a spatially inhomogeneous magnetic field. In the experiments,

the confining magnetic field is inhomogeneous due, among other things, to the finite

length of the solenoid. The degree of field nonuniformity can be controlled by con-

fining the plasma at different distances from the end of the solenoid. The ability to

control the rate of spin temperature relaxation may be useful in future experiments

which rely on measurements of the degree of electron spin polarization. Two such

experiments are briefly discussed in the conclusion of the paper.

In order to understand the spin-flip process intuitively, it is useful to consider

a classical model of the spin dynamics in which the spin is regarded as a classical

magnetic moment. (It is well-known that this classical picture is rigorously correct

if one considers the dynamics of the quantum expectation value of the spin opera-

tor.) The direction of the moment precesses around the magnetic field at the spin

precession frequency flp = gile/2, where g is the Lande g-factor, equal to 2.002... for

electrons. In the regime of strong magnetization Qp is large and hence the component

of the magnetic moment along the magnetic field is an adiabatic invariant. In order

to flip the spin this adiabatic invariant must be broken. If collisions with neutrals

are neglected (and we will see that this effect is unimportant in Section 2.2), the only

way to break the invariant is through a resonant fluctuation in the magnetic field

(that is, a fluctuation at frequency Op in the electrons' rest frame. Electron cyclotron

motion in a spatially nonuniform (but time-independent) magnetic field is almost of

the right frequency to cause such a fluctuation in the electron's rest frame since the

electron g factor is nearly equal to 2. However, Rs, — 0.001Qc is still a large

frequency and so cyclotron motion by itself is not enough to break the invariant,

and a perturbation of the cyclotron motion must occur which is of sufficiently high
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frequency to make up the difference and cause a resonance between the spin and or-

bital dynamics. In the regime of strong magnetization the only perturbation of such

high frequency is an electron-electron collision, which induces orbital perturbations

with frequencies of order tib, where #3 is the thermal speed.

In order to estimate the magnitude of the spin depolarization rate due to

electron-electron collisions in a spatially nonuniform B-field, consider a strong static

magnetic field Bi along with a small time varying magnetic field 613(t) in the elec-

tron's rest frame. This time dependent field is due to electron motion through the

spatially inhomogeneous but time-independent external magnetic field. We will es-

timate 5B presently, but for now all we need to assume is that for a time At

the timescale of an electron-electron collision, 8B(t) has a right-circularly polarized

component rotating at frequency w = Si,,. This component resonates with the spin

precession and drives a spin flip. The magnitude of this resonant component, 6BR,

will be given approximately by a sum over all temporal Fourier components of the

right-polarized part of 5B(t) with frequencies w satisfying lw — szpl < 2r/At:

(±‘ -
8BR ••••• Cli0 r 5B(41)

f 

ii)

lw -Op I <27/At v 2

where 613(w) is the Fourier transform of 8.8(t). The probability amplitude AC of

the spin flip is then given, in perturbation theory, by the angle through which the

spin precesses in time At due to this resonant field:

IAC1 eg 16BR1At.
2mc

Now, 6B(t) can be estimated for an electron executing cyclotron motion in a slightly

nonuniform magnetic field: 6B(t) r•-• p(t) • VB where p is a vector describing the

cyclotron motion: p(t) = it(cos(flet + 0)1 + sin(Dct + 0)0, where 9 is the constant

gyrophase. If one further assumes that the electron suffers a collision for which the
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impact parameter is large compared to the Larmor radius, we will see in Sec.(2.3)

that the most important effect is that 8 becomes a function of time, adding Fourier

components which bring 813(t) into resonance with the spin precession: 8 = 90+88(t).

Since 50(t) is small in such a collision, one can expand to first order in 80 to find

that the resonant magnetic field approximately

EBR B—, 
the

Aw-0,1<zwi At 2ir

where a is the Fourier transform of 50(t) and L is the scale length of variation

of B. Since 58(0 varies on a time scale of order at = LK), if one assumes that

(122, — 52)At < 1 this integral can be estimated as approximately

SBR rs B 
AtfLL 

64(S2
P 

— S24.

Furthermore, the magnitude of 8a(S2p — 1.24 can be estimated using dimensional

analysis of the integral expression for the Fourier transform:

lea(ap — 1201 = I dt849(t)e-i(nrac)t 1 — AO 1(12p — 12)

where AG is the total change in 58(t) during the collision, and again we have assumed

(12p — fic)At < 1. In this regime we show in Section 2.2 that AO is roughly on order

of the small parameter E fiztbilco, where fiz is the parallel relative thermal speed.

This parameter is the ratio of the frequency associated with a collision compared

to the cyclotron frequency. When E < 1 the plasma is in the strongly magnetized

regime. Using this estimate for AO, the spin flip amplitude is approximately

fLAO  efL  (2. 
I/SCHL lip —ft L —

(2.1)

Finally, over many uncorrelated collisions the spin direction gradually diffuses in a

random walk and the rate of spin depolarization is given by ',spin velACI2, where
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ve = nruL2 is the electron-electron collision frequency.

This estimate for the depolarization rate gives the proper scaling of the spin

depolarization rate provided that QP nei < ?DP), or e > g12-1 = .001. Fore < .001

we will see that vapin becomes exponentially small. This is because (S1, S2c)At

becomes greater than unity in this regime, so that AO becomes exponentially small.

Although there has been considerable previous work, both theoretical and

experimental, on the spin relaxation in neutral gases and solids, spin relaxation

in plasmas has not received as much attention. However, the problem has been

considered theoretically for plasma parameters of fusion interest. In this interesting

work[2] it was noted that the fusion cross-section for D-T reactions is enhanced when

the reacting nuclei's spins are aligned, and so an increase of the fusion power output

is achieved if the plasma ions are spin polarized. A calculation of the rate at which

the nuclear spins are depolarized by various effects was then carried out.

It was found that, except for the effect of plasma waves, collisional depolar-

ization in an inhomogeneous magnetic field is also the dominant depolarization effect

in fusion plasmas. However, although collisions give rise to spin relaxation effects

for both fusion plasmas and pure electron plasmas, the relaxation rates are quite

different in the two cases. For collisions in a fusion plasma, the time scale on which

the orbit changes, or the effective duration time of collision, is much shorter than

the gyroperiod and so the detailed dynamics of an individual collision, which may be

termed an "impulsive" random kick, is expected to be unimportant. In this case it

suffices to take AG 27r in Eq.(2.1), and then the relaxation rate given by Eq.(36) of

Ref.[ 2] is recovered. On the other hand, during the effective duration time of colli-

sion in a strongly magnetized plasma, the electron gyrates over many cycles. In this

case, there is only a small change of the gyrophase due to the Coulomb interaction.

Evidently, the detailed collisional gyrodynamics is important for the determination
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of this change during a given collision.

The collisional process considered here causes an exchange of spin and cy-

clotron energy, and consequently the many electron adiabatic invariant of O'Neil and

Iljorth[31 equal to the sum of the perpendicular kinetic energies Ei Eli, is broken.

However, as we will see this adiabatic invariant is replaced by a new N-electron

invariant equal to the sum of the spin and cyclotron actions:

Eit(N) =Ekiz ()] = canst.
ne xi (2.2)

where si, is the component of the spin along the magnetic field for electron i and

Ei/f/c(xi) is the cyclotron action. The conservation of tt(N) implies that this col-

lisional process cannot by itself drive the system to complete thermal equilibrium

and in general T. = = T1 will be the result. Rather, in Section 2.5 we obtain the

relation

1 (12 — 1) g 
'2—oTTII

(2.3)

which holds for the state of partial thermal equilibrium which is achieved after

many collisions which conserve APO. Of course, since g(N) is not an exact invari-

ant, electron-electron collisions occur which cause exponentially small changes in its

value. Because the spatial variation of the magnetic field is slow compared to the

Larmor radius of the strongly-magnetized electrons, almost all of these collisions are

of the type described by O'Neil and Hjorth in which the spin plays no role, and these

collisions cause Ti to approach TH according to the equations described in Ref.[ 3].

In turn, collisions considered in this paper which conserve wo cause T. to approach

the common value of 711 and TH [see Eq.(2.3) for T1 = TH], and hence a state of

complete thermal equilibrium is achieved. This is the qualitative picture of spin

relaxation which emerges from our analysis.
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In Section 2.2 we make order-of-magnitude estimates of various spin flip pro-

cesses, including spin flip due to the mutually generated magnetic field, radiative

transitions and interactions with background waves, Thomas precession, electron-

neutral collisions, and single particle electron motion through the inhomogeneous

B-field. We find that all processes except for electron-electron collisions in an in-

homogeneous B-field produce depolarization time scales which are longer than the

plasma confinement time of approximately 105 seconds, provided that neutrals with

partially-filled valence shells, such as N2, are kept at pressures below •-•.• 10' Torr

(this is a reasonable upper bound in the cryogenic environment of the present ex-

periments). In the regime Me < k71 and > .001, we find that spin depolarization

rate is vspin = 1.5 x 104vc(E-FL/L)2. For a typical plasma density of 108cm-3 and

B = 10kG, this implies that the B-field inhomogeneity scale length L must sat-

isfy L(cm) < 7.15715/4(K) in order for ve-plin to be less than the plasma confinement

time. In Section 2.3 we present a calculation of the spin flip transition rate due to

electron electron collisions in a weakly inhomogeneous magnetic field assuming that

the orbital motion can be treated classically (that is, assuming that the electron's

kinetic energy is large compared to Mc). This calculation improves the estimate for

vapin given by Eq.(2.1), extending it to cover the range E < 0.1. In Section 2.4 the

calculation is repeated using a quantum description of the orbital motion, since in

fact Tj_ and TH can be of order Me in the experiments. In the classical limit this rate

agrees with that calculated in Section 2.3. In Section 2.5 we present a derivation of

a Boltzmann collision operator for spin relaxation which conserves p(N) and drives

the system to a partial thermal equilibrium described by Eq.(2.3). We summarize

our results in the conclusion and discuss two possible experiments which rely on

measurements of spin polarization.
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2.2 Order of Magnitude Estimates for Spin De-
polarization Processes

As pointed out in our discussion, spin depolarization is caused by a resonant

perturbing magnetic field of frequency lip due to an electron-electron collision in

a nonuniform magnetic field. Such resonant fields can also be induced by other

mechanisms. We will consider four such processes, as well as a fifth process due to

spin exchange in electron-neutral collisions. In order to simplify results we assume

that 71 and 711 are of the same order of magnitude.

2.2.1 Spin flip due to mutually generated magnetic field

Consider two electrons, 1 and 2, immersed in a uniform external field B,

separated by relative distance r and passing by one another with impact parameter p

on the order of 1, (see Fig.(2.1)). Then electron 1 sees a time varying magnetic

field induced by the relative motion of electron 2 as well as electron 2's intrinsic

magnetic moment. In the former case the field is B = (e I c)(i• x r)/r3, and the

component of this field which is resonant with the spin precession is approximately

SBR (elc)vizIr3, to lowest order in fL /L. Taking v1 equal to the thermal velocity

is \Palm and the effective interaction time of the electrons equal to we find

the change in direction of spin is AC eg8.13R12mc•Llt (151c)2 10-1°P, where

t is the temperature in K. This gives rise to an extremely small depolarization rate

v(AC)2 10-12T1/2/z(sec-1), where u h2nt is the electron-electron collision

frequency and it is the electron density (n) in units of 107cni-3.

The intrinsic magnetic dipole moment of electron 2 also induces a time vary-

ing magnetic field at electron 1. However, this magnetic field is so weak that the

spin depolarization effect is negligible, even compared to the above estimate.
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Figure 2.1: Schematic picture for an electron-electron collision in a uniform mag-
netic field in the strongly magnetized limit.

2.2.2 Radiative transitions and interactions with background
waves

As an electron's spin precesses, its related intrinsic magnetic moment will

radiate spontaneously through magnetic dipole transition. The rate for the sponta-

neous radiation is [41 2(g)2  e2h 
fl

3 
r's 7 x 10-11/33(sec-1), where B is the magnitude

3 2 m2c5 —
of the magnetic field in Tesla.

In addition, as pointed out by, for example, R.M. Kulsrud et al.12] in a uniform

magnetic field, the right circularly polarized component of an electromagnetic wave

with harmonics near Op will cause an electron spin depolarization. It is easy to

show that a thermal level of electromagnetic waves produces negligible depolarization

provided that the plasma is optically thin. When the plasma is optically thick, the

problem is more complicated due to the dielectric behavior of the magnetized plasma,

but we believe that for a thermal equilibrium plasma at cryogenic temperature, the

electric current fluctuation is negligibly small and there aren't appreciable excitation
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of magnetic fluctuations. However, waves which are unstable in the range of electron

spin precession frequency could cause appreciable spin depolarization. Although

electromagnetic instabilities could be driven when 711 and TH differ, if the temperature

difference 171 — 711 1 is not too large and no external heating is assumed, then, unlike

the spin polarized fusion plasma, the presence of strong cyclotron damping should

make the existence of unstable waves at the spin precession frequency unlikely (since

the electron spin precession frequency fl
P 

= AZ, is close to the cyclotron frequency
2

Qc).

Another possible depolarization effect is due to the electron position shift

driven by electrostatic waves at the spin precession frequency In a spatially

nonuniform magnetic field the magnetic field seen in the electron's rest frame is per-

turbed at frequency Op and the electron spin is flipped by the resonant magnetic field

perturbation. However, one may show that compared with the collisional effect, this

effect is also negligible for a thermal level of waves in the strongly magnetized cryo-

genic plasma. Physically this is due to the relatively few degrees of freedom involved

in these collective electrostatic modes compared with the perturbing electrostatic

field due to collisions.

2.2.3 Thomas precession

Due to this pure relativistic effect, the electron sees an additional perturbing

magnetic field corresponding to a precession frequency cor(t) • x •/ 2c2. The

magnitude of this frequency does not equal Op except during an electron-electron

collision. During the collision, a component of the Thomas precession frequency

given by WT(t) tr_L x VII/ 2c2 varies at the resonant frequency and so leads to

a spin direction change AC (Sic/LAI / 2c2) ' (biT311) r.J (k) • ()2. Here we have
c

again kept only the lowest order component of WT in an expansion in FL/b. The
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depolarization rate is then v(AC)2 10-7AfrOTTIT3(sec-1). As before, B is in

units of Tesla and fi, T1, TH are again in units as defined in section (2.2.1).

2.2.4 Electron-neutral collisions

In the cryogenic environment of the experiment it is likely that the residual

neutrals are almost entirely helium since most of the neutral gas freezes on the

wall. Nevertheless there may be traces of other gases, and here we also consider

collisions with nitrogen molecules as a representative example. To calculate the

spin depolarization rate due to electron-neutral collision, we note that the spin flip

cross section due to spin exchange between the free electron and atomic electron is

several orders of magnitude larger than that due to other effect?' such as the spin-

orbit interaction. For electron-helium collisions the spin exchange is inhibited by

the Pauli exclusive principle and so the depolarization effect is effectively negligible

for them. For an electron-nitrogen collision, the spin flip cross section is crarin pip

Unpin exchange < (Mimetic r=' 3.212 and thus the depolarization rate is approximately

crapin pip -AN:De < 10' T -112AN3(sec-1) where AN, is the density of nitrogen molecules

in units of 104/crn3 and T is again the temperature in units of Kelvin.

In addition, electron-neutral collisions change electron's orbit randomly re-

sulting in a fluctuating magnetic field in the electron's rest frame due to the non-

uniform external magnetic field. This perturbing field causes a spin flip at rate 12'

vapin 9.57 x 10'T3/2B 2L'AN, where the scale length of magnetic field inhomo-

geneity L is in units of cm and AN is the neutral density in units of 10/cm3.

2.2.5 Single particle motion

Single particle motion consists of cyclotron motion together with a slow E x B

rotation of the plasma column and parallel streaming along the slightly curved mag-
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netic field lines. Neither of these drifts cause sufficiently high frequency perturba-

tions to the magnetic field observed in the electron rest frame and so these effects

cause negligible spin depolarization. However, as an electron approaches the end

of the plasma along a field line, the electron feels an electric potential with a scale

length of gradient of order of AD, the Debye length. Due to the electric potential,

the electron gyro-orbit is disturbed and thus, in the slightly nonuniform B-field,

as in an electron-electron collision, a secular spin depolarization results. However,

since AD > b, the "collision" with the end of the plasma is much slower than an

electron-electron collision, and the resonant field 15BR is much smaller. The size of

this effect can be estimated by substitution of AD for bin Eq.(2.1) and use of the axial

bounce frequency TMb = 17/L rather than vc, where Lp is the length of the plasma.

This implies a depolarization rate smaller than that given by Eq.(2.1) by the factor
vb(—) • )2 10 3/TL, where Lp are lengths in units of centimeters. This result

AD

is further reduced if the electron mean free path is less than Lp, and so should be

regarded as an upper bound.

The depolarization rate vspin for various spin relaxation processes are plotted

as a function of small parameter e = fat = 10-3D3/7.E1 in Fig.(2.2), where the

other parameters Li, ñ, N2, and fiN are set to be unity and L is set to be lOcrn. The

conclusion we draw from the figure is that the spin relaxation time va;14„ due to all

effects considered other than that of collisional depolarization in a nonuniform mag-

netic field is longer than the maximum plasma confinement time of approximately

105sec provided that ñpj2 < 1. Therefore, we conclude that the dominant depo-

larization effect is due to collisional depolarization in an inhomogeneous magnetic

field.
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Figure 2.2:Plot of the spin depolarization rate as a function of
E = fat = 10-31713/2/2 for different processes. Curve 1: collisional depolarization in
a nonuniform magnetic field. Curve 2: spin exchange effect during electron-neutral
collisions. Curve 3: Thomas precession. Curve 4: spontaneous magnetic dipole ra-
diation. Curve 5: spin flip due to mutually generated magnetic field. Curve 6: spin
flip due to electron-neutral collision in a nonuniform magnetic field. The electron
density ne is assumed to be 107cm-3, the neutral density is taken to be 104cm-3,
the magnetic field is 1Tesla and the scale length of magnetic field inhomogeneity is
taken to be 10cm.

2.3 Collisional Spin Depolarization in an Inho-
mogeneous Magnetic Field

In this section we consider in detail the problem of spin depolarization due to

electron-electron collisions in a weakly inhomogeneous magnetic field. The velocities

of the colliding electrons are taken to be sufficiently large so that we can treat the

orbital dynamics classically. We will eventually expand in the small parameters rialb

and raL, but in order to set up the problem we consider the spin dynamics of a spin ;-

particle moving on a general classical trajectory through an inhomogeneous magnetic

fielc1121 In a fixed laboratory frame of reference the spin part of the wavefunction >
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evolves according to

a S • nplik > (2.4)

where fl(t) = —
g 
—
eB

(x(t)), x(t) is the position of the electron, s = 9(az, ay, az) is the
2 mc

spin operator for spin 1- particles and az, ay, az are the Pauli matrices, with respect to

some fixed coordinate axes. The classical approximation employed throughout this

section implies that x(t) is unaffected by the spin state and so is a given function of

time.

Now, because the spin component along the field is an adiabatic invariant we

consider the evolution of the spin in a noninertial frame of reference which follows

the electron and which keeps the z axis directed along the magnetic field. Since these

coordinate axes rotate in time as the field varies in direction in the electrons' rest

frame, the spin Hamiltonian s • fl, transforms into the noninertial frame according to

the usual relation k' = s• — s • co, where w = b x —
db 

— (0;6 is the rate of rotation ofdt
the coordinate frame, coz represents an arbitrary rotation of the coordinates around

B, and b = B/B. Thus, in the rotating frame, Eq. (2.4) becomeM)

ihokb > =(12p—w)•skb > •dt

Writing 10 > as ilk >. C(t)j+ > +c_(01— >, where 1+ > and 1— > are states

polarized parallel and antiparallel to ii (i.e. they are eigenstates of a2 in the coordi-

nates moving with the electron), linearized solutions can be found for the transition

amplitudes as a function of time assuming that at the initial time t = t1 the spin is

in either the + or — state only, so that C±(ti) = 1. The probability amplitude of

transition to the opposite state follows after some simple algebra:

it .
CT — dew (e)eTtiti [(Mt )-w.(tilezt"

2 ±,
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where co± = cox ± iwv. This expression clearly shows that IC+12 = 1C- 12, so we

consider only C4. from now on.

In order to make further progress we choose to set caz = 0 and further special-

ize to the regime of strong magnetization in which one may write w(t) in a guiding

center expansion:

w(t) = Ew(n)(t)emr, ne(9)dts (2.5)
Yl

where the co(n)g are relatively slowly varying functions compared to the oscillatory

factor; (Jo) is the term stemming from guiding-center motion, and the other terms

in the series are associated with harmonics of the cyclotron motion. The largest

terms are LA and w(±1). These are of magnitude v/L, as can be seem from the

expression w=bxv• vb. Before we evaluate the w(n)'s explicitly in terms of the

strongly-magnetized electron trajectory, it proves useful to integrate by parts in order

to separate out a small oscillatory contribution due to the limits of integration:

C+(t) =
i CO(n)(ti) ei fit; [n-f-g/2]11,(t")dt"

2 !An g/2)12c(t)

Pt d

— de dt
[n g 12]12Oc(t e

e = t

tl=tl

]a [n-l-g/2]1/c(t")dt" (2.6)

We neglect the first term because it is small and nonsecular. By this we mean that

even after many collisions, the velocity of the electron remains on the order of the

thermal speed and so ca(n)/fic also remains small. Furthermore, although there is a

nearly resonant denominator for the n = —1 term in the series, the term is still only

of order rL/(g — 2)L << 1. It is also true that after any single collision the change

of the second term of Eq. (2.6) is small (in fact it is smaller than the first term

by 0(), as we will see). However, over the course of many collisions this second
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term grows secularly in a random walk and hence dominates the expression for C+

over time. Physically, the first term represents the effect of fast spin precession in a

slowly varying magnetic field, which causes small oscillations in the z-component of

the spin as B changes direction in the electron rest frame. To make an analogy with

the classical theory of adiabatic invariants, the exact adiabatic invariant is not .sz,

but is instead an infinite asymptotic expansion with sz as the lowest order term. The

small oscillations in a, represented by the first term of Eq. (2.6) are due to higher

order non-secular terms in the invariant, and are not important in determining the

secular change of the invariant.

We further simplify the expression for C+ by neglecting terms of order fry /L)2

and higher. Since co is already of O(rL/L) we can therefore neglect the magnetic field

gradient in the dynamics of the electron orbits and evaluate the collisional dynamics

in a constant field Bo = B(x0), where we choose xo as the center of mass position at

the instant of closest approach of the colliding electrons (see Fig.(2.1)). Furthermore,

to lowest order in DL/L, co itself can be written as

co = x AT • (V00

where bo = 1(x0) and (Vb)0 = Vi9(x0) are constant, and the velocity v has a guiding

center expansion of the same form as Eq. (2.6). Then keeping only the near-resonant

= —1 term in the series over 71 in Eq. (2.6), the expression becomes

—1  dC±(t) = 
(g 

[b0 x _v(-1) (vb)o] ei(e — ti)(g/2 — 1)11code— 2)Qco

+o ) 2) , (2.7)L

where nco = 1le(x0). All other terms in the series give contributions which are

exponentially small because of the fast variation of the phase factor in the integrand.
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dv(-1)
Finally,  dt 

(0 is evaluated in a guiding center expansion in the small

parameter € vz(ti)/bno where b = 262/p.v!(ti) is the distance of closest approach,

vz(ti) is the initial relative parallel velocity, and µ = m/2 is the reduced mass. We

again consider two electrons, labeled 1 and 2, colliding in a uniform magnetic field

B. In the strongly magnetized regime the collision may be pictured schematically as

shown in Fig.(2.1). The electrons spiral in tight Larmor orbits toward one another

along the magnetic field lines, and their mutual Coulomb repulsion perturbs the

orbits. This perturbation shifts the cyclotron frequency, bringing it into resonance

with the spin precession, and inducing a spin flip transition. We will determine

the trajectories of the electrons and use them to calculate C+ for electron 1. The

equations of motion for two electrons are

a ,,6.
= e  (xi - x2) - -x1,2 x Bo

axi,2

where = -x2 1 is the interaction potential. The center of mass motion can be

separated out by transforming to center of mass coordinates through R = (xi +x2)/2,

r = x1 - x2, leading to

e •Ira = --R x Bo,

0mr = 2e—
ar

ck(r) i
c 

x Bo

(2.8)

(2.9)

Equation (2.8) describes center of mass motion which is just a combination of con-

stant amplitude Larmor gyrations and parallel streaming. Since dv(-')/dt is zero for

this motion, the center of mass motion makes no contribution to C.

Turning to the equation for relative motion, we solve for t by expanding in E
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using standard asymptotic techniques. To 0(e) the result is[61

= vg(t) v10 + Re {ei[ild# t1) °°+ 80(t)]1" — 0(e2) (2.10)

where 00 is the initial relative gyrophase, Vg(t) is the slowly-varying guiding center

relative velocity, v10 = vi(ti) is the initial perpendicular relative velocity, and SO is

a 0(e) slow variation of the relative gyrophase given by[6]

50(t) = imelo lit de (zz22((tt,)) pi)5/2 (2.11)

where the function z(t) is the lowest order z position of the guiding center, determined

by solution of the equation

e2
z

ji (z2 ps)3/2

and p0 = /x(ti)2 y(ti)2 is the initial impact parameter. The time t1 is chosen so

that the electrons are initially far apart, i.e. z0(t = 13)1>> Po.

A further simplification can be made by noting that dvd(;" appears in Eq.(2.7)

only in the combination

ei40(-1) [. ch(-1)bo x  dt dt

Using the fact that V•B= V x B= 0, this expression can be rewritten as

(2.12)

dw(,) i [aBz dvY) + (aBy aBt + 2iaN dvy   . )
dt 2130 az0 dt .0y0 az° ay0 dt

..2 (5132 _ iaBz\ dvp)i
kaxo Oy0 ,) dt

where v± = vm + ivy. However, Eq. (2.10) implies that only the term involving
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dv(-1)/dt provides a resonant contribution at 0(c), so to this order we find

dco(-1) 1 aBz „ado.° eigo 0(62).
dt 4B0 5z0 dt

Here an extra factor of 1/2 appears because electron l's velocity equals Et

Thus, to 0(c) only the slow time variation of the gyrophase contributes to C+.

Substitution of this expression into Eq.(2.7), together with Eq.(2.8), leads to

a simple form for the secular change in C+ during a single collision

z2(e) 1P42)  einco(g/2 - Wide1 Di, aBz 6i0'e2 ro
Ac+ — 4(g - Bo azo no J-0= (z2(t9+ PO)5/2

+Q(2)  + 0 ((D ' )2) (2.13)

where 0' = 00 + - 1)t1, and Di, = vio/Qco is the initial relative Larmor radius.

Here we have taken the limits of integration to +oo in order to determine the total

change in C+ after a single collision. Of course, this assumes that the plasma is

weakly correlated so that two particle collisions are well-separated in time.

It is also useful to work with dimensionless distances and times, defining

I = tvz(ti)/b, p = p0/b and 2 = zolb. Then Eq.(2.13) becomes, after some simple

algebra,

1 rL 0B2__Jo' gAC+ -   e €/[(- - 1)/E,
8(g - 2) ./30 azo 2

where the function /(x, fi) is defined by

. - -2 -2
/(x, )5) = r z P /2 

J-00 (p2+ 22)512

and 2(0 satisfies the differential equation [see Eq. (2.12)1

E2

-F p2'+ 22 

1

(2.14)

(2.15)

(2.16)
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with initial conditions z(t = —cc) = —cc, = —cc) = 1. We note that Eq.(2.16)

can be analytically integrated and I can be expressed in terms of through elliptic

integrals (see Appendix 2B).

In a few special cases analytical forms for I can be obtained: For example,

where

/(x, fi) = —x 2K0(x1a) forfi > 1

I(x,p) = ft(, )623(P) fort > 1 (2.17)

g(13) crX  vt 2 p20 _

and h(x , fi) is a function which is neither exponentially small nor exponentially large.

For head-on collisions,

8ir_
1(X,0) —xe 2 X forx>>1

9

/(x, 0) = —8 + x2 ln x 0(x2)forx <<1
3

(2.18)

(2.19)

However, for general values of x and fi, /(x,fi) must be determined numerically.

The integral over I in the definition of I was performed by transformation of the

integration variable from I to 2 via elliptic integral expressions of the guiding center

orbit t(i) derived in Appendix 2B, and then the i-integral was calculated using the

SLATEC [7] subroutine DQAGSE.
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Figure 2.3: Plot of /(x, p) as a function of p for different values of x. The behavior
of /(x, /4 becomes singular at fi = 1, the separatrix point between passage and
reflection of the two electrons. For z = 0.01, /(x, 0) 8/3 coincides with Eq.(2.19).
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Figure 2.4: Numerical test of the asymptotic form of I(x, )5)1 for large x. The curves
represent asymptotic values given by Eq.(2.17) and Eq.(2.18), where the function

h(x,fi) is approximated by h(x, 0) =x.[3] This form works reasonably well even
9

for values of p where I is negative. This is because the exponential dependence of I
on x dominates the behavior for large x. The numerical results are denoted by +:

= 0; 0: = 0.5 and x: p = 2.
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The function /(x, p) is plotted in Fig.(2.3) as a function of p for x = 0.01

and x = 1. The singular behavior at p = 1 is due to the effectively infinite collision

time at the separatrix for the electrons to pass by or reflect from each other. The

behavior of i(x, p) for large x is also plotted as a function of x for different impact

parameters p in Fig.(2.4), where the numerical results are compared to the analytic

expressions.

Equation (2.14) gives the probability amplitude for spin flip due to the clas-

sical electrostatic collision of two strongly-magnetized electrons in a weakly inhomo-

geneous magnetic field. By averaging over a Maxwellian distribution of electrons the

average rate of spin flip can be obtained. This calculation is carried out in Section

2.5.

2.4 Quantum Analysis

In this section, the previous assumption of classical orbital motion is relaxed.

For the strong magnetic fields and low temperatures of the experiments on cryogenic

electron plasmas, the perpendicular mean thermal energy kTi can be as low as the

spacing of the Landau levels hfic, so quantum mechanics is necessary to describe

the orbital motion. Moreover, since is then also comparable with the energy

difference Up between spin up and down, a spin flip changes the orbital state of

the electron appreciably. This spin-orbit energy exchange process is important for

the plasma thermal equilibration, as will be seen in Section 2.5. Since the electron

thermal de Broglie wavelength is small compared to the classical distance of closest

approach, the antisymmetry of the two-electron wavefunction will be ignored as this

approximation will only cause an exponentially small relative correction.

As in Section 2.3, we calculate the probability amplitude of a spin flip tran-

sition during the collision of two electrons in a spatially inhomogeneous magnetic
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field. The collision is described by the two electron Hamiltonian

(Pi + !A1)2 (132 + 5.42)2

k  c + si itp(xi) +  c + sy • np(X2)
2m 2m

e2
'xi — x21.

We also follow Section 2.3 in assuming that B(x) varies slowly compared to the

scale lengths associated with the electron-electron collision, and so we expand B to

linear order about an arbitrary point: B = Boi + x • VB, where x is measured with

respect to this point. Although the eigenfunctions of il are not localized, through a

judicious choice of the initial states of the colliding electrons, this arbitrary point will

become the collision center xo in the classical limit, so this expansion is justified on

physical grounds. We will see that the expansion is justified mathematically by the

convergence of the overlap integrals which couple the initial and final states through

the magnetic perturbation.

In terms of the center of mass position R = 1(xi + X2) and the relative

position r = — x2, to the first order in VB, the Hamiltonian expands out to the

form B. -= Bc,„ firei Ent Sflorbit 114 where

and

kan = — -e-R x Bo?

fire,
1
_03 — !l•

c

fl spin = (S1 + 82) • Op°

e A e
bilarbit — 0 a(xi ) •(31 — —Xi X Bo) + —-5A(x2) • (r12 — —2cX2 X Bo)

me mc

fLf = (Si + s2) • (R • V)Opo — 52) • (r • Vgipo•
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_g n g eBo a aHere, 111,0 = = P, = and p = —in,— are the momentum oper-
2 2 me art' Br

ators of the center of mass and relative motion respectively. The function 8.4.(x) =

A(x) — -12,130 x x is the correction to the vector potential due to the spatial variation

in B(x).

Since the spin and orbital dynamics decouple in ile„„ E761,&pin and bii„bit,

these Hamiltonians are not responsible for the spin flip transition. The spin flip

transition is due only to kg. According to Fermi's "golden rule", the probability

per unit time of a transition from state Ii > to state If > is given by

af = r- h Pfl <fjH31> 1 2. (2.20)

Here, Ii > and If > are the eigenstates of km -4-, Erel + !lapin thorbit ) pf is the

density of the final states and the transition conserves the total spin and orbital

energy.

Before beginning the calculation of the transition rate, we note that the spin

flip Hamiltonian .at31 can be rewritten as

a = xatopo • (si + s2) + Yaynp0 • (si + 52) + Za2ap0 • (si + s2)

z n
— 8.11 • s — s —a it • (c2 p ( 1 2/ . 2 y p0 k-1 s2)+ —2 °zito-(si -- 52)

where (X,Y,Z) and (x,y,z) are center of mass and relative coordinates respectively.

To calculate the transition rate to the leading order of VB, we use for the states Ii >

and If > the states of colliding electrons in a uniform field Bo, i.e. the eigenstates

of kom + Ent + -Li (in the absence of tharbit), since thoybit is of order VB.

Several simplifications of H., can now be made. First we note that the

operators al and a2 are linearly combined in fisi, so only one spin can be flipped in

the transition. This implies that a spin flip transition always involves a spin energy
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change of magnitude hfipo. Now, the first two terms of fief couple the spin and the

center of mass motion. However, this motion is described by 'Eau, which has well-

known harmonic-oscillator eigenstates with energies separated by hileo for the X — Y

motion, and free streaming for the z motion. Since hOpo = EL) and the parallel

electron states are unchanged, energy conservation forbids a spin flip transition so

the first two terms of lig may be neglected.

The third and sixth terms in H81 can be neglected for a similar reason. These

terms couple the spin and parallel dynamics, so during a spin-flip transition energy

conservation requires a parallel energy change of magnitude Up°. However, in the

strongly-magnetized regime this is a large change; the initial and final parallel states

would have extremely disparate wavenumbers, leading to an exponentially small

contribution to the overlap integrals appearing in the golden rule, Eq. (2.20). There

then remains only the resonant interaction between the relative (x, y) dynamics and

the spin, which involves the fourth and fifth terms in .#81:

[;t9.np0 + F2-Oynpo] • (si —s2)

eg p f [ aBz _io t9Bz .0By2z ) e s
2mc 8 1

e (
azo ozo oyo

—
azo

.4+ 2( aBz .0.73z  z—)(siz — 82)} + (hermitian conjugate)
ex° ay0

On the right hand side we have written (x, y) in terms of polar coordinates (p, 0) and

we have introduced the spin creation and annihilation operators A+ and A-, where

= Alw — A 2z — a2y). The term involving n — 32z cannot induce transitions

between different spin states and so can be neglected. Thus, the effective spin flip
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Hamiltonian is

eg p 1 0.15.2 _io OB. aBy 2.813y )ei :9(+)
H°1 2rac 8 azo axo ayo axo

hermitian conjugate (2.21)

It can easily be verified that the term proportional to aBz/azo commutes with the

operator Sz — ihalae, so this term conserves total angular momentum in the z-

direction. However, the other term is proportional to field gradients expressing the

cylindrical asymmetry of the external field and so it is not surprising that this term

does not conserve total angular momentum. This difference will have important

ramifications when we employ Eq. (2.21) in the calculation of Fermi's "golden rule,"

Eq. (2.20).

However, before we can apply the golden rule to Eq. (2.21) we will require

expressions for the initial and final states which are the eigenstates of kern firet

fispin . These states can be expressed as the product 0,„(R)0,d(r)Isiz, s2z >, where

Oan(R), 0,.ei(r), and 1s1., sz.v > are eigenstates of li,d, and ii„„i7, respectively.

Since the center of mass dynamics does not appear and the spin eigenstates are trivial,

it remains only to find tb„I. We therefore calculate Ore/ for two colliding electrons

using a quantum version of the classical guiding-center expansion[31 The expansion is

most easily derived by first expressing the relative Hamiltonian in terms of cylindrical

coordinates:

- —h2 c a a 182 52 ) Mico a /Lilco 2 e2+ p +  
2p, p op op p2 op az2 2i at+ 8 1/42 + z2

Since Erd is 8-independent, the z component of the angular momentum Lz = lh is
6218

conserved and we look for eigenstates of the form Ikhz(p,z)1‘5, where a denotes
-Vr

athe two quantum numbers associated with dynamics in p and z. Replacing — by iiao
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in fini yields the reduced Hamiltonian for ikia(p, z):

—h2 32 h2 32 tin.02 2 2 h2 1  
e2

rel =   (P Pt
2 
)az2 2p p2 + 8p2 8, p2 V P2 + Z2

where p1 = —2h11 Lip •

We will see that the main contribution to the integral expression for the

spin flip rate comes from wavefunctions with pi such that r2,r, << pj< b, where

rqL V2vh/p11,0 is the quantum Larmor radius, v is the quantum number of

cyclotron motion, and b is the classical distance of closest approach. Physically,

p = pi corresponds to the impact parameter of the guiding center of a reduced mass

electron incident on the force center. The wavefunction z) is peaked near

p pi, at the minimum point of the centrifugal potential of "1„1,1, and Ibia(p, z) falls

off rapidly in a distance of order the cyclotron radius r2L < pi. It is therefore useful

to introduce the variable xi p — pi in the relative Hamiltonian. Expansion of firei

to second order in r2L/pi then yields

where

3

fire/ = HICI) f/(1) 11(2) + (2:9±)

h202 e2 h2 32

5z2 + pi2 z2 2P Ox? 2

1x3
2 g(z)xt,

2 "

5 xi 2_1412 x2(—) f (z)x? 
h2

8 " pi 8µp7 '

(2.22)

and the functions f and g arise from Taylor expansion of the Coulomb potential,
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and are defined by

and

ez(g_ z2/2)
f (z)  ,

(pi + z2)5/2

e2pj
9(z) — 2 2 

) 
3/2'

691 Z 

Each term EN in this expansion has magnitude of order hfico(r-1-6-)n since
Pi

xi is of order rgL. Furthermore, it is clear that eigenfunctions of E,ei are, in the

position representation, functions of p through the variable xi:

tfria(p, z) = z), (2.23)

where ‘Gbaria is the eigenfunction of the Hamiltonian of Eq. (2.22), and a denotes

the two quantum numbers which, along with 1, parametrize the state. In this form,

&el is a perturbed harmonic oscillator Hamiltonian in the variable xi, so ikict(x, z)

is highly peaked around x = 0.

The unperturbed Hamiltonian Hi°)(xi, z) has eigenstates 11,a > (0) which

we write in the position representation as It, a > (0) = G(xt)Fin(z). Here, G(2) is

a harmonic oscillator eigenfunction with eigenenergy (v 1)hile0, and Fht(z) is the

eigenfunction of the parallel dynamics, with energy n. Thus, a can be represented

by the values of,' and n. The total energy of an eigenstate of HP) is denoted by Ea

and is given by Ea = (v philco n. (Although Ea is also a function of 1 through

the dependence of n on 1, we drop this subscript in order to save space.)

Taking 1/, a > (0) as the base vector and using second order perturbation

theory, we obtain a perturbation expansion for 11,a >:

1,a >= (1— Tda )1/, a >(°) Dacca, + cace)1/, >(°) +0(1.6 )3 (2.24)
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where

ctace = fla(12,/( Ea — Ea')

haat = I (Ea — Ea')

caa, = E 1 (Ecr — Eat)(Ea — Ecti)

cia = REa — Ecti)

and where we employ the notation Ha& to denote the matrix element (°) < /aIHI/a

However, to calculate the transition matrix element of Eq. (2.20), we will

also require an expression for I/ + 1,a >. Although this expression can in principle

be obtained from Eq.(2.23) by substitution of 1+ 1 for 1, it is more convenient to

determine 11 + 1,a > in terms of 11,a >(°) rather than I/ ± 1,a >0). The ket

It ± 1, a >() is the eigenstate of H, which is related to Er through a Taylor

expansion of pi:

(o)
(t, z) = I/Mt z \ h e2

/ince (pi z2)3/2 I

position

where

Pt e2
the perturbation, we find that in the

E hacelki:32,(z z) (2.25)
a'

act, — Eat). (2.26)

Taking the term +
µS/co

representation the

ha& =

(pl z2)3/2 as

kets are related by

z) = 0i,02(x, z)

—h e2

itnco (p1 z2)312)
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Substituting Eq. (2.25) in Eq. (2.24) with I replaced by I + 1 yields

z) = 01.(x, z) E hace41,(x, z) + (NIL )3. (2.27)
a' Pt

We now evaluate the transition matrix element < PHs/ Ii >. Without loss

of generality, we take the initial state to be

cite 1 h hIi >=  Via(xj, z)1 - - - >, (2.28)
.\/r •si 2' 2

and the final state to be

1 _ h h
If >=   >, (2.29)

so that during the transition spin 1 is flipped from down to up. Energy conservation

at zeroth order in rqr,/p/ requires that

ii 1
(v +1)hfico - -2120 K = (v1 + -2 )hnco -2npo nf •2

Then the zeroth order parallel energy change is is/ - n = (v - vi)Mico - hnpo =

(v - zit - g)hlico. As discussed at the beginning of this section, since the z motion

is very slow compared with spin precession at frequency (lp°, by far the largest

contribution to the transition comes from vf = v-i; then 1(n f K)/h1 = np0 -11.0 =
(g — i)ne. « Up°. That is, while the spin is excited from down to up, the orbital

perpendicular motion provides one quantum of energy hThc, to the spin, and since

hap° = hfico the spin also absorbs energy hifipo - fico) from the parallel motion.

Thus, the orbital state jumps to a lower energy state with new quantum numbers

(vf, nf , If). Since a spin flip from down to up is induced by the spin creation operator

A(+) in fish from Eq. (2.21) we have

< Pi/41i >. 
hey 

—313z 1+°° dz f aa due ( (
8 2mc Ozo -co ' ziPria‘P, z)
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a B.OBy
  2i anB") f+c° dz r- dpipt+,,a,(p,z)poza(p,z)} (2.30)

uxo 0Y0 ozo -00 0

where I,. = 1+1 is a result of the integral over 0, and the matrix element < —

4 4 >= h has been used.2 2 2

The inner products appearing here can be evaluated in the quantum guiding

center approximation by changing integration variables from p to xi. The required

integrals are

+
M± dz 

. if 00
z)P1bia(p, z)

dz dx0,61±1, f (xi±i, z)(pt x1)77%,(xl, z),

where the integration range in xi is extended to +oo because 2:61„(x, z) is highly

peaked around x = 0. The first argument of the barred wavefunctions appearing in

M± are evaluated at different positions, xi±i and xi. However, these positions are

related through the equation

xt±i — = Pt — pal•
inicom

In order to simplify the evaluation of the integrals we then Taylor expand 47,±1„;‘1(x,±1, z)
around xi:

15.2

(zai , Z) = 1 ± 
la cO

1  ,..„ rpg, ‘3) 7
1131±1,aiPI 2GincOPI)2 + tit —PI ) Wi±l'al (XII z)

where fii = —iha/axi is the momentum operator. Then to second order in rqapi,

M± is given by

/52

= P/ /±1,49111  I Ila >2(lificaPt)2



52

JP,+ < + 1, af ixi Ila> +0()3,
r L

Paha Pi
(2.31)

where the inner products denote integrals with respect to z and xt of barred wave-

functions evaluated at the same point; for example,

< > dzdx‘blia,(x, z)?h,„(x, z).

Equation (2.31) can be further simplified since some of the terms are negligible. For

example,

< / — 1, af l/a > = < /a/ l/a > < > +0(1121)3
a' Pt

= haja + 0(. )3

Where Eq. (2.25) has been employed, and in the second line we have used the

orthogonality of ha > and Ila' > together with the selection rule v., = v-1. However,

Eq. (2.26) implies that haat is proportional to L so < 1— 1, ailla 0(r9L1m)3

and may be neglected. Similarly, one can also show that

< / — 1, ail  PI2
2(02copi )2 1/a > 0(7 " )3

Pi

so we neglect this term's contribution to Eq. (2.31) as well. Combining Eq. (2.30)

and Eq. (2.31) then yields a simple result for the spin-flip transition matrix element:

<fhHi> = hrqr, eg 
8/i; 2mc

#13k < lfaflaila = 1-1
(2.32)

;el — 8,#1:,01 —244'00 < =1+1

where it+ and it are the creation and annihilation operators for cyclotron quanta:
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Vit0,0/2h(xi ikitfico). This form for < fH8tIi > has a clear physical in-

terpretation. The case /f = 1 — 1 corresponds to the transition dynamics we have

already described. As one of the electron spin flips from down to up, a relative

cyclotron quantum is annihilated by a and the z-component of the relative orbital

angular momentum, hl, is reduced by one unit, conserving the sum of the spin and

orbital angular momentum. However, in the second case, /f = 1+ 1, and the sum of

the spin and orbital angular momentum is increased by two units because the tran-

sition occurs in a nonuniform external magnetic field with a cylindrical asymmetry

described by the combination of gradients preceding the matrix element. In this case

a quantum of cyclotron action is created by but does not go into cyclotron dy-

namics, since vf must equal v —1 in order to conserve energy. Instead, two cyclotron

quanta are distributed into energy and canonical angular momentum associated with

a change in the relative radial guiding center position, so that the final state still

has one fewer quantum in the cyclotron motion. This interpretation follows from

the fact that the radial guiding center position, i.e., the position of the peak of 7khz
in p, is characterized by the combination v — 01 so the guiding centers end up far-

ther apart by a distance of order rig,. However, since the guiding center motion is

relatively slowly varying compared to the cyclotron dynamics, we would expect that

such a process is off-resonance and so it should give a negligible contribution to the

transition probability.

The guiding center expansion for tki„(x, z), Eq. (2.24), can now be employed

in order to explicitly calculate the matrix elements up to 0(rgapi)2. This lengthy

algebraic exercise is left to Appendix 2A. We find that the case If = 1 + 1 does not

contribute, as expected. The other case, 1f = / — 1, is given by Eq. (2.54), and leads
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to a relatively simple form for the transition matrix element:

. aBz e3hrgi, di,(c,`).(z)(z2 — p112)n)(z))< fAilz>=   . (2.33)azo 8µ2cf2!0 (g — 2) J (4+ z2)5/2

As discussed in Appendix 2A, this expression neglects terms of order (r9LIpi)3 and

higher.

Equation (2.33) is the transition matrix element for the spin of electron 1

to flip from down to up, which upon substitution into Eq. (2.20) yields the transi-

tion probability per unit time at. However, in the Boltzmann analysis of the next

section, rather than at we need Pif, the transition probability per collision given by

(0;1, where Jac is the incident flux associated with the initial relative wavefunc-

tion of parallel energy n. To calculate .1,, and the density of final states pf of Eq.

(2.20), we impose periodic boundary conditions at z = +L(L >> pi)E21 One finds that
v(n)pf = rh,vz(nf) 

and .1„ =  2L 
where —A v22(n) n, and the incident (initial) state

2
and outgoing (final) state are taken to be Ii > of Eq. (2.28) and If > of Eq. (2.29).

Finally, we have Pif = IAC+12, where

lAc+1 lathlazol 2L
11.° 8µ2c(9 — 2) Vvz(n)vz(nf )

— p712)FV(z)
dz f 7(Pi z2)5/2 (2.34)

Since the parallel thermal de Broglie wavelength is much smaller than the

distance of closest approach a WKB solution for FP(z) is valid. Then if we further

assume that IS r•' ItT11 >> — 1)Mic0 = 10-2hOc0, a quasi-classical expansion of the

WKB wavefunction can be carried out, and the z integral can be transformed into a
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time-history integral over the classical orbit131

2LL I 
FM* zy 2

Vvz(m)vz(ni) L dz  nf 
12)F,cf)(z)

(P? z2)5I2

= irdt,Z2— 412  6--4912— 1)(1cot
ip1 z2)5 (2.35)

In Eq. (2.35) the limit ±L has been extended to ±oo since L >> pi, and z(t) is given

by Eq. (2.16).

Substitution of Eq. (2.35) into Eq. (2.34) then yields the final form for the

transition amplitude in the quantum regime:

laBzIazol IAC+I = Q2
co

e3 r qL 

810 c(g 

2)1f dte—i(9 —1)not  z2 — pu2 (pl+z,5,21. (2.36)

For large quantum number Eq. (2.36) returns to the classical result of Eq. (2.13)

because rgy approaches the classical Larmor radius rL, as may be seen by the energy

correspondence

1 2 2 1

2PTLQco = (v )hno vhoco.

2.5 Boltzmann Analysis for the Spin Tempera-
ture Equilibration Rate

In this section a collision operator is derived for spin relaxation due to

electron-electron collisions in an inhomogeneous magnetic field. The plasma is as-

sumed to be weakly correlated and the effective spin flip interaction only occurs over

a short range of order b, so only two-particle interactions are important and these

collisions can be regarded as point collisions. We therefore use the Boltzmann equa-

tion to describe the spin relaxation process. Since the electron de Broglie wavelength
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is small compared to the average interparticle distance, classical Boltzmann statistics

rather than the quantum Fermi statistics will be used throughout the calculation.

We first focus on the spin temperature relaxation problem for the classical

electron motion discussed in Chapter (2.3). In this case, the kinetic temperatures

71 and 7i1 are large compared to hilp, and so the kinetic energy of the electrons

behaves like an infinite temperature heat reservoir supplying energy to excite the

spin motion. For this classical case the orbital state of the electron is not affected

by the spin flip though the spin flip probability is determined by the orbital motion,

so the spin flip transitions from 1+ > to 1— > and from 1— > to 1+ > have equal

probability. Therefore, we may immediately write down the time rate of change of

the spin population due to collisions:

(ddt x-) = v..ip.(x)(x+ — x_)
coil 

(2.37)

where x± is the concentration of electrons with spin state 1+ > or 1— > in a volume

element at position x, where the size of the mathematically infinitesimal volume is

physically large compared with the average inter-particle distance but small com-

pared with the scale length of the magnetic field inhomogeneity. The spin depolar-

ization rate is given by

vspin = d3v f (v v.t) J27rpodponlvz11ACI2 (2.38)

Here 1AC 1 is given by Eq. (2.14) and f(vi, vz) is the two-temperature Maxwellian

distribution function. A two-temperature Maxwellian distribution is employed since

the perpendicular kinetic energy is an adiabatic invariant and so electron-electron

collisions drive the velocity distribution to the two-temperature Maxwellian form on

a fast time scale on the order of the electron-electron collision frequencyM

Directly substituting Eq. (2.14) for 1AC1 in Eq. (2.38) and performing the
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integrals over v1, one obtains

v(x) = (8(g fL(2x)1(x)) 2 n.127:1:7,11 dv.exp ( 2:71)v21.

2 •je 2irpodpol/4 - 1)c-145)12C • 

where I is the integral given by Eq. (2.15), and where FL(x) = V2k71/u/ftgo(x) is

the Larmor radius and L(x) = (ke)-1 is the scale length of the magnetic field

inhomogeneity.

Furthermore, Eq. (2.37) implies a simple form for the time evolution equation
1 OS 1 x_for the local spin temperature Ts(x), which is defined by — = (—)N = ln 

'T. OE MIpo x+
where S,E are the entropy and energy of the spin system:

i's(x)2kT„
  =  sinh( kr.°)147. (2.39)

htipo

where

EFL ) 2
Vspin = 2.5 x 102v ( L 74E)' (2.40)

Here vc = 742w5z is the electron-electron collision frequency, (g - 2) is taken to be

approximately 0.0023 and n(E) is given by

n(e) = duull3exp(--21u213) j clfi2r1olI((-g2 -1)(uE) l , fi)I2,
oo

(2.41)

where we have transformed the integral over velocities by introducing the parameter

elE = (v211143 where E = lizibilco is the mean adiabaticity parameter, i)z =

VkTilu is the relative thermal speed and =e2 = 2e2 /k711 is the mean

distance of closest approach.

To evaluate the numerical value of n(E), two integrals over p and it respectively

were performed after the numerical integration of I. The p-integral was calculated
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Figure 2.5: Plot of n(). For E > 0.01, n(E) is almost a constant [see Eq.(2.42)].
For e < 0.01, v(e) decreases exponentially since spin and orbital motion are out
of resonance as e decreases. This n(e) curve is valid only for E < 0.1 due to our
assumption of guiding center dynamics during the electron-electron collision.

numerically using the IMSLM subroutine DQDAGP with the upper integration limit

cut off at fi = 8, which introduces an error of less than +0.6%. For the u-integral,

the integrand is a smoothly varying function of u, and so a cubic spline interpolation

method was then applied by using subroutines SPLINE and SPLINT in Ref. [101 to

obtain the interpolated integrand. Finally the ti-integration was completed by IMSL

subroutine DQAGS. A careful estimate of the errors involved in the cubic spline

interpolation along with the cut off in the p-integral imply an error of less than +2%

for the value of n(e).
It is useful to note that for e>> (-2 

- 1) 0.001,1(9/2 - 1 
, p) can be approx-

imated by /(0, p) since the distribution ull3exp(-111.213) is peaked near it = 1. In

this case a numerical integration yields

1 c.
0v(E) duull3exp(- j0-

2u2/3) dp21/(0, p)12 61, e .001. (2.42)
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We then recover the simple scaling of Eq. (2.1); the numerical coefficients of the two

results are within an order of magnitude of one another. The function n(e) is plotted

in Fig.(2.5).

The spin depolarization effect is appreciable in a large variety of parameter

regimes. As an example, we take T1 20K, ft 102, B 10kG and

L 10cm. In this case E 8.4 x 10-2 and tispin 9.1 x 10-2(sec-1), corresponding

relaxation time v;plin llsec. However, if B is sufficiently uniform or strong so

that spins are tightly bound to the magnetic field line the depolarization effect is

negligible.

Now, the spin temperature equilibration determined by Eq.(2.39) implies that

a thermal equilibrium state is reached only when n4. = n_, i.e. T, --+ oo. Physically,

this conclusion is the direct result of the assumption of classical orbital motion. The

kinetic energy of the orbital dynamics is assumed large compared to hilp, and serves

as an infinite heat reservoir for the spin motion. In order to observe true thermal

equilibrium one must therefore treat the orbital motion quantum mechanically.

Denote the occupation number of state Is, > in a volume element at position

x by f(s, x) = x3(x)f(1",x), where s represents the spin state and r stands for the

local single-particle orbital state with respect to the local magnetic field B(x) which

is virtually constant inside the volume element. The orbital distribution function

fin is normalized by Er f(r) = N, where N is the total number of electrons in

the volume element. Obviously, x,, the concentration of electrons with spin state

.s(= +) in the volume element, is normalized by Es x, = x+ + x_ = 1.

The rate of change off due to collisions is governed by the following master

equation:

1 d
= — atififi)

colt jki

(2.43)
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where J f-(si,ri,x), etc. and akii is the transition rate for electron 1 scattered

from state Iskrk > to state > and electron 2 scattered from sift > to lairi >.

In Eq. (2.43), the time derivative is a partial derivative at a fixed position x; it

denotes the rate of change of the distribution function due to collisions.

Making use of the normalization condition Er,f = Nxi together with the

"detailed balance" symmetry relation [in aa = Eki atj in Eq. (2.43), we find a

general expression for the rate of change of the spin distribution due to collisions:

dt eon

1 d -
= — E —fiN dt

1= E ijci I
Pi jkl

1= E[E a ki(x kxt f(rof(ro— xix,f(ri)f(ram.
jkl

We now assume that si = + and consider the form of this rate equation when

the Golden Rule, Eq. (2.20), is used to determine the a's. As noted previously,

the form of H81 implies that in any given two-particle interaction at most one spin
+ricr,can be flipped, so transition rates like a_r,n+r, vanish. Furthermore, the form of

/41 also implies that the transition rate for electron 1 is independent of the spin

state of electron 2. Also, if neither spin is flipped in the interaction another de-

tailed balance symmetry relation holds for transitions involving only orbital changes:
siri,sirj sir k,siri

Er k,r I a sir k,airi tank,r, a sirheir j • This follows from the fact that the wavefunctions

of the initial and final states separate into a product of a spin wavefunction and an

orbital wavefunction, both of which are members of complete sets over the spin and

orbital Hilbert spaces.

Using these relations in the rate equation, several cancellations occur and we
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are left with

Id 1 1
Leltx+ colt- N Eririrkr,

+fly;a_ro,,[x_f(11k)f(1'i)- af.f(ri)firA (2.44)

ere a+rhri 
— = cd-rh+ri 

= 
a+r”-r

-rhrEr, -rhcre

If, as before, we assume that fin is an anisotropic Maxwellian distribution

function of form exp( E 1(r) E11(11) ), then we may rewrite the two particle dis-
TIL 711

tribution function f(fh)f(ri) as the product of center of mass (C) and relative (R)

distribution function fe(11)fR(Iti) with normalization condition Erf, fc(r2) = N

and Ert fR(11) = N. As we discussed in Section 2.4, the center of mass variables

do not participate in the spin flip transition. In other words, the transition rate is

only a function of 11 and F. Then summing over the CM states in Eq. (2.44) and

applying the normalization condition we have

d Ek [z_fR(rt) — x+fR(v1)1 ixt] kl
con citric',

Further taking It to be the quantum numbers (1, v, is) associated with state Ii >

of Eq. (2.28) and Ff to be the quantum numbers of state If > of Eq. (2.29) with

values (11, v;, it,) = (1- 1, v - 1, it - h(g 12 - 1)114, we obtain

+1-1,v-1,K -h(g / 2 -1)ne.

vid

R(I,1/, K) — — 1,1/ — 1, K h(g 12 - 1)r2.0)]

2L z--' E lacrvz(K) -1-00 id n=h(90-1)fic.

v, - x f K(1 - 1, - 1, K - 12 - 1)52,.0)] (2.45)
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where the equation al,,,1,-'1'h(9/2-1)nc° = lakCl2vz(K) has been used [see Eq. (2.34)].2L
The sum over:' begins at one rather than zero because laC12 = 0 for v = 0. Further-

more, the sum over it begins at h(g/2-1)Qco rather than zero because, in a transition

from — to +, this is the minimum relative parallel energy required to conserve en-

ergy in the transition. Finally, the sum over 1 is cut off at 0 rather than v because

we consider only guiding center dynamics for which m > ng,. This introduces a

negligible relative error of order (rqL/L)2 to the total transition probability.

The sums can be performed when the explicit form for the relative Maxwellian

distribution is employed:

phileoIt
f(1, v, it) = Aexp(

kTi kTII

where the constant A is determined by normalization condition

. Making the substitutions

where p(it) —

0
1=-00 v=i) n=o

h, .0E —> 2r mdm I ; E p(n)cbc,
Jo, 0 it.c0 ,c

rh,v z(n)
is the density of states, and it = 1•µ,q(n), we find that

A = 
2N11,2 sinh(blico /2kTi) 

Old) V Orpk711

where V 2L f 2ir pidm is the volume of the volume element. Substituting this

expression for fR(1, v, it) in Eq. (2.45) yields

Ldt j coil
A2n is)E I 27rptclm dv z(n)1AC h2 " 

I, 
L(912-1)ncov=1
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hilro 4(9/2-1)nco 
kTy I(X_ — x+e ) (2.46)

where n is the electron number density. Finally, the sum over v can also be

performed, and with the aid of Eq. (2.36) for IAC1 Eq. (2.46) can be rewritten in

terms of the spin temperature as

auip-i)nc. hft1 d kT,  (1+ e
hflPC)IkT8)(1 ekTi kTkT,

—
at

kt(x) - 
hfipo P,°

)C (2.47)

where the quantum spin depolarization rate v i is given by

2

(Q) = 
(

Il
Win 8(g - 2)L

V2h/gleo)
2rkTH 2sinh(&±-)

1

dvz 2 

i• exp( 62 111) ) 27rpidpill(( - 1)e-',p) 2.(2.48)
1}µq>fi(g/2-1)11co  2k711

When we again normalize the integrals as in Eq. (2.40) we obtain

J9) = 2.5 x 102v P-;± 

\2 

( 
ht2c0/2k71 n(e)(g,fico)apin k L sinh(h0,012kTL)

where 70)(E, SU) is

1213)= duulrnexp(--u ji 2r NAIR- - near,P)12um 2 o 2

and the lower cutoff un, is

= - 1)3/2(x,o1,113.)2

(2.49)

Note that um < 1 provided that k711 >> (g/2 - 1)hfle, a condition well-satisfied

in the experiments. In this case n(Q)(E, nee) approaches the classical result n().

However, even when um < 1 Eq. (2.49) implies that the spin relaxation rate is

notably suppressed by quantum effects when kTi < MI,. This is because almost
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all of the electrons will stay at the ground Landau level in this case and they are

forbidden to further give up energies to excite the spin flip. Aside from the quantum

suppression factor in Eq. (2.49), the equilibration rate is also strongly modified by

the factor

hneo h(f-1)0,0 hop. 
(1 — e lift kTo leT, )

in Eq. (2.47), which arises from the self-consistent consideration for the energy

transfer between spin and kinetic degrees of freedom. However, if ht. > hSle and

kTn> (g/2 —1)M-it one may verify that the spin temperature equilibration equation

(2.47) returns to the form of the classical equation, Eq. (2.39).

As discussed in connection with Eq. (2.3), we see from Eq. (2.47) that the

spin flip collisions just calculated cannot drive L, Ti and Ti toward a common equi-

librium temperature. Instead, they can only drive the plasma to a partial equilibrium

between T„, Tj_ and TH such that

h12,0 h(g/2 — 1)140 hflpo = 0
71,

(2.50)

from which Eq. (2.3) immediately follows. This is a consequence of the fact that

these collisions conserve an N-particle adiabatic invariant which equals the sum of

the cyclotron action and the spin component along the magnetic field for each par-

ticle. For each binary collision, this invariant reduces to the two-particle invariant
Ef Ec

p(2) = slz szr — — where Ei/ and El are the relative and center of mass
ft,

perpendicular (cyclotron) energies. The invariance of 1/(2) is evident because for the

spin flip collisions discussed in this paper, El and one of the two spins, say, szz, ,

are not changed before and after collision, and the remaining part in the invariant,
Asiz —Eft = siz (v I/2)h, is also conserved since av =  . For a weakly cor-

related plasma in which the collisions are predominantly binary, one may generalize
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(2) to a many electron adiabatic invariant p(N):

i
l(N) = E(s22+-1,-,L )sic (2.51)

where the sum is over all the particles. This expression is an extension of the many-

electron adiabatic invariant E, Et/Q, derived previously for a system in which the

spin orbital dynamics are decoupledN In such a system the spin and cyclotron actions

are conserved separately. However, an inhomogeneous magnetic field couples the spin

and cyclotron dynamics causing an exchange of spin and cyclotron quanta, which

leads to the generalized many electron invariant of Eq. (2.51).

Equation (2.3) follows directly from the statistical mechanics of p,(N)-conserving

collisions. As a consequence of the invariance of µ, the equilibrium distribution has

the form p = Z-1 exp(-0H ap(N)), where H = Ei(si,12p + Ft + Z11) is the total

energy and 2, a, are constants. By rearranging terms, p can be put in the form

P — 
expE(  Eipar 

i kT, kTL wit )

where TH, T1 and T, are related to a and /3 through the equations

1 a 1 a 1

. These relations are equivalent to Eq. (2.3).

Equation (2.3) leads us to conclude that T, will approach T1 in this par-

tial equilibrium if T11 >> (g/2 — 1)71 10 37'1. The fact that Eq. (2.3) does not

result in the thermal equilibrium condition TL =711 = T, implies that we cannot

rely on these spin flip collisions to drive the system to complete thermal equilib-

rium. Complete thermal equilibrium requires that action invariants such as p(N)

must be broken. One of the most important p,(N)-breaking collisions is that involv-

ing collisional perpendicular and parallel energy exchange without spin flip, which
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has been discussed by another paper[3I For a weakly inhomogeneous field, this kind

of p(N)-breaking collision is the dominant mechanism and these p,(N)-breaking colli-

sions cause equilibration between 711 and TH on a relatively fast time scale. If one

assumes that T1 = TH during the spin-kinetic temperature equilibration process the

condition T1 = = 7'. follows directly from Eq. (2.50).

2.6 Discussion

We have seen that in a cryogenic strongly-magnetized pure electron plasma

the equilibration rate between the spin temperature and the kinetic temperature is

dominated by a single process—electron-electron collisions in a nonuniform magnetic

field. We have calculated this rate for the case of a weakly-correlated plasma in which

the collisions are uncorrelated binary events, taking into account the possibility that

the cyclotron motion may be quantized. Although many other processes can also

cause spin flip transitions, we have estimated the rates for these processes to be

longer than the typical loss rate of the plasma, which is on the order of 10-5sec-1.

We find that the equilibration rate is proportional to L 2, where L is the

scale length of the magnetic field inhomogeneity. In the experiments the uniformity

of the magnetic field can be varied over several orders of magnitude simply by con-

fining the plasma at different distances from the end of the solenoid which produces

the magnetic field. Inhomogeneity scale lengths from L 10cm. to L 103cm

can easily be achieved through this technique. This suggests that the rate at which

the electron spin temperature approaches the kinetic temperature can be relatively

easily controlled. If this rate is reasonably fast, it might be possible to use a mea-

surement of the plasma spin polarization as a thermometer for the kinetic degrees of

freedom. Since the electron spin distribution becomes polarized as kT, falls below

hit., measurement of the degree of polarization of the electron spins could indirectly
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provide the kinetic temperature in a range of temperatures on the order of

For B 10 — 601CG, this temperature is on the order of 1K, which is over an order

of magnitude below the minimum temperatures which have been measured using

current techniques[12]

On the other hand, if the plasma is confined in the central region of the

solenoid where the field is very uniform, the electron spin distribution is effectively

time-independent. This suggests a second experiment, in which one uses the spin

of an electron as a tag in order to perform various test-particle measurements. For

example, one might place a small subpopulation of the plasma in the opposite spin

state from the bulk of the plasma, and follow this population's subsequent dynamics

in order to evaluate test-particle spatial and velocity diffusion coefficients.

Of course, both of these experiments rely on some scheme for detection of the

polarization state of the electrons, and in the test particle experiment a technique to

set up an initial spin distribution is also required. Fortunately, several methods for

manipulation and measurement of electron spins have been perfected. For example,

the phenomenon known as Mott-scattering[131 has been employed for many years in

order to both produce polarized electrons and accurately measure their spin state. A

novel technique has also recently been proposeini in order to produce large quantities

of cryogenic spin polarized electrons by using the magnetic inhomogeneity due to

finite solenoid length in a trap of the type discussed in this paper. The proposed

technique makes use of the idea that the spin Hamiltonian s • Q(x) acts as an

effective potential in the orbital energy, and this potential is of opposite sign for

electrons of opposite spin. As the spatial distribution of electrons thermalizes along

each magnetic field line, the — spins collect in regions of large lip(x) and + spins

collect in the regions of low SZp(x), provided that the parallel kinetic temperature

kTii is less than hIASIpl where AS2p is the difference between the spin precession
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frequency in the strong field and weak field regions. This proposed technique could

be used to provide copious quantities of cryogenic spin polarized electrons for the

spin tagging experiment, as well as other experiments involving polarized electrons.

Finally, we briefly discuss the effect of plasma rotation on the spin depolar-

ization rate. The plasma is confined against radial expansion by the v x B force

induced by rotation through the strong applied magnetic field. Throughout the pa-

per we have assumed that the plasma rotation frequency w, is small compared to

Qp — IL,, so that we may neglect the effect of rotation on the dynamics. This is

the usual operating regime for the experiments, which generally involve low density

plasmas. For a uniform density plasma column the density is related to the rotation

frequency through the expression wp2 = 2w,(n. — cor)1141 However, the rotation fre-

quency can at least theoretically be as large as Qz (although this can be difficult to

achieve in practice), so it is useful to consider this situation.

In a frame rotating with the plasma the coriolis force, which acts like a

magnetic field, shifts the cyclotron frequency to the vortex frequency Qz — 2451

Furthermore, the spin precession frequency is Doppler shifted to Sip — w,.. Thus,

if w, is not too close to ft, or to 12,/2 our results remain valid provided that one

substitutes for fliz — 0, the expression Op — II +w,, and substitutes for fr, the effective

Larmor radius in the rotating frame, fotz/(Qz — 2w„). For w, near Qz/2 the guiding

center approximation for the orbital dynamics breaks down, although sz remains an

adiabatic invariant. For w, near Qp the spin precession frequency is no longer large

and sz is no longer an adiabatic invariant. This introduces a rather novel density

dependence in the spin depolarization rate, which can be summarized as follows.

Starting at low densities, as the density increases the collision frequency increases

and the rate of spin relaxation increases linearly with density. As density increases

further, w, increases to 0(14 — lie) and the electron spin precession (as seen in
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the rotating frame) goes out of resonance with the cyclotron motion, exponentially

reducing the rate of spin relaxation. However, as ca,. approaches Sle, the effective

spin precession frequency in the rotating frame, flp — con can become as small as

(g/2 — 1)fte. Thus, for a narrow range of rotation frequencies near fic the rate

of spin relaxation should increase dramatically due to resonances between the spin

precession and any orbital motions having frequencies on the order of (g/2 — 1)11e,

such as collisional dynamics parallel to B.

2.7 Appendix 2A: Calculation of the Transition
Matrix Elements

In this appendix we calculate the transition matrix elements in Eq. (2.32)

for a spin flip from down to up. We will evaluate < 1-1, a f loll a > first. The initial

value of a is defined by quantum numbers (v, is) describing the cyclotron quantum

state and the parallel energy respectively. The final value af = (v —1, it h(g /2 —1))

is in accordance with energy conservation in a resonant transition from spin down

to spin up. According to Eq.(2.23),(2.24), and (2.27), we have, to the second order

of rapt,

where

<1 — 1, a Iiillot >= M + M2 + M3 + M4 (2.52)

, < totivalia >(°) (1 —ci —

= E (4, + b: fa, + c: h.: f „,,)(°) < laTalla >0),
a'

M3 = E (aact, + caa,)(°) < la f lail&
a'
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M9 = E cia,42,„ < ictilatia" >(3) .

We now compute MI, M2, M3 and M4. Since KJ 0 n, the orthogonality of kets

Ila >0) and Ila >0) implies that M1 = 0. In order to calculate M2, we note

that (0) < > (0) -= NrIn5,,,,,_15,tin for a' = (tin') and therefore we only

need to calculate the perturbation coefficients aaf„e, batai, car„,, hafa, for a' =

(v — 1,n). However, Eq. (2.22) and (2.23) imply that in this case ac,fa, = 0 because

cviIx3hv — 1 >=< vf lxlv — 1 >= 0 for vf = v — 1. Furthermore,

5 Al  (o)
bc, < vitcflx41v —1, lc >(°)

8 pi• •

(0) < kiifizmc >(°)(o) < vf ix2 iv _ 1 > (°)
Psi — Sc

= (2 — 11/ X 7'1)2h/saki — n)

where f,9„, (0) < isil f(z)lic >(0) and we have made use of the matrix elements

(o) < v,Ix2v_ 1 >(o)= (2 — 1/v)7.92114 and (°) < viki Wiz/ — 1, > (0) = 0 since

Kf n. Continuing on to the next term in M2, we have

r < ctil,;c1x3 +9(z)xlai >< g(z)zial >
Cajal =

as (n1 — is)[(vi — vi)hflco —

We observe that the numerator of each term vanishes unless v1 = vf ± 1 or vf ± 3

for al = (vi,ni). But vi = zij ± 3 can be excluded since then the numerator equals

_iaco2 3 !Arco
< lci I 2pi X ki ± 3, ni >< V/ 2pi eivf,K >
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which is zero for n f it. Then, using the matrix elements < vlx31v — 1 >. -3r3
L8 9

and < viz — 1 >= arqL, we find that the numerator equals

—3g 1 2
 (1/1/corg2L)291,f is(8,,KI + ) + +4rqygniatifitcpc

32/31

for = v + 1. The result is identical for v1 = — 1 except that v is replaced by

v — 1. Adding the expressions for v = ± 1 together, we obtain

—3/1(1c0r4)2gnin V2 V
2 (1/ — 1)2 (1/ — 1)21

Cala' =
32111(n, — n)v2 [—h,flco nf — it h,11,.0 + Mico+ f ic hi/co j

2
TgL Li V — 1

n 
4(tti — n)v thtinignlit [—Ist az" co + 14/ — 

+ 
Hata 

Itl
Kf —

2rgLg,,,
Finally, hafce = 2p(nf — n)v
obtain the following expression for My:

by definition. Now combining the above results, we

M2 
=

„2
' qL 2g,, 3

(2v 1)f,”+  1 8vP(Slcorql.)2
4(/4/ — '00; Pt

I (I/ — 1)2 1/2 V2 (V — 1)2  11

I. hfle0 nue) —Mica + — hnco Kf — KJ j

Li 
[ 

v — 1  1
++ 4 E gti ni gn'n —finco + n f — K1 hnco + nf — nu].1

where nf — it = —h(f/p — SM. Turning to M3, a similar calculation yields

V ,421, 3 9. • K

M3 
=

(2v + _i_tocorgL)2"4(n— ni)03 8 piv

(V + 1)2 (1/ + 1)2+ V
2 2

 + V
HALO + f hilc0 hnco
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V + 1 V
tr, + 4E g.., [ -hoto , + 
nate)n-ni]

Turning to M4, we notice that < bated/a" >= ilz, 180,(,,s+1)8,,,,,,,. Then

M4 = E vv, + af.

E v + 1 
< a'IHMlaf >< 11/(1) + 1, n' >

v, 
a' [(v1 - v9h,f/co nf - n'] [(v - v' - 1)hfLo + sc —

From Eq. (2.22) the numerator is nonzero only when v' - vf = +1 or +3. In these

cases, the denominator is of order 0(h1.6)2 because In' - lel and k - WI must be

much smaller than h,12c0; otherwise the inner products involving the dynamics in z

would result in exponentially small results. Recalling that HO) is of order 0(rA1-1,
Pt

we see that M4 is of order Go(—)
TqL4 

, which is negligible compared with My and M3.

Finally, combining these results we have

<1- 1,a,àI1a >= Af2 + Af3 + 0( )3Pi

rqL 2 29,, 3g„in. hfico — (2v2 1)(nf — n)11+
h41,34(ni - 2pi -(n - n)2 /hflc0 j

hcia (21, - 1)(nf - tzi)_I- 4E g,„„,g,t,. (hilco2 _ (ni _ no2

hf20-p(2v+1)(11,--Ki)l
(hnco )2 _ (is _

This expression may be further simplified as follows.

(2.53)

As shown in the Appendix of

Ref.[ 3], the matrix element can be evaluated to the lowest order in (nf - n)/n

= (-2 - 1)hSlc0in by integration along the classical i(t) orbit: gap, = f dtg(i(t))

')iih [see Eq. (2.35)]. In order to avoid an exponentially small result, we
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11require that  
1£1 — K

g(i(t)) changes and

and therefore

0( ), where pilv is the time scale during which the function

Ki 
v = /2K/ p. Then we obtain the ordering  

— K <Q(TL )  
ht2c0 pi vh,f2e0

hileo — (2v2 1)(Kf — K) 
= 1 H-0().

hflco — (n1 — MILO

Using the same argument, we find that

and

Mid) (21., — 1)(it f — 1£1)1
(ha co)2 — (1st ttly = hi2c0 (1 0(?)),

hfla + (2v + 1)(K — 1
 (1 + 0(7f1:)),

(hQc0)2 — (is — isi)2 hileo

so the difference between these two expressions is of order  
1

0( )). This implies
hfico

that the term in Eq. (2.53) involving the sum over Ki is approximately equal to

Eg,,,,,„(g„,„hilco) • 0(rE') which is higher order in E'7. than the other terms in Eq.
PIPt

(2.53). Combining the above results yields

< / — 1,a1jet1/,a >
T2L

4(ni — /007
( 2f.f. - gnitsPt Pt

) 0(qL

4h(f/ Wi, — [L/ ((pl z2)512 nit

We may easily calculate the other matrix element < 1 + 1, a f lec iz , a > fol-

lowing the same procedure as for < 1— 1, atle1/, a >. This matrix element can be

written as .11C. ./t4; ML Mh 
0(rt—g, 

)
3 

where MI to ilfh have the same form

as M1 to M4 except that a is changed to a+ and h* , is changed to —h*fa , . Weafa a 

determine the order of magnitude of the matrix elements MI to /1{1 in order to

show that they are negligible. First, AC. = 0 since I f $ K. For 11/4, the term

rgLe2 Pt2 — 2.Z2  ) (2.54)
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< l&àla > yields the selection rule: = ii + 1, n' = K. Then= 0 sinceafa

< vf 103 Iv + 1 >=.< viixiv + 1 >= 0 for v1 = v — 1, and

b , = _5 pn2 p2< vitt f lil 1 lv + 17 IC >  fi/.t < vilx2Iv +1>  0()7' L 3
+ ata 8 e° I Ki — K — 2haco Kf — K — 2hf/co P1

since < vf lx2 11, + 1 >,,, 0(rg2L). Similarly, we have cain, --, hafc,,
PIr L r y

therefore ./14 ,--, Q()3. One may also check that 4 r'.0( 1 -)
3 
. Turning to

PI PI
the term < /ale+

and

AC,

lict" > implies the selection rule V = v"+ l, K' = K" and therefore in

analogy to M4 we have M: 0(T3—L )4• In conclusion, we find that the matrix element
Ptr L<1+1, a f ia+ 1/, a> is of 0( )3, which is negligible compared to < i—i, af valt, a>.

PI

2.8 Appendix 2B: Evaluation of the Elliptic In-
tegral Expression for t(z, p)

In this appendix we obtain a closed-form analytic expression in terms of

elliptic integrals for the parallel guiding center motion t(z, p) given by Eq. (2.16).

This simplifies numerical evaluation of the function /(x, ). Although alternative

expressions for t(z, p) are possible, the one derived in this appendix has the advantage

that it avoids (removable) singularities and is then useful for numerical calculations.

From Eq. (2.16), 1 can be expressed as

1 1
1(2,p)= La dq. vi2 fi2 )

where 2,„ is the 2 value at the distance of closest approach:

o for fi > 1
=

V1 — e for fi < 1

For fi = 0, the integral in Eq. (2.55) can be easily calculated

is that t(i, 0) = 02 — ln( +

(2.55)

and the result
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For p 0, we introduce the new variable it = arctan(2/fi); then Eq. (2.55)

becomes

where

t(u, = 
2fiin du

um (1 —2 sin2 u)2 V(1 — + sin2 it

arctan(ina fi).
2

We now proceed to evaluate i(u) separately for the p > 1 and p <1 cases.

(A) p > 1 case. .br We rewrite i(u) as

0-170. 
2/p— 1 [P-2(u, Li) — P_ 2 (Um, p)]

where we define

pncu, fli du(--1 +
2

V1 + p2 sin2 it,

p 21(fi —1).

Notice that /3_2 can be expressed in terms of P11 through the identity[16]

— p2/31 = —Ai tan 2u +
p: p ;(1 p;

Now we relate PI1 to elliptic functions. First, we note that

P1 + siu2 u du = —
+ .7721 ) adui+ p12 Aidu

1 1  1 
(2+ p2) N/1 p2

F1+ 17; [,‘ p2Ei — p2 sin u cos u/L11],

(2.56)

(2.57)
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where E1, F1 denote the first and second kind elliptic integrals: E1 .e" E(/, 1c1);

F1 F(P, k1), and

For P_1 we use identity

and obtain

(V1 + p2 sin u\
-a- arcsin

k1 Ep1\11+ p2.

1 —4 Ai 2p2
+ sin2 u)Ai p2 + 2 1 — 2 sin2 u (p2 + 2)Ai

P
' 1—4 1= 

p2 + 2 A/1 + p2III+ p2 + 2 N/1 + p2Fi,

where ii denotes the third kind elliptic integral:

2 + p2
ii rqo 1 p2

Finally, substituting the elliptic integral expression for P±1 in Eq. (2.57) yields

P_2(t, fi)
22(u) P4 , 2

A + [1 + (2 + p2)2iN/1 1)2 171pal 

4.V1 + p2 E 4p2 1
2 + p2 1 (2 + p2)2 + p2rib

where i(u) = ptan2u.

(B) p < 1 case. We rewrite Eq. (2.56) as

/WA = 2Vp + 1(Q 2(v 15) -

(2.58)
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where

Qn(v,p) fo" dv(— + sin2 v)" A2

A2 \11 - ksin2 v

k2 _  lb. 2+p

1
-
7 
- = - larctan 

94 
- 1.

2 2 2 /

In analogy to Eq. (2.57), we have, for Qn,

1 k3
= -A2 tan 2v - —

4 Q-1 + -2(1 -

where

'21= --
2
1 sin2 v

dv
A2

(2.59)

1 ( 1 
1

)F2.
E2 2 2

Here E2 and F2 denote elliptical integrals of the first and second kind: E2 E(V, k2);

F2 F(V, k2). For

we havelll

dv
Q-1 = -2)'

(1
- 2II(v, 2, k2),

- 2 sin2 v)A2

,
Q-1 = 2112 -2F2 

1 in Ipi tan vA2
Ipi tan v - A2 
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where 112 denotes the elliptic integral of the third kind:

and

112 II(v, 1
1 
+ fi,k2),

Pi = CI •t5 + 1

Finally, substituting the elliptic integral expression of Q±i in Eq. (2.59) yields

1 1 1
Q-2(v, fi) = 2(1 - )F2 - 2(1 + )E2 -II2

1 1 pi tan v 612 
- 2(1 + ritak2 - In I

P P pj pi tan v -A
(2.60)

where 2(v) = -p tan 2v.

This chapter has appeared as an article in Phys.Fluids B, 5, 691-710(1993).
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Chapter 3

Temperature Equilibration of a
1-D Coulomb Chain and a
Many-Particle Adiabatic Invariant

3.1 Temperature Equilibration of a 1-D Coulomb
Chain and a Many Particle Adiabatic Invari-
ant

The one dimensional Coulomb chain is a form of condensed matter consisting

of charges of a single species trapped in a linear configuration through the application

of strong external magnetic and/or electric fields. Recently, such chains have been

realized in two experiments,[1][21 in which the charges have been cooled into the

regime of strong correlation where the correlation parameter l' elaT is much

larger than unity. (Here q is the ion charge, T is the temperature and a is the

average intercharge spacing). The 1-D chain has been suggested as an advantageous

configuration for a novel type of atomic clock based on trapped ions.[21d3] It has also

been predicted that such chains may form in heavy ion storage rings provided that

sufficiently strong electron or laser cooling is applied.k1 Such cold 1-D chains would

provide an attractive low emittance ion source.

Although the charges are strongly bound to the axis of the trap or the stor-

80
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age ring by the applied forces, high frequency transverse motions still occur and the

temperature T1 associated with these motions need not be the same as that asso-

ciated with the motions parallel to the axis, TH. For example, when laser cooling

or electron cooling is applied along the chain axis, the transverse oscillations are

not directly cooled and come to equilibrium with the parallel motion only indirectly

through Coulomb collisions.E5] In this case the overall cooling rate depends on the

rate at which collisions cause T1 and TH to equilibrate. This equilibration rate has

been examined via numerical simulations.] However, the regime in which both par-

allel and transverse motions are of small amplitude (near harmonic) has not yet been

explored, and it is often in this regime that the experiments operate.

In this paper we calculate the rate I/ at which an anisotropic temperature

distribution relaxes to thermal equilibrium in a strongly-correlated (I' >> 1) 1-D

chain in the strong focusing limit, where the motions transverse to the axis are of

high frequency compared to the parallel motions. Because of this timescale sepa-

ration we find that a many particle adiabatic invariant exists, equal to the total

action associated with the transverse motions. If this approximate invariant were

exactly conserved, equilibration could not occur. However, we find that N body col-

lisions cause small changes in the invariant, leading to a slow rate of equilibration,

exponentially small in the ratio of transverse to parallel frequencies.

Our model for the trap consists of a harmonic radial confining potential

of the form nu4 (x2 + y2)/2 where r = (x, y, z) are Cartesian coordinates with z

oriented along the beam axis. In the strong focusing limit of interest here, the

parameter c wo/w, is small, where wo -a \I q2 I ma3 is a plasma frequency associated

with parallel oscillations. This radial potential is an excellent approximation for the

linear(21 and circular[1] Paul trap experiments, and is a useful first approximation

for the comoving frame of ions in a storage ringtil The Hamiltonian for the N-ion



82

system is then written as

H(ri, pi, PN) = E(p/2m mwrz[x.2 in]/2)
n=1

Eeivrin +yi2n +[zin+a,(1—q2
I>n

where rin ri — rn, and for each ion rn is measured from its equilibrium position

in the linear chain. For simplicity we assume here that in equilibrium the ions are

equally spaced, as in the ring trap, and image charges and curvature effects, if any,

are neglected.

When the ions are strongly correlated, the dynamics is dominated by N

body processes rather than 2 body collisions. Here we assume that both I-1

q2/aTi and Fp elaTo are sufficiently large so that we may describe the ion-ion

interaction as emission and absorption of phonons. The ideal phonon limit is then

attained by expansion of the Coulomb potential in Irnl/a to second order in this small

quantity. The resulting harmonic Hamiltonian Ho then describes N eigenmodes with

polarizations parallel to z and 2N transverse modes. The parallel and transverse

mode frequencies are given by[6] w2 (k) = wo[8Ert_1 sin2(nk/2)/n3p12, and wi(k) =

— 44(1c)/2 respectively, where k = 27rn/N(n = 0,1, N — 1) is the parallel

wavevector of the eigenmodes normalized to a.

Even at low temperatures, anharmonic terms neglected in 1/0 but present

in H couple the parallel (or transverse) phonons to one-another, e.g. through 3

phonon collisions. This low-order phonon-phonon coupling is expected to cause the

distribution of parallel (or transverse) energy to relax to a Maxwellian described by a

temperature 711(714 However, when € < 1 energy conservation does not allow these

low order processes to create or destroy transverse phonons, because annihilation of

a single transverse phonon requires creation of many parallel phonons.
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The total number of quanta (i.e. the total action) associated with the high

frequency transverse motions is then an adiabatic invariant. In order for the trans-

verse and parallel temperatures to equilibrate this invariant must be broken: trans-

verse phonons must be created or annihilated. In fact, the symmetry of H in x and

y implies that transverse phonons must be created or destroyed in pairs. The rate v

for parallel to transverse equilibration can then be estimated using an order of mag-

nitude estimate based on Fermi's golden rule: v (40 < (AH/H0)2 > where AH is

the interaction energy for a process which annihilates two transverse phonons, and

< • • • > denotes a statistical average. Recognizing that about M parallel phonons

must be created in this process, where M = 2w,./(4, and carn = 71.a0 is the maximum

parallel phonon frequency and n V7((3). We crudely approximate AH as a Tay-

lor expansion of H: AH/Ho zm(x2 oiam+2. We perform the average using a

harmonic Einstein approximation for the distribution of displacements, proportional

(plizz _Fr jAx2 +0/62)/a2i.jto exp[— Neglecting an unimportant multiplicative con-

stant, the average yields

(woe4/r)exP[-211 +111(nErii/2)1/7/E1 (3.1)

which is exponentially small, as expected. Note however that am must be greater

than unity in order for the result to be sensible, because the average is dominated

by z displacements with a peak at z/a 1/Ver11. That is, large displacements in z

would make a large contribution to the rate, but when Fil > 1 such displacements

are improbable. When Ern > 1 small displacements make the main contribution to

v, consistent with the assumption of harmonic fluctuations.

To calculate the equipartition rate more rigorously, we perform a series of

three canonical transformations in order to isolate the total transverse action variable
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Jo. We first transform to phonon coordinates (ik,po, through the Fourier relations

N-1
(ik, ph) = N-1/2 -ik/ iklE (rie ,pie ).

1=0
(3.2)

In these coordinates Ho has the form of 3N uncoupled harmonic oscillators of fre-

quencies Lai, where j refers to both wavenumber k and polarization direction (i, ,

or .1): Ho = Ei[pV2rn mcvyrP2]. We next transform the 2N transverse phonon

variables to 2N action angle pairs (Oh .7j) via the transformation

(f j,i54 = V2IiIrawi(s j, j COS 117 j) (3.3)

The angle variables evolve on a timescale of order (4,7'. Finally, we apply the

canonical transformation[71

Go = ipo,e; = tki — (i 0),./0 = E J,= 13). (3.4)

Now only 00 varies at ca,71; all other variables are slowly varying. The total transverse

action Jo is therefore an adiabatic invariant.

We are interested in the time rate of change of Jo averaged over a suitably

chosen statistical distribution D of systems: d < Jo > Idt = f dADV0,1-14 where

A is a point in the 6N dimensional phase space, and [-, dA is a Poisson bracket. At

some time in the past, long compared to the relaxation time to a two-temperature

Maxwellian but short compared to the 7'1 —> Tit relaxation time, we assume that

D was a two-temperature Maxwellian, written as Do = Z 1exp[—ca,.J0/Ti. — (H —

w,.J0)/711]. However, since Jo is not an exact constant of the motion, a fluctuation

DI develops which may be obtained through solution of Liouville's equation with Do

as the initial condition: Di(A,t) = — f t de[D0,1-/]A(e), where the Poisson bracket

is evaluated along the phase-space trajectory A(e) for which A(t) = A, and where

the slow time dependence of 71 and TH has been neglected. Substitution of D1 into
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d < To > I dt then yields

d < Jo > I dt =dAD0[J0,111), + (11T1 — 11711)(26)-1 if +cc dr C (r) (3.5)

where we introduce the correlation function C(r) < J0(04(0) >, T toot, J =

—awaeo, and where < • • • > represents an average over Do. For a detailed derivation

for Eq. (3.5), see Appendix 3A. The first term of Eq. (3.5) vanishes because Do

depends on A only through Jo and H; and the time integral in the second term has

been extended to t = +co using the symmetry C(r) = C(—r).

However, the time integral in Eq. (3.5) cannot be evaluated because it involves

the exact trajectory A(t). We follow standard practice181 by substituting approximate

trajectories AM(t), in this case determined by the harmonic Hamiltonian Ho, and we

also replace Do(H, Jo) by Do(Ho, J0). That is, we approximate the dynamics by that

of an ideal phonon gas, so the system must be strongly correlated, i.e., > 1.

We also assume here that the parallel force due to transverse displacements, of

order q2r/a4, can be treated as a small perturbation of the parallel motion, which

requires F >> Ori The substitution of A(t) by A(°)(t) is a major assumption

of our calculation. Despite the fact that this type of assumption works well for a

weakly correlated plasmarn, its validity needs to be tested for a strongly correlated

plasma. Furthermore, we expect that processes involving creation and annihilation

of only two transverse phonons will dominate the equilibration rate so we Taylor

expand moo° in xl„ and keeping only lowest order non-zero terms: jo =

(q2/2) E1> Z1;304,15610 where -=- 4 + yr,. and Zin (1 — n)a zir, is the z

distance between ions 1 and n.

With these assumptions we find that the averages over transverse and parallel



86

phonons appearing in C (r) decouple:

C(r) = 711 E octe-, ro,

where m (/,n,t,n), and the sum runs over all / > it, >ñ. The (dimensionless)

parallel and transverse parts of CM are da(r, PH) 4a6 < Zin3(r)Zin3(0) >, and

Cj(r, e) F < 5rin(r)/8008rfn(0)/800 > /16a4

respectively. Employing harmonic phonon orbits AM(t) to determine rin(r), the

average in Cm-L can be performed explicitly (see Appendix 3B):

Cit(7, e) = 2e4([SI(er)J2 — [8,;(cr)]2) cos(2r/e) 2S(er)S(er) sin(27-/e) (3.6)

where the functions Sit, and Sij., are defined as

ce 
o 

[cos k(1 — 1) + cos k(n — it) — (1 4-+ n)] cos[q(k)7-/44]. (3.7)27r

S(r) Lir C-Tligr [COS k(i — + cos k(n — 71,) —(1 n)] sin[q(k)r/44]. (3.8)

We now turn to the parallel correlation function. The use of harmonic phonons in

the parallel average implies

CL = dX1dX2gM(x1)Z2)hm(T, 2X1X2/rii)Jo

where the functions gra and hm are given by

gm(xi, x2) (xix2)2 exp[—xi(1 — it) — x2(t — it)

+ 2[x fi,(0) + x; fr,(0)] (3.9),
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Figure 3.1: Plot of the parallel correlation function fi(r)

hm(r, a) = exp[- a .11_1(r) f,,_f,(r) - (1 4-)• 70], (3.10)

and where the time dependence enters only through the correlation function f1_(r)

< zin(r)zi„(0) > /4a2 which can be written in terms of the parallel phonon spec-

trum:

7, 1 - cos km
fner) = dk2r(k)/g 

coskii(k)r two].
o 7rw i w 

As shown in Fig. 3.1, fn(r) is an oscillatory function. Furthermore, as we derived in

Appendix 3D, when T -) 00 , the amplitude of this oscillation scales as 1/ AFr ---> 0.

In deriving this expression for CI we have employed the a technique discussed

in Appendix 3C. We replace Zi2 by a smoothed function dependent on a parameter

fi:
/3

Zin3 dxix?exp(- Zin/ a)/ 2a3

This is exact for -> oo, but for finite 3 it avoids the singularity in Zin3 which
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occurs for close collisions, i.e. when 4, --> 0. This singularity is disallowed under

exact dynamics, but is allowed in the harmonic dynamics which we employ, and it

would lead to a singular result for CM [this can be observed in gm(xi, x2), which

blows up as x1 or x2 approach cc]. However, we will find that a range of large but

finite [3 values exist for which an is independent of 0, provided that > 1. Only

then is CIL dominated by small z displacements, just as in Eq. (3.1).

To evaluate Eq. (3.5) we first perform the time integral

/m( 6, a) 1-'3° drCml- (r, e)hm(r, a).

The function hm, associated with parallel fluctuations, is slowly varying compared

to the rapid oscillations of Cm± ; this leads to an exponentially small result for /m. It

is also important to note that Cm± 0 on a timescale of order (ewo)+1 due to phase

mixing of the transverse phonons; that is, 8+ and S+ —* 0 on this time scale, so the

integral is convergent. We evaluate ./m using the saddle point method in the complex

T plane. Since the integrand is an entire function of r, we can deform the contour

through the saddle points. Their positions depend on m but after examining /m

for different m's in Appendix 3E, we find that the integral obtained from nearest

neighbor interactions, me = (1,1 — 1,1,1 — 1), dominates the final result for ii so we

keep only this term.

In Fig.3.2 we show that the original integration path from —cc to oo is

deformed to the new contour L„, where L„ is the steepest decent path passing

through the saddle point rm. The saddle point positions are then solutions of the

saddle point equation h(r) = —qua. Because fi(Re[r]) is oscillatory, as shown in

Fig.3.2, there are an infinite number of solutions distributed symmetrically on each

side of the imaginary T axis, as well as one pure imaginary solution. However, for

small e only a few saddle points nearest Re[r] = 0 need to be kept, and in fact the
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Figure 3.2: Plot of the steepest decent contour in the complex r plane for the
saddle point calculation of /rus(c, a)

pure imaginary saddle point gives the main trend of the integral. A comparison of

the saddle point method and direct numerical integration is shown in Fig.3.3.

An important feature of Fig.3.3 is the abrupt steps in 1itn at integer ratios

between frequencies 2w, and the maximum parallel phonon frequency w„, = nwo.

These steps are a consequence of the fact that the frequency spectrum of the harmonic

parallel dynamics [described by Mr)] exhibits a sharp cut off at cam, as shown in

Fig.3.4. This implies that a phonon-phonon interaction which creates or annihilates

two transverse phonons and M parallel phonons can only occur if Mw,,, > 2w,, or

<M/2. When c-1 exceeds this value the process no longer contributes and the

rate decreases abruptly. For very large c-1 these steps are smoothed out and finally

disappear because the rate is then determined by many high order processes, each

of which has a small effect when taken individually.
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Figure 3.3: Plot of the time integral /m.(e, a) for different a values. Solid lines:
saddle point calculation keeping 11 saddle points on each side of the imaginary 7 axis
and the pure imaginary saddle point. Dashed lines: saddle point calculation keeping
only the pure imaginary saddle point. Symbols: direct numerical integration; (:):
a = 2.5; 0: a = 0.5 and 0: a = 0.25.

To complete the rate calculation we evaluate the integral

u(c,r11) (40-1 is dzidx2gm.(xi, r2)/..(6,2zix2/rii). (3.11)

The integral is performed by direct numerical integration. The equilibration rate

v ti/Ti can be written as V = 44(1 - 711711)P(6,1"11) where the approximation

< J0 >•-• 2NkTj_lcor has been employed. The integrand in Eq. (3.11) is sharply

peaked near xl, x2 0(1/e), but begins to diverge at large x1 and x2 due to the

aforementioned unphysical singularity in Zin3 (see Fig.3.5). However, we find that the

integral is independent of 0 provided that we choose 1/e < Pii, which implies

erg >> 1. Only under this condition will the harmonic phonon approximation be

valid.

The scaled equilibration rate O(e, Flo is shown in Fig.3.6. The rate is strongly
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Figure 3.4: Plot of the Fourier transform of Mr), which shows a sharp cutoff at
the maximum parallel frequency tu„, = 2.9w0•

reduced as E decreases. As we have discussed, the rather striking steps in the rate

stem from the existence of a maximum frequency in the parallel dynamics, and are

a qualitative signature of the strongly correlated regime. Such steps do not occur in

weakly correlated plasma where binary interactions dominate and no sharp frequency

cutoff exists in the relative parallel dynamics. Indeed, Fig.3.6 allows that the steps

decrease in magnitude as I'11 decreases.

The dashed line in Fig.3.6 is the result for u(e, PH) when only the single pure

imaginary saddle point is kept in /m.. In this case a saddle-point evaluation of the

integrals in Eq. (3.11) yields

i)(e, ri-1) = jr7E/87/2(a0r11)5/2[4,.(ier.) + Sa.(iEr0)12 •

exp[-27-01€ + 2aoh(iro) — N/2riicrol (3.12)

where cto = (7/8 + 1/7e)2 /1"11, iro is the pure imaginary solution of the saddle point
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Figure 3.5: A schematic picture for the integrand in Eq.(3.10) along the x1 = x2
direction.

equation evaluated at a = ao. When > 1, 70 .^±7 + (In -y)/2n, where -y -s_-

1n[Yrnin2/ectolin. Furthermore, for small ero,

Sirn.(ier0)1,

which simplifies Eq.(3.12). As either € or l'11 decreases, Eq. (3.12) becomes a bet-

ter approximation to u(e, ri) (see Fig.3.6). To lowest order in e and (eF11)-1 the

exponential dependence in Eq. (3.12), exp[-21n(erii)Inc], is the same as the crude

estimate of Eq. (3.1).

In order for our calculation to be valid, the aforementioned conditions e << 1,

erii >> 1 and I' j_ > OA must be satisfied. In fact, these conditions are not fully

satisfied in the previous molecular dynamics calculation [6] (the last condition in

particular) and therefore a detailed comparison between that calculation and the

present analysis is not possible. However, Ref. [61 does document a decrease in the

equilibration rate as € decreases. New simulations are underway in order to test our
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Figure 3.6: Plot of P(e, PH) = 14(.0,(1 — 71/711) for different values of PH ._. elaTil.
Here v is the equilibration rate, and € --a. coo /to,.. The dashed lines represent the
results given by Eq.(3.11). Equation (3.5) becomes a better approximation for larger
11€ and smaller P11.

9

results. We also note that other mechanisms, such as scattering with gas molecules or

heating due to the r. f. micromotion in the trap, may contribute to the equilibration

process in a real Paul trap or storage ring.

In addition, when the ion chain is confined in a ring configuration, it will be

bent and in this case, between neighboring ions there exists a slowly time varying

component of the transverse perturbing force:

Sfj — 2R la + 5z(t)I R a Ri+0 (5- (—))
2 

+0 (11  q2 2

where R is the curvature radius and 5z(t) is the relative parallel displacement and

r(t) = roelwa is the relative transverse displacement. Furthermore 61± causes a

change of the transverse kinetic energy given by

dEj, 1 eicorro
dt #%.-1 6 f r(t) r'j 2R la + z(t)I
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which shows the coupling between one (rather than two) transverse mode and M/2

(rather than M) parallel modes. One may thus expect that the curvature effect
a a

causes a rate v
, 

r•-• —
R

v(2e, r). When —
R 

is not sufficiently small , the curvature may

play an important role. For example, the circular Paul trap experimentsill a 5µm
a

and R ••••• lcm so —
R 

5 x 10-4. In storage ring experiment?), typically a — 1µm,

R lm and ± 10-6 is so small that if' is negligible compared with v, and in

linear Paul trap experimentsPI = 0.

Finally, it is worth noting that there is a strong similarity between the present

problem and the perpendicular to parallel temperature equilibration of a crystal-

lized single species plasma in the strong magnetization limit, where the cyclotron

frequency is large compared with the plasma frequency; now the cyclotron frequency

assumes the role of cur This equilibration process has been examined by O'Neil and

Hjorth for a weakly correlated plasma where the equilibration is driven by binary

collisions") However, a calculation analogous to that described here should also make

it possible to extend our understanding of the equilibration process of a magnetized

plasma into the strongly correlated regime. We discuss such a calculation in the next

chapter.

3.2 Appendix 3A: Formalism for the Rate of the
Breaking of an Adiabatic Invariant

In this appendix, we consider a Hamiltonian given by H = Ho +5H, where

Hc, and 6H are the unperturbed and the perturbing Hamiltonian:

N 2,1
110 = E + 43ll5=1 277/

6H =
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Here .riqf is the harmonic potential energy, which is a quadratic function of the parti-

cles' displacements and .1 is the total potential energy. In order to make connection

to Chapter 3 and Chapter 4, where our formalism applies, we assume that Ho de-

scribes 3N eigenmodes with large frequency separation, namely, one or two branches

of the modes are high frequency modes and the rest of the modes are the low fre-

quency modes. Therefore there must exist an adiabatic invariant associated with the

high frequency modes. Supposing that there are n high frequency modes and 3N — n

low frequency modes, then, as we derived in Chapter 3 and Chapter 4, through a

series of canonical transformations, we can transform Ho into the following general

form in terms of the action-angle variables:

n-1 3N—n p2

HO = WOJO Ecto; — wow; + E (—L + _mw2Q2)
2nz 2 I I1=1

where Jo is the sum of the actions of the 71 high frequency modes, and Lej and

Ji(j 0) are the frequency and action variable of the jth high frequency mode. Lai

and (Ch, PI) are the frequency and generalized (coordinate, momentum) pair of the

/th low frequency mode. Since 811 depends on all the angle variables Oi conjugate

to Ji, J1 = —08H/800 0 and so Jo is not exactly conserved. However, because

Wo >> 4•41/ — W01; WI; Jo is an adiabatic invariant.

In this appendix we derive a formula for the rate of the change of the adiabatic

invariant Jo averaged over the statistical distribution D of the system:

< Jo >= dAJ0D(A)

where A is a point in the 6N-dimensional phase space. We start with the Lionville

Theorem:

dD OD
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where [. • 1 is the Poisson Bracket. Then

and hence

OD
= —[D, H]at

d < Jo >

Furthermore, we note that

which yields

dt
D

= dAJo 
O —at

= — dAJo[D, H]

Jo[D, H] = [J0D, H] — D[Jo, H]

d < Jo >
at 

— dAD[Jo, H]

where we have used the fact that f dA[JoD, H] = 0.

(3.13)

In what follows, we perform a quasilinear calculation for d < Jo > I dt. We

assume that, on a short time scale, low order (phonon) collisions which do not break

the adiabatic invariant keep the distribution function near a two temperature thermal

equilibrium:

woJoH — woJ ,Do(H, Jo) = Z-1 exp[ °1

However, on a long time scale, since Jo is not an exact constant of motion, a fluctu-

ation D1 of the distribution function develops which may be obtained through the
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solution of the Liouville's equation with Do as the initial condition:

dDdDo dDi
dt' = dt dt

dDi

=0

and so Di(t) = — tco[Do,H[A(v)de, where [- • limo denotes the Poisson bracket

evaluated at time t'. Substituting this expression for Di into Eq.( 3.13) we obtain

d < Jo >
dt

— dA(Do(t) + (t )) [Jo , Hleme)

= dADo(t)[A,11]A(e) — dA[Jo, co[Do, Il]Amdtt,

where dA means dA(t). Furthermore, since

OD°
[Do, HI 8.10

=-7,11 — —7,12Do [Jo,

we have

dADo(t)[Jo, .11].0) • , d

Hence,

[Do, II] 
— O.

dA[J0,1-1]4(01 [Do; if[kode = dA[../o, H[A(t)

1 1
too(__ —)D0(9)[J0, H]A(r)de ,

-00
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which leads to

d < Jo >
dt

where

1 1
wo(— — —)I 

dAttio(t),jtt 
D0(t1)[J0,1-11A(t9de

Ti T1

1 1 t
= too(—m_L — 711 —) 

i deC(t— e),
J _cc

C(t — t') = dAno(e)Vo, HIA(0[4, nye)

aH(t)8H(e) 
=< Boo 000

= < l0(0,10(e) > .

Here <> denotes the statistical average f dA(t)D0(e).

Since °Hoe°. 0, we may write correlation function C(t) as

where

5811(t) 58H(0) 
C(t) < >aeo aeoamo — (him) 8(4)(0) — 

4H(0))= < >
090 aeoacD(t) acco = <   > co(t)0190 00o

as H(t)amo)— (biro)) 04(i) 54'H(0)C0(t)= <  > + <  >aeo aeo aeo aeo

Since Do is (quasi) stationary, we have

01.(t) 04.(0) 04'(0) sa(—t)
aeo 800 >< aeo aeo

(3.14)

(3.15)
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and

84)(004.11(0) 04,(0)04,H(-t)
89 880 080

We note that the time dependence of Co(t) is determined by 84'H(t) which isDeo '
associated with the two phonon collisions due to the harmonic potential. In the di-

agrammatic picture of phonon collisions, such low order collisions do not contribute

to the breaking of the adiabatic invariant, and we therefore neglect Co. As a conclu-
0c1(t)04'(o) 

sion, we can effectively write the correlation function C(t) as <  > andDeo 000
making use of Eq.( 3.15) we may rewrite Eq.( 3.14) as

d< J0 > = ( 1 1 ) 1 r dr < 

84(t)8(0)dt Ti 26 J-00 aeo aeo
where r E /Opt.

3.3 Appendix 3B: Derivation of Cml(r,€)

as

(3.16)

The perpendicular correlation C( r, c) of the 1D Coulomb chain is defined

e) ri < 8rinerileeo8rli(o)/800 > /16cL4,

where r = coot, coo is the plasma frequency, and where the average is over an ideal

phonon gas distribution. In this appendix we perform the statistical averaging to

derive Eq. (3.6). All the notations in this appendix have the same meaning as that

in Chapter 3.

We start with r 4+y and then 8rin(r)/800 = 2xin8xin/000+(x y).

In order to calculate Oxim/000 and thin/ 000, we use the the inverse transformation



of Eq. (3.2):

and write tin as

where

100

(rt, Pt) = N112 kcal , cud)
It

xin = N-1/2 E pqn(k)ik (3.17)
It

istn(k).= ea's — eilen

Furthermore, we transforni (ik, Ph) to the action-angle variables through Eq. (3.3)

and Eq. (3.4). We then find

090 nuoi(k) (3.18)

To calculate C(7, e) we write

Ci+n(r, e) =< ft(r)ft(0) + f(r)f(0) > + < h(r)f„(0) + f(r)f2,(0) > (3.19)

where

Mr) l's , ,axtn(r)—xinkr)
2a2 500
1"5 ayln(T)f(r) E —2a2 Yin(r)

Combining Eq. (3.17), Eq. (3.18) and using the equation of motion of the phonons:

ile(t) = ik COS WI(k)t  fizk 
Truus(k) 

sin cos ( k)t;

Pzk(t) = pzk cos cal. (k)t — nuoi(k)ik sin wi(k)t,
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we obtain

ri v, ft, veri, cos co (k)t Pick  sin Lei (k)t]
k 

•fm(r) = 2Na2 TiLLOI(k)

Pzle COS ±(ki )1 — ±.ki sin co i(kl)t]
[ nu o ±(11

ri
2Na2 z..s Lpin(k)pin(k')iki3.k coski(k) wi(k')]t.

k le
(3.20)

In Eq. (3.20) the sum of the terms containing sinkai(k) (.0±(klit vanishes

because these terms are antisymmetric under the exchange k and le.

Furthermore, from Eq. (3.20) we have

<

F12 „

4 4N2E Illn(k)Aln(W)Wm(klitra(km)
k k" km

# le±.k" > ‹: ficktiwkm >COS[0.1 j (k) 411(k1)1t ince ±(k)co i(le)

r12712
4a4N2m2 2_,  pin(k)itin(w)itrft(k)Pri,(k) c°s[wi(ic,) + (ki)]t

(ALL k k ?WI k02
k k'

1_:12rtinnin
 

cosws(k)L[2a2] rt 
fj 

12
LO_L(k)2 jlc

— Aln(k)ilti(k)Sill (4) i(k)t 12N ,
Ull(k)2

where we have used

< 13xkl3zki >= MW1(40±(kl) < ikiko >

(3.21)
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= [nu o i(k)]2 <ff > hies = rnTiEkk,

We also find that < f(r)f(0) >=< fi,(r)fy(0) > and the cross terms <

f(r)f(0) > and < fy(r)f.(0) > vanish because

< ilePzle3lk"70ykm >= 0

for any k, k' , k" and k". Therefore we have C a(r , e) = 2 < ft(r)h(0) >.

We next substitute the perpendicular dispersion relation

Loi(k) = \AaS — 4(k)/2 401. — 6th,

where &a -=- c4(k)/4co,., into Eq. (3.21) and obtain

where

< f2(r)h(0) > [1'17'21]2 ([(S1)2 — (5o7n)2} cosCOS 2 r t + 2 SitS; sin 2u4t)
ma 

s;,f; 1 E pin(k)A,,i(k) cos Scot
2N k

s- = — E Ain(k)p,(k) sin Scot
2N k

One may easily check that Siti and 57,2 are equal to Sl(er) and Syl(er) defined

by Eq. (3.7) and Eq. (3.8) by changing Ek to fir fir dx with x ha. Furthermore,

since 111 q2 I k71 and cog = elma3, one may see that EFITI/ma212 = e, where

e wo I co, . Finally, noticing that < h(r)f.(0) >=< fy(r)fy(0) >, Eq. (3.19) can be

written as Eq. (3.6).
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3.4 Appendix 3C: Calculation of the Parallel Cor-
relation Function  < e-t1zin(t)e-t2zon,(0) >

In this appendix we calculate the correlation function < zin(t)e-t2.,,„,(0)

where t1 and t2 are parameters which can either be real or complex and z/n and zit&

are the relative displacement of particles in thel direction. This correlation function

is important because it appears in the calculation for the rate of the breaking of the

adiabatic invariant in both Chapter 3 and Chapter 4. In Chapter 3 the 2 is direction

is along the chain axis while in Chapter 4, the 2 axis directed along the magnetic

field. In both cases, the displacements are written in terms of the Fourier components

through either Eq. (3.2) (complex form) or through Eq. (4.4) (real form). The result

for this correlation function does not depend on which form we choose. In order to

simplify the algebra, we here choose the real form :

2 ,.,
zin(t) = \FN E ([zko) cos coz(k)t 

ik(0) coz(k) sin co.,(k)tJc 
En

k>o

[z_k(0) cos caz(k)t iwiztk°)) sin wz(k)tisin)

chi = cos k • lin — cos k • RE

sin = sin k•Rn — sin k • R./

(3.22)

where RE 's are the equilibrium positions for the charges. In Eq.(3.22), Ek>0 denotes

the sum over half of the Brillouin zone. We note that when the total number of the

particle N is an odd number, the sum over k may leave out a single point on the

edge of the Brillouin zone. However for large N, this single point makes negligible

contribution and is therefore ignorable.
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In the harmonic approximation the phonon coordinates (zk,ik) evolve along

the trajectory of a simple harmonic oscillator with frequency caz(k):

Zk 
4(0 = Zk COS caz(k)t w2(k) 

sin w(k)t.

The statistical average is taken for the distribution of a ideal phonon gas:

Do = mu"' k e 2T11
2r711

which is normalized as

mu? -Fca(k)zic]

is 1 • • • I IlidZkdik)Do = 1.

Then we can write < e-tIz1n(t)e-t22iga(0) > as the following integral

11 • • • I ll(dzkdioDoe-tiz,„(t)e-tazisni(0)
•

(3.23)

To evaluate this integral, we substitute Eq. (3.22) and Eq. (3.23) for zin(t)

and zp„,(0). By completing the squares in the exponent, we obtain

< e—lizin(t) e—t2z11.0) >

A= lti1-2 (0) + qfv--.,(0)}e„. 1 n
•

2Teit2 
e mrnj {11-11(T) fn-ni(r) — h_re(r)— fp,(7)1}

(3.24)

where we 1/42 I ma3 (a, is the inter-particle distance) is the characteristic frequencies

of the parallel plasma oscillation for a 1D chain, and r a wet. The function fi_n(r)

is defined as

1 v, 1 — cos k • (R1 Rn) COS fpz(k)T, (3.25)N kto cpz(k)2
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where Co z(k) E wz(k)/wo.

In order to uncover the physical meaning of the function fu_n(r), we let

= t2 = 0 after taking the derivative 02i0t18t2 on both sides of Eq.( 3.24) and we

are left with

2T11
< zip(t)3/440) >= 2 Lft-na (7) + fti-n(r) — fi-v(r) — fn—Til(7)1?moo

In particular, for the diagonal case: / = 1', n = n', we obtain

g
ft ,(r)= 

mu
° < zin(t)zip(0) >

4T1
(3.26)

which implies that, fi_n(r) is effectively the correlation function of the particles'

relative parallel displacements.

To calculate the function fi_(T) given by Eq. (3.25), we will convert the sum

of the wavevector into an integral form. Specifically, we will replace Ek>0 by

in/. Nadk
Jo

We note that when applying Eq.(3.24), Eq.(3.25) and Eq.(3.26) to a crystal-

lized 3D plasma, we will replace u.20 by the plasma frequency cap __ Vtr
In
ne2 (71 is the

density). Also, for the 3D case, we transform Ek>0 into an integral in the Brillouin

zone:

1 ç Nverk
2.111.z. (2703

where v is the volume of the Brillouin zone which equals 4ag for a body-centered

cubic lattice. Here ac, = a/2 is half of the lattice constant.
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3.5 Appendix 3D: Asymptotic Expression for
fi(if) in the IL] >> 1 Limit

In this appendix, we derive an asymptotic formula for the correlation function

fi(ii) in the il > 1 limit, where fi(ii) is defined by equation ( 3.25) for a one-

dimensional Coulomb chain.

For a 1-D system, Mil) can be written as

Mit) = 
o 

dx 1 — cos lx 
cosh(  &i) (3.27)

2r co.

where x = ha is the wavenumber normalized by the inter-particle spacing a and the

normalized longitudinal oscillation frequency Cox wz /coo is given by

x
2L sin2(—

n
2--)/n3

n=1

(3.28)

which is plotted in Fig.3.7 as a function of x. Furthermore, in terms of the special

function clqz, s, v)11, 7.) z can be written as

coz = 2V41(1, 3,1) — ReEeiz, 3,1).

• when 111 > 1, fi(i0 is dominated by the contribution from the stationary phase point

corresponding to the maximum value of wz(x), which occurs at x = 7r. In order to

obtain an expression for caz near the maximum, we first calculate the derivatives:

d
.2) = 4 nE

71 sin nx
i@Th2

d2
2 
 

00r, cos nx
dx2 (‘‘22) — 4 2 n2 = 21n[2(1 — cos t)]

n=-1

(13
f

dx3
(02) = —2 cot 

2
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Figure 3.7: Plot of the parallel dispersion relation Cat(x) for a Coulomb chain, where
ha

d4 = csc2(—
x
)

dx4k 2

With these derivatives, we can expand Ljz 2 in terms of A = 7r — x < 1 as

and hence

where

coz 2 772 20A2
24

cJij—bA2 +cA4

ii = V7C(3); b = in 
2 
; c = —

77 24

Finally, we substitute the approximate expression for Oz into Eq.( 3.27). By

changing the integration variable from x to A and changing the upper integration
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limit from 7r to co, we obtain

27r 2 — 27/bA2
dA 1 — cos /(7r — A)

fi(i0 =  coshrien - bA2 cA4)]
0 n 

where

elIt 00 2b 
o 

46,2 3b2 + cis') e-gA2
dA[1 — (-1)1 cos(/A)] [1 + —71 n2 n47r 

u11 rr ,  1 — (-1)1 1
47rn2 bit 2 t f2

1 3c p
= [1— (-1)1](-277

(3.29)

In Fig.3.8 we plot both the asymptotic result given by Eq. (3.29) and the

result of direct numerical integration for fi(ii). We see that two results approach

each other for large 1.

3.6 Appendix 3E: Discussions of the time inte-
gral I,n(e, a)

In this appendix we discuss the function hn(e, a) defined in Chapter 3 as

+00
/.(e, a) ra I drC(r, e)h,n(r, a) (3.30)

for different m (1, IL, I, it), where c) and hm(7-, a) are defined by Eq. (3.6)

and Eq. (3.10) respectively. We first perform an analytical saddle point analysis

for ini(c, a) in the e < 1 limit and then we present the result of the numerical

integration. As a conclusion of our discussion, we find that m = m* (1,1-1, 1, 1-1)

gives the largest result for /m(e, a).

In order to make the algebra simple, we replace T by it in Eq. (3.30) and we
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Figure 3.8: A comparison between  the asymptotic expression and numerical inte-
gration result for fi(ii), where q V7C(3). The exponential factor in the asymptotic
expression of fi(i0 (see Eq.(3.29)) has been pulled out by . In this figure, the
solid line represents the asymptotic result and the dotted line represents the numer-
ical result.

may then write the saddle point equation as

2
a[it-ft(i0 f 4(ii)- f(i01= (3.31)

In thee << 1 limit, the solution for I is expected to be large and so we employ

Eq. (3.29) for the asymptotic formula of ft(i0 (see Appendix 3D):

4r772 bt 
1 — (-1)1

r=j  V -1  - 
rfr, 

where

1 3c 1/2
11 = (-1)1K —8b2

ln 2 1
ii V7C(3), b —; c (-24 

—

(3.32)
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Taking the derivative for Eq. (3.32), we obtain, to the lowest order in 1/i,

a1 - (-1)' 1 1 - (-1)' 
)1.?fl(2t) 4rn t 2 (71 22/

Eq. (3.31) then becomes

where

eni Jr fin, 2
2rn V Kt (Pm =t ) = —ea

1
Am - n)]

1 3c 1
Pm (-2n + 8b2 )11m —16b

 - 21)2 + (-1)n-l(n - -02 - (1 4-i ii)]

(3.33)

Since Pin can be either 0 or +1 for different m's. we discuss these three cases

separately:

(1)For Ain = 1, which occurs when both / - n and t- it are odd and 1- / is

even, an iterative solution for t is

where j -= 0, +1, +2, • • •, and

i2rj 1 i2rj Om
lne72  ) _

221 7/ 71ti

72 1.  ( 4FT/)
lIll ea )

(3.34)

According to the saddle point method, im(e, a) is determined by the expo-

nentially small factor exp[-2Re(1)16]. From Eq.(3.34), we have

1
Re(4):-..• 72 — ln

\
2rj) 2

+ (—
77 '
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and

exp[-2Re(ii)1 (27rj)
exp[-2Re(10)16] k7271

2] —1/2nE

which is exponentially small for j 0 and e < 1. Therefore, /m(e, a) is dominated

by the j = 0 saddle point, which has a real part

1
R604 72 + -22/ 

1n72 — nto
(3.35)

(2)For pm = 0, which occurs when 1 — n is odd (even) and I — it is even

(odd), or both / — IL and t— it are even, by the same argument used for the pm = 1

case, we find that a) is dominated by the pure real saddle point which has the

minimum real part given by:

Re(to) ce 72 + —21; In 72 — Re[ln Pt1101].
17

(3.36)

(3)For pm = —1, which occurs when 1— n , / — it and / — / are all odd, by the

same argument used for the pm = 1 case, we find that /m(e, a) is dominated by the

pair of the saddle points closest to the real I axis. They have the (equal) minimum

real parts given by:

  OM
Re(to) 12 + —

1 ln v/71 +7r2 _
2n nto

(3.37)

By comparing Eq. (3.35), Eq. (3.36) and Eq. (3.37), we find that the pm = 1

case gives the smallest Re(10). Here we have assumed that If/m/ti < n, which is

the condition that must be satisfied in order for the asymptotic expression given by

Eq. (3.32) to be valid.

Furthermore, for the pm = 1 case, Re(I0) reaches the minimum when Om,
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e"--•

t5
47

a =0.5

1/c

Figure 3.9: A comparison of Im(e, a) for different m's. Curve 1:
m = (1,1 — 1,1,1 — 2), pm = 0; Curve 2: m = (1,1 — 1,1,1 — 3), pm = 1; Curve
3: m = (1,1 — 1, 1 — 1,1 — 2), Am = —1. Here we see that Curve 1, Curve 2 and Curve
3 are all below the Curve m*.

given by

1 3c 1pm =
2n 

_ _ n)2 + _02 + 
(1_02

 + Ay]
862 16b

is the maximum, which occurs for m = m* = (1,1 — 1,1,1 — 1). This proves that in

the E < 1 limit, m = m* gives the largest /m(e, a).

For a general case, Eq. (3.32) is no longer a good approximation for Mit) and

we must check our conclusion numerically. The result of /in(c, a)1 for several typical

m's are plotted in Fig.3.9 for a = 0.5, where /m(e, a)J's are calculated through

direct numerical integrations. Here we take the absolute value of im(e, a) because

for Am = —1, /m(c, a) is oscillatory and could be negative for some values of the

argument (e, a). From the figure, we see that m = in* indeed gives the largest result

for /in(c, a).

The saddle point calculation for /ne(e, a) is straightforward. For E < 1, we
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only need to keep the contribution from to, by using the approximation Mao)

Milo) we obtain

/..(e, a) Afire[SI.(i€10)+ . (id-0 )12cl' + (ita) (3.38)

3.7 Appendix 3F: Derivation of the Equilibra-
tion Rate u(E, r11)

In this appendix, we derive the equilibration rate u(e,Fil) given by Eq. (3.12)

in Chapter 3. We begin with equation Eq. (3.11):

lhAt 2 2N
P( 6, 1111) -1143 isf3 dxidx2(xix2)2e—(4e) xl °2 r 1/4x1 1- x2).64E, 2X1X2/r11).0 0

(3.39)

By changing the integration variables to (v,,v) (xi -I- x2, xix2), we rewrite 1)(e, rio

as

—nh(0) +I 3 .10 du -L„ fi(0)u21.3(6,1111) = (40-1 f dvv2e /..(e, 2v/F11)0 VU2 - 4v

We perform the it integral first. As shown in Fig.3.10, the integrand for the

u integral goes to oo at it -= -‘/,) due to the Jacobian 1/N/u2 — 4v. It also starts to

blow up at it r11i4h(0), corresponding to the contribution from the close collisions,

which must be avoided in the harmonic approximation. We thus choose p such that

1 <8+ v/8(3.40)< 1111/4h(o)

In this case, we may neglect the small term ?ifi(0)u2 and take p + yip oo. We

then obtain

it3+.10 du  + lifl(C)u2 K0(2 A5) (3.41)
J Vu2 — 4v



114

riddifi(0)
IL

Figure 3.10: Plot of the integrand of the u—integral

up (7 +*)2

Figure 3.11: Plot of the integrand of the v—integral
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We next complete the v integral:

(46)-1 JO132 dvv2e Ll??11 fl(°)K0(207)/m.(6, 2v ail) (3.42)

Using Eq. (3.38) for hir (c, 2v/I'll) and the asymptotic formula for the K0(2A,

Ko(2jii) V*6-2VC, we have

-152 dvv\ 7 1/21 7/4 
8

Here we have neglected the small term exp[- fi(0)1 in the integrand of the v

integral, and 10 is defined as the root of the saddle point equation:

ril
nath(ii) 2ev

As shown in Fig.3.11, the integrand of the v integral is peaked at v = vo,

where vo is the solution of the equation -8- [I In v - 21Tv - -(L2i h = 0. By811 4 
+ 4v fififo‘l

6 rii "

making use of the saddle point equation and the asymptotic formula of Ma), we

find vo •••• (7 + 4)2, where n V7((3).

In order for the result of 1)(6, PH) to be independent of the choice of /3, we

must require 02 > vo, which, combined with inequality (3.40), yields

8n(0)(7 (3.43)

which is the condition must be satisfied for the harmonic approximation to be valid.

Notice that since h(0) 8.82 x 10-2 and e < 1, inequality (3.43) can also be

written as Ern >> 1.

Finally, by expanding the exponent -
7 in v - 2-‘,5 - —

2to 
+ —

4v h(ito) near v =
4 E Pi'

vo and performing the saddle point calculation for the v integral, we are left with

fi(c,F11) given by Eq. (3.12).

This chapter has appeared, with only minor changes, as an article in Phys.Rev.Lett.,
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71, 2721 (1993).
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Chapter 4

Temperature Equilibration of a
Strongly Magnetized Single
Species Crystallized Plasma

4.1 Introduction

Recent experiments[1] have trapped a cloud of N ions (N •-•-• 102 — 104) at

a sufficiently low temperature T so that the correlation parameter , defined by

q2 I etunkT , is much larger than unity. (Here q is the ion charge and avn, is the Wigner-

Seitz radius defined by —41r = 1). In this regime the system becomes strongly
3

correlated and transitions to liquid and crystal states are observed. Theoretically,

computer simulation and analytic theory for an infinite one component plasma pre-

dict that for r > 2 the system begins to exhibit local order characteristic of liquid,

and for 1" > 172 there is a first order phase transition to a body centered cubic (bcc)

crystal[2].

In experiments the plasma is confined in a Penning trap, which utilizes a

strong magnetic field in order to confine the ions. Since the ions are laser cooled to

low temperatures, the distance of the closest approach b = q2 I kT can be much larger

than the Larmor radius, and the cyclotron frequency Sle is the largest frequency of

the dynamics. In other words, the plasma is in the strongly magnetized regime.

117
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As for the case of the 1D chain discussed in the previous chapter, an adiabatic

invariant then exists which greatly decreases the rate of equilibration of parallel

and perpendicular temperatures, where now TH and T_L are associated with motions

parallel and perpendicular to the applied magnetic field. In this chapter we study

the rate at which Tv and 7'1 equilibrate in a plasma that is both strongly magnetized

and strongly correlated.

This equilibration rate has been investigated by O'Neil and Hjorth(31 and

verified by Beck etal.fril experimentally, for a weakly correlated and strongly mag-

netized plasma where the equilibration is driven by binary collisions. In that case,

the cyclotron frequency is large compared with the characteristic frequency co11 of the

collisional dynamics, which is on the order of vii/b. Here is the relative parallel

velocity and b is distance of the closest approach. The large frequency separation

implies that the total action of the cyclotron motion is an adiabatic invariant. Due

to the existence of this adiabatic invariant, the equilibration rate is an exponentially

small function of 1/ei, where ei = wIl /Q.<< 1 is the small adiabaticity parameter.

Specifically, the exchange of the perpendicular cyclotron energy and the parallel en-

ergy that occurs during a single collision was found to be on the order of 6'1261,

and after many collisions, an average of e-r1261 over the distribution yields the equi-
_libration rate exp(-2.04/el ), where el is the average of el. However, in

the strongly correlated regime, particles interact collectively with each other and

1/“.11 is characterized by the collective time scale associated with the slow paral-

lel oscillation, which is on the order of co;'. Correspondingly, ei is replaced by

E w/ [Z, << 1. In this case, we find that for ern > 1 the equilibration rate scales

as v r•-• exp[—(1+ hieril)/e], just as for the ID chain. Here, I'll -a q2/a1c711 > 1 and

thus e = 1lIV6r1161 >> el, which implies that v > v1. Therefore, in the regime of

strong correlation, the rate due to collective interactions that we calculate is much
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larger than that predicted by the binary collisional equilibration rate.

For a strongly correlated plasma, we may describe the ion-ion collective inter-

actions as emission and absorption of phonons. A conventional normal modes analy-

sis shows that the 3N harmonic phonon modes can be classified into three branches

of very different frequency regimes. The N highest frequency phonon modes are

associated with cyclotron motion perpendicular to the magnetic field with frequency

on the order of Sic. The next set of N phonon modes correspond to plasma compres-

sion along the magnetic field and the N lowest frequency phonon modes describe

E x B drift motion of the guiding centers. The frequency of the latter two modes

are on the order of cop and 4/fie respectively.

However, the crystal is not perfectly harmonic and even for very large I',

anharmonic interactions cause coupling between the normal modes. In other words,

the anharmonic interactions cause phonon-phonon collisions. For example, one cy-

clotron phonon may decay into another cyclotron phonon with lower frequency and

one plasma compression phonon. During the phonon collisions, the total phonon

energy must be conserved: E„, = En w$P, where (.4,1) is the frequency of the

mth initial phonon and 4.9 is that of the nth final phonon. The low order phonon-

phonon collisions are expected to cause energy equipartition between the low fre-

quency modes and between the cyclotron modes, causing the distribution of the low

and high frequency modes to relax to a Maxwellian with different temperatures, T_L

and TM, in a short time scale on the order of cup-1, where T1 is the temperature asso-

ciated with the cyclotron phonons and TH is that associated with plasma frequency

phonons. However, when e = wp/ft, is small, energy conservation does not allow

these low order process to create or annihilate cyclotron phonons, because creation

or annihilation of a single cyclotron phonon involves the annihilation or creation of

many low frequency phonons. Therefore there is negligible energy exchange between
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the cyclotron modes and the low frequency modes on a short time scale. In fact,

the large frequency separation of the phonons implies a many particle adiabatic in-

variant equal to the total quanta (action) of the highest frequency phonons, namely,

the cyclotron phonons. In order for temperature equilibration to occur between T1

and TH this invariant must be broken. As we will see, the rate of the breaking of

the adiabatic invariant is exponentially small and so the time for the equilibration

is exponentially long as a function of 1/c.

Based on the phonon collision picture, we can obtain a crude estimate for

the rate of the equilibration v. We first notice that the drift modes have small

amplitude and have frequencies even smaller than the plasma compression modes by

a factor e cop' Ile <1 and are therefore negligible for the temperature equilibration.

We consider two ions 1 and 71 separated by a lattice constant a with equilibrium

separations of Zin and pin parallel and perpendicular to the B field (see Fig.4.1).

We write the ion-ion Coulomb interaction as (13 = q21\1(p1n + 6p1n)2 (Z „, -F 8z142,

where Spin and &in are the relative displacements due to the cyclotron motion and

the parallel plasma oscillation respectively. Furthermore, as an crude estimate, we

assume that the cyclotron motion and the plasma oscillation are characterized by

frequencies fl and cop respectively. According to Fermi's golden rule the rate v can

be estimated as v = vimi, where vim, •-•.• cop < (5H/H0)2 >. Here the sum is

over all the pairs of ions, 1/0 and 8H are the harmonic and anharmonic part of the

total Hamiltonian, and c> denotes a statistical average. In particular we take 8H

as the anharmonic Hamiltonian that annihilates a cyclotron phonon, which is the

lowest order process to cause the change of the cyclotron quanta. Recognizing that

M ,lle low energy phonons must be created in this process, we can crudely write
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Figure 4.1: Schematic picture for the ion-ion interaction in a strong magnetic field
B. In the strong B limit, each particle executes fast cyclotron motion as well as
slow parallel plasma oscillation and extremely slow E x B drift motion, where the
cyclotron motion causes the perpendicular relative displacement Spin and the parallel
oscillation causes the parallel relative displacement b.zin. Spin and 6zin furthermore
induce a perturbing Coulomb force bf and the perpendicular component of this force,
6fini., modifies the cyclotron motion, causing the breaking of the adiabatic invariant.
In the figure, Oh, is the azimuthal angle of the relative equilibrium positions between
/ and 7/ with respect to B.

8H/H0 as

1  Om OS Spin zin
8111 Ho pin(5zi4m Off Spin — ao ao ( )m C (elm, M) (4.1)

"
am+1 Om OS

-7= 'IS OZImn Oph,
(4.2)

Here Obi is the angle between the magnetic field and the relative equilibrium positions

between particle / and particle

To perform the statistical average, we employ a (two-temperature) Boltz-



mann distribution for Ho:

exp[--3Fii(Szin/a,„„)2 — —3Fie-2(5pin/a,„42]
2 2

where Fi = q2 /aw5kTi. We then obtain

2

< awar >= 3r

and
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F(M + 1/2) 2
< (Szt./a..)21/1 >= ( -V2exp[—M — M 1n-11]

31'It

where we have used the approximation F(x) V27r/z exp[—x xin(x)] for x >> 1.

Finally we obtain the rate vim, given by

wp(62/ri2)e-(1+inerliVE gem, Ae)12
I/Inn

which is exponentially small as we expected. Here we note several important features

of the above expression of vinn. We notice that in order for the result to be sensible e

Fri must be greater than unity. Physically this is because a large displacement in Szfr,

would make a large contribution to the rate, but such displacements are not probable.

As a result, for small E the statistical average is dominated by &yin displacements

with a peak at Szin a,„„/Verii. In order for the harmonic approximation to be

valid, we must require that the position of this peak to be small compared with the

inter-particle spacing, i.e., > 1. One may notice that the same condition is

required for the one dimensional Coulomb chain (see Chapter 2).

A distinctive feature of the 3-dimensional plasma is that vim, depends on

the orientation of the magnetic field as shown by Eq.( 4.1). First, we will see that

C(hn, M) is an oscillatory function of 01„, in other words, there is an oscillation in

the rate vim, as a function of the magnetic field direction with respect to the crystal
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structure. Second, we will see that the maximum rate occurs when the magnetic field

is so oriented that Om is small but nonzero. Physically, this is easy to understand.

From Eq.( 4.1), we find that for M >> 1, the maximum value of vim, occurs when

Szb., is the largest. Furthermore, according to the phonon collision picture, vin,., is

dominated by the contributions from the largest frequency plasma modes, which, as

we will see, are long wavelength modes with k B. For one such mode, the relative

displacement him between ions with given equilibrium separation Z. is lichtl cc

1 — cos kZin ks and therefore Szin reaches the maximum when Zin is the

maximum, which occurs when Oh, = 0 assuming that we vary Bin keeping VZ/2,, +
fixed. However, for small M)is proportional to Bin, corresponding to the

vanishing of the perpendicular perturbing force gni (see Fig.4.1). As a result,

for small Oin, vim, goes like Zitmp2 = ar+2(cos 0144m(sin 8/42, which is peaked at

Ofr, — c< 1.

It is important to note that the temperature equilibration rate calculated

for a perfect crystal does not apply to the present experiments, because in present

experiments the number of ions is relatively small (N <104) so that surface effects

are importanel. For large 1", rather than undergoing a simple first order transition

from a liquid to a bcc crystal, the ion cloud separates into concentric spheroidal

shells and it only exhibits a bcc-like structure through nearest neighbor coordination

numbers. Moreover, for P < 172, rather than forming a crystalline structure, the

strongly correlated plasma is in a liquid state, which consists of structures with only

short-range orderM. In this case, the temperature equilibration for this system can

not be predicted by that for a perfect bcc crystal. However, in order to gain a physical

insight for the temperature equilibration process, we chose a simplified model where

the plasma is approximated by a bcc lattice structure, which is a limiting case of

large F and large N. Furthermore, as one may expect, the temperature equilibration
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process is dominated by the nearest neighbor interactions and this fact would allow us

to evaluate the temperature equilibration rate for a less ordered system by averaging

the equilibration rate of a local crystal over randomly varying crystal orientations,

or, equivalently, averaging over the randomly varying magnetic field directions with

respect to the crystal structure. We therefore expect that the general feature of the

equilibration that is exponentially slow in the parameter 1/E will apply in disordered,

possibly even liquid phases, provided that E < 1 and Ern > 1.

In this chapter, we first develop a formalism for the calculation of the tem-

perature equilibration rate, where the equilibration rate is written in terms of the

Fourier integral of a correlation function associated with the slow plasma compres-

sion motion. We then evaluate this integral, where, in order to simplify the physical

picture, the guiding center limit is taken. Finally, based on the result of this integral,

we discuss various important characteristics of the equilibration rate, for example,

the dependence of the rate on the magnetic field orientation with respect to the

crystal lattice. In section 4.2, by employing a series of canonical transformations,

we obtain the harmonic phonon modes. In section 4.3, we derive an expression for

the adiabatic invariant J, which equals the total action of the cyclotron phonon

modes. This invariant is further shown to have the same form as the conventional

cyclotron adiabatic invariant'. In section 4.4, we derive the formula for the rate

of the breaking of the adiabatic invariant in terms of the time integral of the cor-

relation function < i(t)/(0) >. In section 4.5, we evaluate the equilibration rate in

the guiding center limit and the important features shown in the result is thereby

discussed.
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4.2 Normal Modes Analysis

In this section we derive the harmonic phonon modes by employing a series

of canonical transformations for the harmonic part of the total Hamiltonian: H =
112

Er,i(T,79 + 4, where (1) is the total potential energy given by

1
= 2EEeilrt rni

1 nO1
(4.3)

and where n, = pi — !Al, pi and Az the canonical momentum and the vector

potential of the dth particle. Following the conventional approach by assuming that

charges are confined to small excursion un about the equilibrium positions 11,„ we

expand 4) as 4) = 4)il Ait, where H is the harmonic expansion of 4) and Z14) is the

anharmonic correction, writing

H =

12
.H0 = _

2 
q  r,

I no/ iRt — i 2m H

—
2 
E E u, • Gin • un
1.1 nO1

A4) =

where the matrix Gin is given by: Gin = ViVn(42/ IRE Rn I ) where V/ denotes

aim,. In order to make further calculation simpler, we choose the coordinate system

such that i is pointed along the magnetic field direction. The first term of Ho is

the Madlung energy of the crystal and will be ignored as having no effect to the

dynamics.

To uncover the normal modes, we first introduce the phonon coordinates (uk,
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Ilk) through the Fourier relations':

(ui, = /1-2 ERuk,pk) cos k • Ri (u_k,p_k) sink' Rd
N Ic>o

(4.4)

where k = *Lk bi 312;b2 b3 (O < n < N - 1,i = 1, 2, 3) so that the periodic

boundary condition: u(Ri Niai) = u(Ri) is satisfied for any lattice vector Iti =

/la]. + 12a2 12a3 (0 <i < N - 1,i = 1, 2, 3). Here ai and bi are the primitive

vectors of the direct and reciprocal lattice, ij and ni are integers, and Ni are large

integers satisfying N = N1N2N3. In addition, the notation k> 0 in Eq.(2.1) denotes

the sum over half of the Brillouin zone. We note that when the total number of the

particle N is an odd number, the sum over k may leave out a single point on the

edge of the Brillouin zone. However for large N, this single point makes a negligible

contribution and can thus be ignored.

In terms of the phonon coordinates 1/0 becomes a sum of independent Hamil-

tonians for each k:

Ho = E Ho(k)

1/0(k) =
2m

where the harmonic potential (I,H(k) is given by

1
' H(k) = -uk • G(k) • uk2

(4.5)

(4.6)

where G(k) = Et GineiHRI-R").

After employing the Fourier transformation, Ho is decomposed into a sum for

different k's. This allows us to diagonalize each Hk separately. In order to proceed,

we choose the vector potential Ai to be ,12-B x ut and then the Fourier transformed

vector potential is Ak = 113 x uk, which, with the relation IIk = Pk — !Ak, leads
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to the following specific form of Ho

13! + 141 +  1 14 nc110(k) =  
2m + 2 [m( —2-- )2 + G..14 + -1-1[m(—

Qc
)

2 
+ —

2
G zzz?(

2 2

fie,
(YkPr Okh) GzyXlak GxzXkZk + Cyan (4.7)

where (xk) Yk, Zk) = Uk and (p.,ry,Pz) = Pk and in Eq.( 4.7) the subscripts k for

(P., pt,, P4 have been suppressed in order to save space.

In order to derive the phonon modes from Ho(k), we need to find a canonical

transformation from (xk, yk, zk, Pm, Pt,, pz) to new canonical variables (Qi,k, -Q2,k7 Q3,k)

P2,k, P3,k) such that Ho(k) is diagonalized into the the Hamiltonian of three in-

dependent harmonic oscillators:

j
Ma) = E 13k 1 -2-- + .(k)21:e k

2m 2j=1,2,3
(4.8)

Then we may identify (Qi,k, Pa,k) to be the canonical variables describing the jth

normal mode and w5(k) is the mode frequency. Obviously (Qik(t), Pik(t)) evolve

according to the trajectory of a harmonic oscillator and are given by

Qi,k(t) = Qi,k(0)cos(coi(k)t) Pi'k(13)  sin(uP(k)t)
mw(k)

Pi,k(t) = Pik(0) cos(wi(k)t) — in Qi,k(0) sin(o..,j(k)t) (4.9)

and furthermore through the canonical transformation we may write the particle's

orbit (xk(t), yk(t), zk(t)) in terms of (Qi,k(t),Pik(t)).

As shown by Eq.(2.5), the coordinate variables and the momentum variables

are mixed due to the existence of the magnetic field. Therefore, although the Hamil-

tonian is harmonic, the usual point transformation approach, which only transforms

the coordinate variables, can not diagonalize Ho(k). In order to diagonalize Ho(k), a
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full canonical transformation must transform both the coordinate variables and the

momentum variables simultaneously. As a consequence, the new canonical variables

Pj,k) are generally linear combinations of both (tic, yk, zk) and (pz,p,,,p4.

The procedure to find such a canonical transformation is nontrivial. In fact,

as far as we know, the general transformation for a 3-D crystal in a magnetic field has

never been written down previously. In appendix D, we discuss this transformation

by using the Bosonic Bogoluibov formalism. We define the following variables in

order to put 1/0(k) in a symmetrized form.

Yntfte ,  iPm =  Xk
2

via ipy
c2 =  Yk  2 vq0;

MW2 iPz c3 = Zk +   
2 Omwz

(4.10)

where (-az = VGzzlm.

Furthermore, in order to simplify the algebra we introduce a dimensionless

dynamical matrix g = G/mcop2 and dimensionless frequency Ciz = .‘zz = ca2 /wp. In

terms of the base vector c defined by

We may write 110(k) as

c =

/
Cl

C2

C3 /

1
110(k) = (cs, c)" • h • ,
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where the Hamiltonian matrix h is given by

and

h =
[NM

Ms N*

2
gmm 

E2 
ENI`axz

e2gxy E2gyy EN/Eayz

E.‘framz EVE§yz 0

E2g..
E 2 gm) Evia..

N = 5Ze A + 62 gm,/ E2 guy evil-gyz

&Vein E1A -gyz ajz

where k".2 — 9.z/Vriz and ays — gyz A/247z •

In what follows, we proceed to find a linear canonical transformation de-

scribed by

s (4.11)

such that in the representation of the new variables (e, es) the Hamiltonian matrix

h is diagonalized, i.e., SthS is diagonal. Furthermore, according to Eq.(3.6) and

Eq.(3.7) of Appendix 4B, in order to ensure the transformation is canonical, matrix
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S must be of the form

=
AB

and S must satisfy

BA

S-1 = ASIA (4.12)

where A and B are 3 x 3 matrices and A =
1 0

, where 1 denotes the 3 x 3
0 —1

unit matrix. As a conclusion of Appendix 4B, such a transformation matrix S can

be constructed in terms of the eigenvectors of a 6 x 6 matrix K = Ah:

S = (7h,n203,(EIh),(M72).,(E1/3).)

with normalization condition:

for j = 1, 2, 3, where E =

n , 1

01
, A =

1 0

(4.13)

(4.14)

, and ni(j = 1, 2, 3) are the

eigenvectors corresponding to the three positive eigenvalues of K. Furthermore, we

show in Appendix 4B that these positive eigenvalues correspond to the caj's (j=1,2,3)

in Eq.( 4.8), which are the frequencies of the normal modes.

After some algebra we find that the eigenvalue co of matrix K is determined

by

- (1 + 62)w4 e2 [02 e2erme2 — es det(g) 0
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where

a = gzy + gzz gyz — g„gyy — gwwwz — gyytoz

Evidently, the solutions for co appear in pairs with opposite signs. As we have

mentioned, the calculation of the exact eigenvalue problem for matrix K is rather

tedious, however, because e is small, it would be useful to do expansions about e so

that the calculation can be simplified. After conventional, but rather complicated

computations for the eigenvalue problem of matrix K, we obtain the following results

for the eigenvalues w (i = 1,2,3) and the corresponding eigenvectors :

=
(3)

(4)

(5)

(6)
I/i

as following, where only terms up to the second order in E are kept:

1 — 02 2
‘01 = fict1 +  6 1;2

e2

7/(1) = [1 + —2 (g.. — gyy)]/N/

(2)
-= 2

7/(3) = 63/20.2 — jay.)/N5



and

and

 
fli

2( 3 — 4g" i6 gzotv'
2 •

7715) =
2 2 2

(6)(3)
n1 = —7/1

,2

(V2 = (01902 [1 + 
2 

— 1 + oyz 2

(1) r • 312
n2 — .52(P1P2 + A3)

det(g)
)1cuT 4z

(2) 3/2n2 = + is s2(-1L1/4 + 113)

(3)
c2Li

2
n2 = 1 

c 

2024

(4) I • •
= —1/4•51/11 + 

63I282(,4,1; 
/4)

(5) • 3/2
n2 = 31/11 te .92( *+ Pa)

•Vdet(g) E2 det(g)
4/3 = WP  

20 
[1 + 

2 
( 

2 
Cr)]

z 0,

(1)
713 = Ozsaako

132

(4.15)
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where

(2)713 = (iwz.53 2iE2 Ala; 2.54)Ao

(3)
173 = fi.S 3 E L-1034)La2

(4)2 - 2 A
773 = —413r93A1 k 

n 
e S4a3

4, ow(5) a
q3 — zo3L-s

A
i — 2E20234A4

(6)
773 = (-1/453 1- 6 1-1034)1-A2

P1 — an + Iyz

112 = -wz2 ign

P3 — ggyan ignayz

si = (2u3z)

52 = (20z2)-3/2

33 = 1/(41002D)

34 = det(g)1(6402 D)
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Clo = Idet(g)gd- 0,.(igx01,1 -1- µ3)

A1 = Idet(g)iti — ihn

A2 = 2gzginfriz ligxy§n§yzWz 2gtx§y2zWz

A3 = det(g)(az22 — ay2z i‘Idet(g10 re (a t3 a )+, zLamz,„xy,n

+3.4y.(szyuyz -angyy)] + 24,72(gzAz - -Azzgya

A4 = 2det(g )azzayz Vdet (g )0z [§=zaliZ(gzx gini) g2li(ay2z gz)

2i(§z2 zgyy — §v2igmz)]

+Wz2[2(gy2yaz2iy2 9xyam2 2gyy gzjzzgygays gxxgzy§y2 z)

—4922y4x2 z Zgyy2 gx2may2z gx2y --y2z •g )+2ignayz§zz(g.. + gyy)] (4.16)

Where ,i's have been normalized according to Eq.( 4.14) and D is determined by

the normalization condition of Eq. (4.14):

17 (131) 1 2 + 17g2) 12 + InP)12 — 17/34) 1 2 1 7/35) 12 — 17/36Y = 1

To lowest order in 6,

i) -= V2(1[1012 - 16,112)/410. (4.17)

One may easily identify col, co2 and co3 to be the frequencies of the cyclotron
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mode, the plasma compression mode and the E x B guiding center drifting mode

respectively. In terms of the (e, es), the Hamiltonian takes a diagonalized form as

Ho(k) = col (k)eilei (.02(k)e;e2 co3(k)4e3 (4.18)

and furthermore we may define the final new canonical variables (Qj,k,Pa,k)(i =

1, 2, 3) through

3 .1 2 Qi'k \127ruai(k)
mcoi(k)

e • — (4.19)

In fact, substituting the above form for (e, es) into Eq.( 4.23), we find that 110(k)

then takes the form given by Eq.( 4.8).

Finally, combining Eq.( 4.10),Eq.( 4.11) and Eq.( 4.13), we can write down

the harmonic trajectory (xk(t),yk(t),zk(t)) as

xk(t) = ci(t) + c(t)

1  3 (1) el)
=: ./ 0

v 771--c

yk(t) c2(t) + c;(t)

1  3 (2) (5)
 ERn + n • )ei(t) c.c]

VnIQC j=1 "

zk(t) =
c3(t)-1- c;(t)

Ormuz

 1  [(71(3)71,S6))ei(t) c•c]A/2mco, j=1
(4.20)
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where according to Eq. (4.19) and Eq. (4.9), e(t) is given by

je(t) = \/712Wi(k) 2 Q3,k(0)e-Uji(k)t il).0E(0)   eiw(k)t (4.21)
\12nuvi(k)

We notice that the expressions for Lai's and ni's are quite complicated, and so

we'd better examine them before making further progress. One of the useful methods

to check these results is to evaluate the mean square of the particle's displacements

< 4 >,< > and <4 > for a thermal equilibration system. We may write the

distribution function as ilk fk with fk = ezp[ —Hy(k)IkT]. The statistical average

can be obtained by two approaches, namely, using the old canonical variables and

using the new transformed canonical variables. These two approaches must yield the

same results.

We first evaluate < 4 > in terms of the old canonical variables (xk, ilk, zk,

p., py, pz). Substituting Eq. (4.5) and Eq. (4.6) for Ho(k) into fk, we have

< 4 >
f 46---2-juk g ukeuk

raw2
jr e2kT • g • ukcpuk

2Moo

21ff [f e—ikT uk g uk cpuk]

nua2 mw2
P f e--E2kr uk g UkcPuk

= gvazz gy2. 
det(g)

where A = IlkTInuoy2 and we have used formula

mu?
_Ee 2/el'g d3

1 2irkTuk —  [ 2 13/2
det(g) mwp

(4.22)

An important observation is that <4 > is independent of the magnetic field though

the plasma is magnetized. This is because that the magnetic field does not alter the
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particle's energy and it only enters the Hamiltonian in the velocity term, so the

magnetic field dependence vanishes after the averaging.

We now proceed to evaluate < 4 > through the second approach, that is, by

using the new transformed canonical variables. In order to make the algebra simpler,

we introduce the action-angle variables (4:),11/n, which are defined by

Then Eq.( 4.18) becomes

ei(k)= V11 eit(ki)

3

Ho(k) = i=1
Inserting this form of Ho(k) into fk and using Eq.( 4.20) for xk, we obtain

1 MI fo cblik fc,co
 dI 
 Elr_1[(741) 744))ej(t) c.c] 2e .-

27r (i)  i

Mne )
ftr f0°°d4i)e --kyk-

(4.23)

3

= E < (4))2 >J=1 (4.24)

• where < (4))2 >, m2okti 71.S4)12
Illj I is the mean square x-displacement due to the

jth mode. Making use of our results for cui and th, we have

< (4))2 > = A2e2

< (42))2 > = A2e2 49Yz

fl/z3

< (4))2 > =  2rez
 A2Pz ss(Ao — Ai)

Pegg)
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2 - 2 83 det(g)
— 

[2tozs4A34j2 tj2
 (  u)(ao — A1)112c z z 

where only terms up to the second order of E have been kept. We note that because

A << a., for a strongly correlated system, < (xV))2 > are small compared with the

inter-particle spacing for all the three modes(j = 1,2,3). In particular, the lowest

order term in E arises from the guiding center drifting mode and is given by

< 4 > 2ti.;z A21A0 — 12 + 0(62)

V det(g) AoD

_  (1)z  A2  Ai12 + OW) (4.25)
det(g) 1A012 _ 1A112

where we have made use of Eq.(4.17). Furthermore, Eq.(4.16) allows us to simplify
la012 I

l 
A 11
a 

I2 as V det(g)A2 I Co z and to rewrite lao — A11 2 as (gyozz — gy2z)A2 /i.az •

Using these relations in Eq.(4.25) leads us to Eq.( 4.22) for < 4 >. However, since

our results of wi and T, are valid up to the second order of E, < 4 > given by

Eq.( 4.24) must agree to that given by Eq.( 4.22) up to the second order of c, rather

than just the zeroth order. We have performed the tedious calculation for < 4 >
• with the help of the symbolic algebra package MATHEMATICA and as a result, we

indeed found that the term on the order of e2 vanishes.

In addition, we have also performed the similar calculations for < yi2( > and

< 4 >. As expected, the <y > displacements is similar to that of < 4 >, while

the < 4 > displacements is determined to the lowest order in e by the parallel

phonons.
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4.3 Many-Particle Adiabatic Invariant

As we have seen, there exists a large frequency separation between the three

branches of the phonon modes: (422, (43 and we thus expect an adiabatic invari-

ant associated with the high frequency cyclotron modes to exist. In particular, from

Eq.( 4.23) we see that the angle variables Ilik (n. = 0,1, 2, •, •, •,N) corresponding to

the action variable 41) are rapidly varying compared to the other variables and so

there must exist an adiabatic invariant due to the presence of this fast time scale.

Indeed, after we introduce the final canonical transformation

N-1
00 = T(01), 19,2 APi2(n 0), = E 4,0 4. z= 412(n 0)7

rt=0

Go is the only rapidly varying variable and so the total action of the cyclotron modes

Jo is the adiabatic invariant.

In order to gain a physical insight into the adiabatic invariant Jo, we note

that according to Eq.( 4.5) and Eq.( 4.6), the Hamiltonian Ho(k) is exactly the same

as that of a single particle confined in an anisotropic electrostatic potential well itH.

We thus expect that ./ka must take the same conventional form of the cyclotron

action of a single particle, which equals the cyclotron kinetic energy divided by the

cyclotron frequency fie. To prove this, we recall that in terms of (e, es), =

according to Eq.( 4.23), where according to Eq.( 4.11) and Eq.( 4.12), (el, e;) are

related to (c, c) via
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= (AStA)

C.

(

Substitution of Eq.( 4.13) for S yields

• (1) • (2) • (2) • (4) (s)
ei = 711 C1+% C2 + % C3 — % — 711 C2 — % C3

where rill) are given by Eq.( 4.15), which leads to

(4.26)

— ic; 3/2c3 c; 62  ,
+ e 2 Air; (9.z ill

, 
yz —2 + —2e2 + —4 ci — —4 c2)

N/2

3 1 E22 
gyy( — — 

4
C2 — —iC2 C1) + 7i9xy(2c; — —

2
ci + —

2
).

2 2  4

We next express cj and c; in terms of particles' displacement (xk, ilk, zk) and velocity

(vi, vy, vi). Noticing that the canonical momentum Trivk = Pk — !Ak with vector

potential Ak = (- lityk,1:-Xk, 0), we can rewrite Eq.( 4.10) as

Cl = AF°;(xk — i9k)2
imvz

Ahnglc

-0[7—"Lile iniVy
C2 —  2

C3 = Vincaz zk
2

and consequently Eq.( 4.26) becomes

imvz
1/2mwz

m(v, iv,,) 

2 Varn
  E

ymaz 
zk(gaz igyz) + 62 m2a. xk(gtx — ign)

fle 

mily c 
2 Yk(gYY €.2 2mmyfim

ic 
z ( i4g"
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+62  ?my  ( gm/ 4. 3g _
2mile 4 4 XX 2 fizY

with this form for el, up to the second order in e, the action variable /k takes the

form

M(V2 212)
Ik = ei — +€2m[n.(zkgy. Ykgyy xkgn) — vy(zkgzz ykgzu xkgzz)]

(4.27)

Recalling the physical meaning of the dynamical matrix, we write the Fourier compo-

nent of the electrostatic restoring force qEk = / auk = —G•uk = —rnwp2g•uk,

where 4. g is given by Eq.( 4.6). Ek can be understood as the Fourier component

of the electric field induced by the Fourier component of the particle displacement,

uk, from the equilibrium position. Using Eq.(4.6) we can relate the second term in

Eq.(4.27) to Ek:

vz (zkfr Ykgyy xk.g.y) vy(zkgtz Ykqn xkgzz)

qEky qEk.,
= -vz  Vy 

2MO!,2 IMO

qEk
 Y2 (V_L X Eki) •
Mai

V d • V j_

E2fic

where vd = cEk x B/11312 is the guiding center drift velocity, VI. = V — (II • V.)17 is

the perpendicular velocity and Eki = Ek — (1; • Ek)1; is the perpendicular electric

field. Substituting the above results into Eq.( 4.27) yields

—
ni(vy — 2vd • v1) ni[(vi — vd)2 + 0(62)1

2O, 212z
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which equals the cyclotron energy divided by the the cyclotron frequency IL. Finally,

we note that since Ek is the Fourier component of the harmonic electric field at

wavevector k, one may easily check that to the first order of e, the adiabatic invariant

Jo, Jo = Ek hc, is also equal to the sum of the cyclotron actions of each single

particle.

4.4 The Guiding Center Limit

Here and in following sections, we will focus on the e 0 limit, specifically,

we will only keep the leading order terms in e in the guiding center approximation

in order to simplify the problem and also to make the guiding center picture more

clear. In this case, the results of the eigenvalues and the eigenvalues of matrix K is

reduced to

(di = ft;

1

Lo2 = wp(472;

I \

0 Ao

Vdet(g)
wa = ewp _ ;

0

=
1 0

; 712 =
1 1 0

; 713

0 0 00A0 12 1 A112) —A1

0 0 Lau

' U / 0

In this guiding center limit, as we have discussed, the adiabatic invariant Jo

simply becomes the particle's total perpendicular kinetic energy divided by the cy-

clotron frequency II,. Also, in this limit, the particle's harmonic trajectory becomes

simple. It consists of the rapid cyclotron motion perpendicular to the magnetic
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field B, a slow oscillation along B and a very slow guiding center drifting motion.

Since the guiding center drifting motion has much smaller frequency than the other

motions and its amplitude is small compared with the inter-particle distance (see

Eq.( 4.25)), it has negligible contribution to the breaking of the adiabatic invariant

and so will be ignored in our calculation.

The trajectory of uk(t) = (xk(t), yk(t), zk(t)) can be obtained by substituting

the above expression for tai and yi(j = 1, 2, 3) into Eq.( 4.20) and Eq.( 4.21), which

yields

xk(t) = rk sin(Slet + Tic)

2/k(t) = —rk cos(fict Wk)

Zk(t) = 
P2 k ft.N4

(22,k COS co , z (k)t 
niwz

i
(k) 

sin (42k np, (4.28)

where rk = .V2/k/mile, Wk is the initial cyclotron phase. Having obtained the

expression for the harmonic trajectory uk(t), we now proceed to evaluation d <

Jo > I dt.

4.4.1 Integral Expression for the Breaking of the Adiabatic
Invariant

In this section, we will derive an integral expression for the rate of the break-

ing of the adiabatic invariant d < Jo > /dt. In Appendix 3A, we have derived a

general formula for d < Jo > I dt, which can be written as the following time integral

(see Eq. (3.16) of Appendix 3A):

d< Jo > , 1 1 1 fx, 04,(t) 04)(0) 
  = ) dr < (4.29)

at 
TH 2e -co 000 000
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where 7 = copt and the statistical average is performed by using distribution function

Do(H, Jo):

Do(H, Jo) = exp[ w7,°j°
H — tooth

]
711

In order to evaluate the time integral, we follow the standard practice of substituting

approximate trajectories determined by the harmonic Hamiltonian Ho, and we also

replace Do(H, Jo) by Do(Ho, Jo). That is, we approximate the system by an ideal

phonon gas. As we have mentioned in Chapter 3, this approximation is only expected

to be valid for a strongly correlated system, i.e., must be large. Moreover, despite

the fact that the approximation of integration along the unperturbed orbits works

well for a weakly correlated system, the validity of using the harmonic phonon orbits

needs to be tested for a strongly correlated system

To calculate the time integral in d < Jo > I dt, we start with 4> given by

Eq.( 4.3), where ri = Hz -Fut, and the displacement tit is related to the Fourier compo-

nents uk through the transformation given by Eq.( 4.4) with uk = (xk(t), yk(t), zk(t))

determined by Eq.( 4.28). As we expect, the process involving the creation and an-

nihilation of one cyclotron phonon will dominate the equilibration rate so we Taylor

expand 041(t)/000 in z and y keeping only the lowest order nonzero terms:

x azin(t) y emn(t)

ago 9 EE In 890 aeo 0.1(0 q2 -I-
- no, [(Zim zin)2 n yin2]312

The correlation function appearing in Eq. (4.29) splits into parallel and perpendicular

parts:

84.(05.1(0)> =

4

q ELL E < >aeo 08° 44 I nit I, n,01,

< +
oxin(t) Oyin(t expn,(0) 

>
Oyvn,(0) [gin 1[Xlini Yltniaeo )aeo ao. ago
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where we have used the notation

3ao
h1 (t) = i(zin zin(t))2 (4.30)

Here ao a/2 is half of the lattice constant, T = (apt, XX,,,= /Cain; Yin = tam; =

• Rin, FLIT, L— R1 and

xi (t) = ic • (ut — un)

.1,2„. E [ f/rkcin sin( et + 'Pk) + r_kstn sin(fict + ‘11-0]N k>o

yin(t) = Sr • (ill — un)

.12 r
= — E t—rkein coot + Wk) — r_ksh, cos(fict + IP -k)]

N k>o

.zin(t) = 1; • (14 — tin)

= E te,„(zk cos wz(k)t +  ik sin caz(k)t)
w2(k)N k>o

sin(z_k cos wz(k)t 1—k sin coz(k)t)].
w(k)

where notations ch, and sin are defined as

= cos k • Ri — cos k • IL

= sin k • — sin k • 11.„.
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In order to evaluate < > we first simplify <
880 860

exin(t) Oxv„,(0)
090 aeo

2

at,„(t) 
aeo 880

N E E [< rkrk, >< cos(1ict + tk)cosipk, >
k>ok,>0

< r_kr_ki >< COS(flei 111_0 cos 'Lk) > SItt811n11

c— (6w + 8nni 8171' a) rnocy cos fict

where we have made use of the fact that < sin tisk sin Tie >= 0; < cos Wk cos Wk, >=

Pick, and that < r2(k)
2 

where as an approximation, Do(Ho, Jo) has been
M"C 

used for the statistical average of r2(k).

By the same argument, we also obtain

Oyin(t) Owns (0) c c
000 080 > you, + onn, — tint, m12e2 COS nct;

OXIn(i) aPni(0) >= (OW Enni alni Snli) 2 sin netaeo aeo

We then have

&Now()) 
>

aeo 000
Tie EEE E (ow + 8en, — 8,4< hin(t)hvn,(0) >47nflc2ag 1 74i

[(XinXiin, +11,17v,,!) cos flet — (XinYign, — YinXtin,) sin 1.2ct]

Furthermore, as we will see soon in the following section, the correlation function
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< Ithi(Oh1 ,(0) > is symmetric under exchange (1n) 4—> (in.') and so the sum of the

terms proportional to sin Stet vanishes because these terms are antisymmetric under
act)the exchange of the dummy indices. Finally, substituting < 81 > into Eq.( 4.29)as° aso

for ' 7Q2- we obtaindt

d < Jo > 1 , 3 , — LE E(XznXM + ?jive)
dt 711 in>I rt101

f.c/7 cos(7/e) < h1,„(t)hin,(0) >

where if Xlao,fr Y/ao, and we have used the relation between the density 7i

and ao : 44n = 1 for a bcc lattice. Here we define En>: to be the sum over lattice

sites n with Zh, = Zn — Z, > 0 and define Eniot to be the sum over all the lattice

sites except I.

We note that it appears that the time integral in d<dt4> is not convergent

because as 7 oo, < hen(t)h1s(0) >—>< h1 (t) >< hh(0) >, which does not vanish

(see Eq.(4.30)). However, when summing over the lattice, for every (1, n) there exists

a point (1,n) for which Xj, = )(In (i.e. a reflection) but < hut >=< h1, >, so the

sum is antisymmetric and vanishes as r —) oo.

Physically this can be understood from the picture in Fig.4.1. From Fig.4.1

we see that the adiabatic invariant is broken by the perpendicular component of

the slowly varying electrostatic force Mini, which has the form of q2(Xtn, Yin)hhi•

Obviously while < Sf,, j >0 0 since < h. > 0, the total averaged perpendicular

force Eh, < btni > does vanish because the system is in equilibrium.

However, we will evaluate the time integral before we perform the lattice

sums, so it proves useful to write down a form for doo> where each term is explicitlydt
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convergent. This can be done by integrating by parts:

lop
dT cos —

e 
< hi (t)h,,(0) >-= e sin -

7 
< h1n(t)h1il(0) > it:

-eI+00 . rd
dr sin -e —dr < ht,i(t)h1n,(0) >

We neglect the first term because it's contribution to 4-1:2 vanishes after performing

the lattice sum, since < hin(00)h1e (0) >=< hin(oo) >< h1n,(0) >. However, we will

soon see that the second term is a convergent integral and it gives the rate of the

breaking of the adiabatic invariant. We can now write the rate of temperature

equilibration v = ti/Ti as

E VInni
n>1 ni01

Vinni =
0.Tj_—, —

2
cos(Otn — (kins)— —)6

111

if a: dr sin(r/e) (T.T. < hhi(t)hin,(0) >

(4.31)

where we have used the approximation < Jo >..^-2 NTI/Clc and where Pin = f3n2

and (kin is the azimuthal angle of Rh, with respect to the magnetic field:

tan-1[17-1n/Xin] (see Fig.4.1). Note that since vh,n, only depends on 1, n and n' through

the relative positions, we have changed 1 7 7. —701 En/01tO - N E>En.01.

4.4.2 Asymptotic Expression for v in the Limit c << 1

In this section, we derive an asymptotic expression for v given by Eq.( 4.31)

in the e <1 limit. We first derive an asymptotic expression for vi„„,. Since e < 1,

the integrand of the time integral in vim,/ consists of a rapidly oscillating func-
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tion cos(r/e) associated with the cyclotron motion and a slowly varying function

(7-1: < hi(t)h,'(0) > associated with the parallel oscillation. This behavior of the

integrand leads to an exponentially small result of the rate v.

As discussed in section 4.1, the equilibration rate of the amorphous systems

in the experiments is determined by averaging ti over the randomly varying crystal

axes orientation. Since the result of such an average is dominated by the peak

values of vg,, which occur at small but nonzero /5/2, we will therefore focus on the

tan Oin = < 1 and tan 0/,,, = Pity/21„, < 1 case. Here Bt. (Ow) is the angle

between Rfr, (Rini) and B.

In order to evaluate the correlation function < hin(t)ht.,(0) >, we note the

following identity:

1 0.
ht. = 

1) 
dxx,71(x)e-zi2in-Flinll Pin (4.32)

Pin 

When Gin is small, 12in I 0( fit.) > iI in the harmonic approximation. In this

case we can make the approximation:

+ 2in I2Int + syn(2tn)2in, (4.33)

which yields tractable Gaussian integrals when < hin(t)htn,(0) > is evaluated. How-

ever, in the harmonic approximation there is an exponentially small but nevertheless

finite probability for 14,1+ sgm(Zin)ii. < 0. In this case, substitution of Eq.(4.33)

into Eq.(4.32) yields a singular result. In order to remove the singularity, but still

use Eq.(4.33), we introduce a cutoff 0 to the integral:

-r(14.1-Fion(21.)21.)1Pinhin = j0 dxx,h(x)e
Pin 0

(4.34)

The expression for the rate will be dominated by values of lib,' < I21„1 so use of

approximation Eq.(4.33) is justified. The small measure of conditions for which
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Figure 4.2: Plot of the parallel correlation function fin(r) for a 3D magnetized
plasma

121„1+ surt(21n)21„ < 0 is suppressed by p. We will find that there is a range of large

but finite /3 values for which the rate is independent of /3, provided that all > 1.

With the form of hi (t) and 4,40) given by Eq. (4.34), we can easily perform

the statistical average for < h1n(t)hin1(0) > by using the results derived in Appendix

3C, which allows us to rewrite vinn, in the following form

flc 3 J. N1/3/k, T11-1 /3 fp
Vinni = — --(—) ipt-n2p/-: cos(Otn — Ow) dx1dx2

7r 7r 711 0 0

s 2 012/3f fi_n(0)4_—x11 cot Oini — x21 cot elni 3rOw" Pln P1n1(x2)e

2xix2 3 2 3
Jinn/ (E, 3g7L( 4144 

fi 
) )PIntni

(4.35)

MW2

Here, the correlation function ft,(7) = 471  < zin(Ozin(0) > is an integral over the
1
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Brillouin zone (see Fig. 4.2):

fi-n(r) = 
vc/31( 1 - cos k • Rh' cos(w

_
z(k)r).

2 B.z (2703 cDz(k)2

The function ii„„,(c, a) is defined as

r d
(e, a) = -ea I dr sin(-)—[fi-n(r) fi-ni(r) —

-co E dr

ea[fl-n(r) f,_' (r) — f-i(r)]

Asymptotic Formula for hnni(e, a) in the E << 1 Limit

(4.36)

To evaluate u1,,,1', we first need to calculate the time integral itnne(c, a). We

note that linni(c, a) is a convergent integral because the envelope of fi_.„ approaches

zero like 1/r7/2 as T —+ oo (see Appendix 4A).

For c << 1, the integral can evaluated using the saddle point method by

deforming the integration contour into the complex r plane. By changing the variable

T to I = -ir, Eq.(4.36) becomes

.11.„„,(e, a) = aim di ea[h-n(i0+11-ni(ii)- fn-ni(ii)ind [ft -n(it) f1_,,( a) fn_ni(ii)]
dt

(4.37)

Since the integrand is an entire function of I, we can deform the contour through

the saddle points. The saddle point positions are the solutions of the saddle point

equation:

+ ft-nqii) — fn 1-ni(if)} = —dt Ea
(4.36)

As we will see, the integrand of vinn, given by Eq.(4.35) is peaked at (xi, x2)
1

( 1 4. t,
E CO 1, vIn El co

l
t Bin, I )' 

where Bin is the angle between Rim and the magnetic field
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(see Fig.4.1). Using the a value given by Eq.(4.35), this peak corresponds to
1

Ea - E • 2x2x2  
(

3 
)
2/3 

r'd p n . Furthermore we will also see that in or-
3F11PinPin. es I

der for Eq.(4.35) to be valid, we must require 1/Verli C Zn, Zni , which yields

Ea < 1. We thus expect that the solutions of the saddle point equation satisfy

> 1, which allows us to use the asymptotic expressions for fi-n(i0, it-Thi(ii) and

fn-n, (a) derived in Appendix 4A, for example,

3-71- 212n é
r=d 8r2 eV2

where only the lowest order term in 1/i has been kept and the parameter co is equal

to 1.583 x 10-2 + 0.102(14 b:). Then to the lowest order in 1/t and using the

form for a from Eq.(4.35), the saddle point equation becomes

where

(4.39)

ei
po(exix2) (4.40)

Po(x) = 71-711-1113 )2/3c05/211il tan Oinll tan °frill

nand where we have used the identity N _ = 22inzn,There are an

infinite number of saddle points distributed symmetrically on each side of the real

axis as well as a pure real solution (see Fig.4.3). However, for small e, as we show in

the following, only the real saddle point gives the dominant contribution.

For large po(exix2), Eq. (4.40) has an iterative solution

ln po i2rj + -7 
ln[lnpo2

(4.41)

where j = 0, +1, +2, • • Po po(ex1x2). By employing the saddle point equation and

using the approximation fj_n(g) fi-n(ii) for large we can rewrite the exponent
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Im(1)
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1 I._ L_1
—3inT

Re(t)

Figure 4.3: Plot of the steepest decent contour in the complex I plane for the saddle
point calculation of /m.(e, a)

in Eq. (4.37) at I=ij as

•hi = — + + ft-n,(iti) —

_

According to the saddle point method , the magnitude of Thini(e, a) is dominated by

the exponential factor exp[Re(hi)], which is given by

_I inr4 2 '2 1_2 _1
eRe(hi) e r po e ;(n po —1)

_^=s [1 + lit P0

Obviously elk(hi) < eRe(h°) for j 0 and this allows us to neglect the j 0 terms.
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Making use of the approximation f1 (i10) r.± fi_n(i10) for large 10, we obtain

27r e_1(E0 _1)
itnn,(6, a) "' (4.42)

yE

We note that the largest Iinn, comes from the smallest to. According to Eq. (4.40),

to is the smallest only when po is the smallest, which occurs when tan Bin and tan am,

are small. Therefore, we expect that vim., is dominated by the contributions from

the terms with small Oh, and small Oho. However, at Oin = 0 and Bin, = 0, pfr, and

Pin' vanish and thus vim', vanish. Therefore, as we discussed at the beginning of this

chapter, the maximum rate occurs at small but nonzero Oin and Bin,. In this case,

the sum in Eq.(4.31) can effectively be replaced by the sum over lattice sites with

small Ob., and Ow.

Sum Over Lattice Sites

For a bcc lattice, for each lattice site n', there always exists another lattice

site rt-' which is the reflection point of rel with respect to 1 (see Fig.4.4). Because

I tan Obil I = I tan and ehrfri, = 7r — Oini, we can easily show by using Eq. (4.42) that

whin, = —vim, for each 711, which leads to v = 0. However, this conclusion is actually

not correct. In fact, //Inn, and vim:, are not equal and one is much smaller than the

other. In order to see this, we must keep the next order term in the asymptotic

expression of ft,(ir). This next order term 611,(ir) is given by Eq.(4.65) derived

in Appendix 4A. By taking 6ji_n(ir) into account, we can rewrite the saddle point

equation as

Pn-111 )] (4.43)er 5 / "in I n1 k  1"4 Sr3241 Zn4 ) 10 C3= po[l 24 cor.r7/2 CoT ZinZInt

In order to focus on the difference between 'Inn, and /imp, terms on the order of 1/r

which only depend on Rim or Rini through At or Nn, have been ignored because
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21.0

•

4
"%aaino

Figure 4.4: Schematic picture for a lattice site IL and its reflection point it.

they cause no difference between Imn, and / Q. In Eq. (4.43), c3 '•-• 0.102 and µ1_„

is defined by Eq.(4.67) of Appendix 4A as:

— 2inPin[6,3 — b cooin —04+a:0 — b cos(oin-00+bz30. — b cos(cbin-0.)]

Here (bn, b11, bz) are the components of it _= B/B projected on the crystal axes

(i, n•((Ø1&) are the azimuthal angles of (i4, 1) with respect to b sepa-

rately (see Fig.4.19 in Appendix 4A). As we expected, only the relative azimuthal

angles appear in szi_„, etc.

We note that for small Bin and eini, we have 2in > pin and Zn, > pm, and

therefore we expect that the third term in the bracket of Eq. (4.43) is small compared

with the second term. We may therefore write the saddle point solution as

I t- 5 gtnn,—
24 c01.

(4.44)

where L is the solution to Eq. (4.40) and gime 4(212,i+ 4,,,)-6ZinZin,. Obviously

ginvi/ ginn, = 1221n Zino , which shows that for Zn • Zn, > 0,I inr:a is smaller than
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/kms by a factor -y exp[-5ZinZin,1(26c0141. Furthermore, as E --> 0, Eq.(4.41)

implies EC, —> 0 and so -y is exponentially small for c < 1. Because 7 < 1, vh„.? Cf

OWL/Inn' < vim& for Zin • Zing > 0 and c < 1.

Another important observation for Eq. (4.44) is that when 2h, and 21„, be-

come larger, I becomes larger. We therefore expect that v. is only dominated

by the contributions from the nearest neighbors. We will see this in our numerical

analysis in the next section.

We have seen that the rate is dominated by small Om and Ow. Counting only

nearest neighbors, for a bcc lattice, Oh, and 61„, can both be small only when n =

Therefore, as a conclusion of our discussion, we rewrite Eq.(4.31) as a sum over the

nearest neighbors:

v = E VInn.
n>1

(4.45)

To calculate vinn, we substitute the leading order term in Eq. (4.41) for the

pure real saddle point to lnpo into vh,,, given by Eq. (4.35) and obtain

--4 [1 — lnPo(e)Yel JP dx.ilin(x)12 (4.46)
7 7i

12c 3 
1/3(1 

\
inn = 

7,11 

T1 
)6 

/27r 
—riPin e

0

where

xi cot 0 inlAin(x) xl±licJi(x)e + —3r
2

11‘
(fr

)
2/3.h_n(0) *2

Pin (4.47)

At (x) is a oscillatory function with the envelope sharply peaked at x.

1/c)/I cot 0/7,1, before starting to grow at xb r=s #1(ii )213PinZInrilin-n(0) (see Fig.4.5).

This growth is due to the aforementioned unphysical singularity arising from the

approximation for the absolute value in the integral transform for hin (see Eq.(4.32)

and Eq.(4.34)). However, we find that the integral f: dxA,n(x) is independent of

the choice of 3 provided that xa tb, which implies that cI' >> 1/4n
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Figure 4.5: A schematic plot of Ai (x)

for e cc 1. The physical meaning for this inequality is clear. According to our

crude estimate based on the phonon collision picture, the equilibration is dominated

by the displacement bz with a peak at 82„ r.J 1/Ver 1 and thus in order to use

Eq.(4.33) we must require 82,„ < Z, which leads to inequality er11 > 114. This is

a validity condition for the use of the integral transform Eq.(4.34) under the harmonic

approximation. In particular, for nearest neighbors 1 and n with 01,,, < 1, this

validity condition is reduced to the validity condition of the harmonic approximation:

ern > 1, which was derived at the beginning of this chapter (see section 4.1).

When condition €1'11 > 1 is satisfied, we may ignore the 0(x2) term in the

exponent of Eq. (4.47) and take the /3 oo limit, we obtain[8]

L's dxAin(x) I cot Oh,'dxx1+11%11(x)e—x

(—irvecohn, 1/0.151271-1-117Ein
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where

C(01,.,116) Rtnapina27„1€ \lit+ zin

— n )-1 lel"(3 +1 /6) Pr:„€(c o s tn

(4.48)

(4.49)

where P-1 (x) is the associated Legendre function of the first kind. By comparing

Eq. (4.49) with Eq.(4.2) one may easily identify C(91 , 1/c) defined here as exactly

equal to that defined by Eq.(4.2).

We now substitute Eq. (4.49) into Eq. (4.46) and obtain

3 T19 2 4> 4
Vinn =)1/3(1 — —)ric C e film [(COS 0141 / Pl-Fille(COS °In)? (4.50)

TII

where

v2 ir
It,= ln[ v-2--r- ( 3 )2/3C50/2er MI +1 (4.51)

and we have used the approximation r(x) V21rix exp[—x xlm(x)] for x > 1.

From Eq. (4.50) we obtain the final equilibration rate: V = En>I Vinn• We

find that 1,1,,n given by Eq. (4.50) does show several important characteristics verified

by the numerical results of the next section. For example, 1/17111 decreases like RI: as

Ein increases, which implies that the dominant contributions are from the nearest

neighbor interactions. As we have already discussed, next order terms in the saddle

point position io reduce the effect of distant ions even further.

We also find that the factor (cos Oinric shows an exponential decrease in Winn

as Om increases for E << 1. As an extreme case, Limn = 0 for Oh, = because in this

case 84„(t) vanishes for those modes with k B, by which the equilibration process

is dominated.

Moreover, the Legendre function exhibits a rapid oscillation in Oh, associated
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with the Taylor coefficient C(tan01„, lie) of the interaction potential energy. Fur-

thermore, as in the crude estimate of Eq. (4.1), smaller c corresponds to a higher

order Taylor expansion and thus is expected to lead to more rapid oscillations. In

fact, for small Gm we may approximate Pc+11/6(cos 01,) by J1a3+2/e) sin

which oscillates faster in Oin for smaller c.

In order for our calculation to yield a quantitatively good result, the validity

condition for the asymptotic expression of fi_„(ir), c.010 >> 1, i.e., co In po(cx!) > 1,

must be also satisfied (see Appendix 4A). This condition, for the largest possible value

of co, becomes cF11 > 1.25 x 105. Notice that this is a very strong condition which

is not satisfied by current experiments and therefore the asymptotic approximation

can only be expected to provide us with qualitative information for v. In the next

section we will calculate the rate numerically.

As we have discussed, Eq.(4.34) is only valid for the 0/7, < 1 case In order

to be complete, in what follows we consider the Om > 1 case. When Gin > 1, we use

another type of integral transform:

1 Cc
h (t) =   dx x K (x)eiz(2 in-FE:n(0V pin

3
" Pin —cc

(4.52)

For this case, we will see that a singularity occurs when ph, 0 due to the

contribution from 21n + = 0, which corresponds to the close collisions between

the/th particle and the nth particle. After performing the statistical average for

< hin(t)hz.(0) >, we obtain the equilibration rate given by

IiInn = (-3 )1/3(1 — L71 )CrIP1n4
7 77

x2_Lx2

L2/CO _ (A)2/311_71(0)_- _a

dxidx2Ki(xi)Ki(x2)e 0
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2x1x2  ( 3 )2/3\[cos[(xi - x2) cot Gin]linnle, -2
3riiPin

COS[(X + x2) Cot 0 In] 1Inn(C) 
2x1x2 3

)
2
/
3
)]

3r1Ign r
(4.53)

3
We found that the saddle points of /1„„(e, 

2x1x2 
_2 

()2/3)
 are all complex, and the

3r1109in it
imaginary parts of these saddle points make /inn oscillatory. On the other hand, we

found that the first term in the bracket of Eq. (4.54) is nonoscillatory because of the

existence of the pure real saddle point, which dominates the integral. Furthermore,

as we will show, this nonoscillatory term gives the trend of the variation of jtrn as a

function of Bin. This may provide a way to check our results for vim., determined by

Eq.(4.35). We therefore focus on this nonoscillatory term in the following discussion.

By dropping the second term in the bracket in Eq.(4.53), we write

where

i'inn 4f ( 3 )1/3(1- 7±1)61"±Ptn4
it It 711

sop 100 2 (11

dxidx2Ki(xl)Ki(x2)e 3ro w'
2/3

JI-nku)
r

2xix2 / 3 )2/3‘cos [(xi - x2) cot Oln] 'i 
3riiPl

nn 6, -2 /
n 7r

By substituting Eq. (4.42) into Eq. (4.54), we obtain

vi2
i; inn = 4-(1=(-3 )1/3(1- —)er 7r i _e _ Po(-)1/c[c,-„+stn]

7r 7r 711

Ctn. =
1 [00 [00

2+1/c jo
pin

—5fr(!)
2/3ft-n(0)41Rn

dx1<i(x) cos(x cot 191,,)e 

(4.54)

(4.55)



161

1 ce o
Sin - -2-1-1/e 

i T
dx i(x) sinfr cot Bin)e ii

Pin 0 0

For large we may neglect the exponentially decaying factors in Ch, and Si,. and

we obtain

+ 1
)1,0 + 1 )F(3 + 1 1 + 1 1 , 2

Cln
1/c-. -2-1/c — —(cot Om) ) (4.56)

2 26 2 26 2 26' 2 26' 2'

1 1 1
Sin rd 21+1/EZE„p-3-1/€112 + —)11(1 + —)F(2 , 1 + —

1
• -

3
• - (cot 0/42) (4.57)

26 26in 2c 2e' 2'

where F (a, (3; 7; x) is Gauss' hypergeometric function.

Some important features of Phu, given by Eq. (4.55) should be noted. In

the limit of small tan gin, the ph, dependence of F( + —
1 

I.' 
1

• .1- -(cot 0,42)2 26 2 2 
— 
6' 2 ' 

is (tan 81n)1+1/c and so Chi PT:. Similarly, we have Sin Pi11 and therefore

13Inn Pin —> oo as ph, 0. As we have discussed, this singularity is due to the

improper inclusion of the close collisions.

In order to make comparison between iiinn and vinn, we employ the following

asymptotic formula for the Gauss' hypergeometric function for c < 1:

and then

Ot OinF(3 + 1,1 
1 

1+ —;; - (cot Oin)2) ••••, cos(  )
2 2c 2 26 2

1 COt eln F(2 — , 1 —1 • -3 • - 04 )2
26 2e 2'

(cot 1 c sin( V cot Oln' 

_2(iin _1 _
(C12717 Sin) r=.1 —€2 Pln e (c0s2 cot n

( 
I  ),sin  

Furthermore substitution of Cin and Sh, into Phin yields

nc 3
Pt. = 4—(-)1/3(1 - LI)12-1 /2 (cot 0142/eCeic

7 7
(4.58)
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where gi is defined by Eq.(4.51).

We now see that is nonoscillatory despite the fact that both Cin and

Sin are oscillatory. In order to make a comparison between _Dim, and vin. given

by Eq.(4.50) and Eq.(4.58), we substitute the asymptotic formula for the Legendre

function for € < 1:

r(1 + 1/E) ,pi—:ve(cos = 1/e) 1+1 
(cos oho 

e

2
2 + 

cos[(3/2 1/00i„+r/4] + 0(65/2)
i 

into Eq. (4.50) and obtain

= 014-3-2/E[1 — sin(3 2/ e)Oin]( 1 + 0(e))

which shows that .1;i„„ represents the trend of the oscillation in Bin of v. This

full oscillatory behavior is expected to be recovered when we take into account the

second term in the bracket of Eq. (4.53).

4.4.3 Numerical Calculation of V and Discussions

Though we have derived the asymptotic expression for the rate in the E << 1

and &1' >> 1 limit, for a general parameter regime of E and PH, the asymptotic

expression only gives the qualitative behavior of i/ and the rate must be determined

numerically.

To perform the numerical evaluation oft' using either Eq. (4.35) or Eq. (4.54),

we must first calculate the time integral /1„,,./(e, a), where a = +
2xix2

( 3 )2/3. 
 

Fur-

thermore, in order to calculate 4,(e, a), we must obtain function fi_n(a). As

a first step, we calculate the frequency wz(k). In our calculation, we write k as
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k = xibi x2132 x3b3, where b1, 132 and b3 are the reciprocal lattice vectors:

= r(0,1,1);132 = r(1, 0,1); b3 = r(1, 1,0).

where the lengths are scaled by ao and the wavenumbers are scaled by 1/ao. We

tabulate the dynamical matrix elements G2 (k) and G(k) given by Eq.(4.62) in

Appendix 4A on a 31 x 31 x 31 grid, where on each grid point (/,m,n),

1-16 m — 16 n — 16
xi(/) = 31 ; za(m) =  31 ; x3(n) —  31

The other matrix elements can then be obtained through the permutational symme-

tries:

and

m, = G(/, n, m) = m, 1)

G2z(1,m,n) = Gzz(n,nt,l) = Gry(1,n,m).

With these matrix elements, we thus obtain the frequency given by cjz = 1; • G •

where 1; is the unit vector of the magnetic field In Fig.4.6, we plot the numerical

results of Cjz 2, where the solid lines represent 02 2(k) with k along [001] and [111]

respectively.

After obtaining cjz, we may furthermore calculate the value of the integrand

of f1_(ii) on each grid point (1, m, n), where f1_(ii) is given by

ft-n(ii) 
1 vd3k 1 — cos k • Rh, _ cosh(coz(k)f)
2 .113.Z (2703 cpz(k)2

1 — cos k • Rh,1/2 
dxi 
11/2 1/2 

dx2 
j 

dx3 cosh(cDz(k)i) (4.59)I-1/2 -1/2 -1/2 2i'( k)2

Here we have taken v = 4 for a bcc crystal and we have changed d3k to dx1dx2dx3
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Ikl
Figure 4.6: Plot of the parallel dispersion relation 02(k) for a 3D strongly mag-
netized crystallized plasma, with k // b // [1,1,1] and [0,0,1] respectively. Here
frequency ca; is scaled by plasma frequency wp, wavevector k is scaled by Vac), where
ao is half of the bcc lattice constant. The solid lines represent the numerical re-
sults and the dotted lines representate the approximate analytical results given by
Eq.(4.54).

with Jacobian 83k/(Oxiox2ex3) = 2r3. The three dimensional integral is performed

in the following way. We first evaluate the x3 integral by applying the extended

Simpson's integral rule to the grid points x3(n)(n = 1,2, • • •, 31) while treating

xi = xi(/), x2 = x2(m)(1 < 1,m < 31) as parameters. The estimated relative error

for the Extended Simpson's Integral Rule is on the order of{9I 1/314 which is small.

After performing the 3 3 integral, we are left with the integrand of the xi, x2 integral

in a form of a 2D array (1,m)(1 < 1,m < 31). We repeat the same technique used

for the x3 integral holding x1 fixed, the resulting 1D array is also integrated via

Simpson's rule. We also evaluate the derivatives gf/_„(ii") and cc ifi_n(i0, by taking

derivatives of Eq.(4.59) analytically and then numerically integrating through the

same procedure.
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Figure 4.7: Plot of f,_(ii) for B// [111], Rfr, =[0,0,21, where t is scaled by 1/cop.
Solid lines: asymptotic results (Eq.(4.65); dotted lines: numerical results.
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Figure 4.8: Plot of f1_(ii) for B// [0 0 1], Rh, = [0,1,1]. Solid lines: asymptotic
results (Eq.(4.65); dotted lines: numerical results.



Figure 4.9: A comparison between Ii„„(e, a) and Ihnii(e, a), where 4.„,(6, a) and
./1„„,(6, a) are evaluated by direct numerical integration (see Eq.(4.36)). The upper
solid line is for Rin = Rins =[1,1,1], the upper dotted line is for IL = Ring =[2,0,2],
the lower solid line is for Rh-, = [1,1,1], =[2,0,2] and the lower dotted line is for
kin =[1,1,1], Rzna = [1,-1,1].
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b=[1,1,2]/V6 111,=[1,1,1]
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Figure 4.10: A comparison between III„„(e, a)1 and I , cx)1, where kin =[1,1,1]
and Km =[-1,-1,-1]. Her we plot the absolute value of /inn and 'inn because /frifi is
oscillatory and can be negative.
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The numerical results of f,_(it) for k along [001] and [111] are plotted in

Fig.4.7 and Fig.4.8, where dotted lines and the solid lines represent the numerical

and asymptotic results respectively.

After obtaining f,_(i) and its derivatives, we may now evaluate the time

integral .11„„,(6,a). We first compare the numerical result of 11 ,(e, a) for different

1,71 and n' and as we found in the asymptotic analysis, the nondiagonal term, n n',

is much smaller than the diagonal term, rt = n' (see Fig.4.9).

Furthermore, we calculate /Inn and /inn numerically, where ñ is the reflection

point of 71 with respect to n (see Fig.4.4). We find that, /inf. is much smaller than

/inn (see Fig.4.10), as we discussed in our asymptotic analysis.

The fact that j/innil < Ihn„l(n n') allows us to focus on the rt = n' case.

We then proceed to calculate the time integral limn using both the saddle point

method and direct numerical integration. First we discuss the saddle point method.

As we discussed in the asymptotic analysis, we only need to keep the saddle point

on the real axis, which is the root of the saddle point equation

—Ea

In order to evaluate /inn, we first tabulate fi_n(a), lifi_n(ii) and dd f1_(ii) for t

varying from 0 to 20 with steps Al = 0.1 for t < 10 and Al = 0.5 for t > 10. Here we

take nonuniform steps because f,_(it) and its derivatives vary faster for smaller Ps.

Using these discrete values at different I's, we make the cubic spline approximation for

f,-(ii),1fi_(ii) and cifi_n(g), and we can then solve the saddle point equation

numerically. In our calculation, the saddle point equation is solved by using the

SLATEC subroutine DZERO.F. Having obtained the saddle point position I = ta,
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b=10,0,11 Rh,=[1,1,1]
io2

to:
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so-5

1 / E

Figure 4.11: Plot of the time integral l(e, a) with B// [0 0 1], Rh, =[1,1,1]. Solid
lines: the results from the saddle point calculation keeping only the pure real saddle
point; Dotted lines: the results from direct numerical integration.

ea%

b=[1,1,0]/J2 R1,=[1,1,1]
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1 /c

Figure 4.12: Plot of the time integral ihni(e, a) with B//[1 10], Rh, =[1,1,1]. Solid
lines: the results from the saddle point calculation keeping only the pure real saddle
point; Dotted lines: the results from direct numerical integration.



the time integral is then evaluated by the saddle point method:

1 2/r e--brink a) 1-=-' e\ aft" n(ii.)

In order to compare our result of saddle point calculation with the direct

numerical integration result, in Fig.4.11 and Fig.4.12 we plot ii„„(e, a) as a function

1/e for different a, Eh, and 1;'s. From these figures, we see a good agreement between

the saddle point calculation and the numerical integration. Furthermore, as we

expected, we see that ./1„„ decreases exponentially for small c.

An important feature shown in Fig.4.11 and Fig.4.12 is that, in contrast to

Fig.3.3 for the 1D Coulomb chain case, the steps in /km as a function of e is strongly

suppressed for large 1/e. From the point of view of the saddle point method, the

oscillations are due to the contribution of the complex saddle points. They play

important roles for the 1D case but are negligible for the 3D case. As a result, the

abrupt steps appeared in /Inn for the 1D case are suppressed for the 3D case.

This can also understood through the following physical argument. Accord-

ing to Eq.(4.36), the integral ii„„ is

= —2caJ —dt fin(r)e2“h".(r) sin(12,t)dt,

which can be written as

- -2Ea Jdt—
d fi 

(2a)3n(r) Edttii sin(Qct),j=0 j! n(r)?

where r copt. Thus /bin is the to = Oc Fourier component of a sum over products

of fh, and it's derivative. This can be written as a convolution of the products of the

Fourier transform of fin•

As shown in Fig.3.4, the Fourier transform of fin(r) for the 1D case has a

sharp cutoff at the largest parallel frequency and this sharp cutoff causes the abrupt
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b=[0,0,1] Ru,=[1,1,1]

3

Figure 4.13: Plot of the Fourier transform of the correlation function fin(r)

steps in hnn• However, for the present 3D case, as shown in Figure 4.13, instead of

the sharp cutoff, there only exists a gentle bump near half of the maximum frequency.

This gentle bump only causes smooth oscillations in /Ina for small 1/e as shown in

Fig.4.11 and Fig.4.12. For large 1/e, these oscillations disappear because 'Mn is then

determined by many high order terms, each of which has a small effect when taken

individually.

We evaluate the xi, x2 integral to complete the rate calculation. Recall that

we have two versions of the rate calculations, one is given by Eq.(4.34) valid for small

Ot„, the other given by Eq.(4.54) valid for Om > 1. We first calculate the rate for small

Otn by performing the xi, x2 integral in Eq. (4.35). As we discussed in section 4.4.2,

we must choose the upper integration limit j3 such that xa << f3 << zb, where the

integrand is peaked at (x1, x2) = (xa, xa) and the integrand starts to grow along the

xi = x2 direction when x1,2 > xb. Here xa (1 + 1/0/2in and xb •••••• 2/n1'ii/fi,(0).

In our calculation, we find that the rate is independent of the choice of p provided

that au>> 1.
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Figure 4.14: Plot of vim, as a function of cos ez„, where Rin =11,1,1] and 1; varies in
the plane spanned by lattice vectors [111], [002]. The solid lines represent the results
of Eq. (4.35), which is valid for small Om, and the dotted lines represent the results
of Eq. (4.54).
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Figure 4.15: Plot of vi„„ as a function of cos Gin, where Rin =[0,0,2] and 1; varies in
the plane spanned by lattice vectors [200], [002]. The solid lines represent the results
of Eq. (4.35), which is valid for small Oin, and the dotted lines represent the results
of Eq. (4.54).
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Figure 4.16: Plot of vim, as a function of cos Gin, where Bin =[2,2,0] and fi varies in
the plane spanned by lattice vectors [200], [220].The solid lines represent the results
of Eq. (4.35), which is valid for small Obi, and the dotted lines represent the results
of Eq. (4.54).

For Oh, > 1, the rate is given by Eq. (4.53). In this case, as we did in the

asymptotic analysis, we performed the xl, x2 integral for il„„ given by Eq. (4.54).

The numerical integration is straightforward since the behavior of the integrand is

regular.

The results for our numerical calculations for vim., are plotted in Fig.4.14 and

Fig.4.15 and Fig.4.16 as a function of cos 0/,,, where the solid lines represent the

results given by Eq. (4.35), and the dotted lines represent the results of Eq. (4.54).

We can see that the numerical results do exhibit the qualitative features predicted

by the asymptotic analysis. For example, the dotted lines give the trend of the

oscillatory solid lines. The rate vim, is an oscillatory function of the angle 91n with

a rapidly decaying amplitude. And as e decreases, these oscillations in Oi„ becomes

faster. Also, recall that in our order of magnitude estimate (see section 4.1), we found

that the maximum rate occurs roughly at Oh, r.J1/Vr/14 = fa. Here from these
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figures, we see that the angle Om at which the maximum vinn occurs does decrease

slowly as 1/e increases. Moreover, we see that vim., decreases as Rin increases, but

it decreases much more rapidly than Ittin1-4, which is predicted in our asymptotic

analysis if we had kept higher order terms in 1/7.

Finally, by summing vim, over different lattice sites (in), we obtain the equili-

bration rate v of the crystal as a function of the magnetic field orientation (0 , 0) with

respect to the crystal axis. Since the rate decreases rapidly when 1111.1 increases, we

only sum vinn over nearest neighbor points Rfr, = [±1, +1, +1], [0 , 0 , +2], [0, +2, 0],

[0,0, +2], [±2, +2, 0],[0, +2, +2] and [+2,0, ±2].

The variation of v with 9 and # is presented in Fig.4.17. From Fig.4.17 we find

that the rate is strongly dominated by the contribution from the nearest neighbor

lattice site Rin = [1,1, 1] and is highly peaked when the magnetic field makes a small

but nonzero angle with the [1, 1, 1,] direction. As we have mentioned, in practice,

the system is not a perfect bcc crystal and the overall temperature equilibration rate

may be approximated by averaging v(9, 0) over randomly varying angles (9, 0).

One may have noticed that the rate obtained is physically relevant to the

experiments only for 1/e 3 — 5. For larger 1/e, the rate may become so small

that it would make an experimental test quite difficult. On the other hand, for

1/e 3 — 5, corrections to our guiding center approximation, for example, the terms

in wz of higher orders in E, may be important. Nevertheless, the present calculation

as a preliminary investigation for the temperature equilibration process in a strongly

correlated plasma is expected to provide the zeroth order result for the temperature

equilibration rate.
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1/e = rii= 120 toot]

Figure 4.17: Plot of v(0, 0) for different magnetic field direction (0,0), where 0 and
0 are defined with respect to the crystal axes and run over the shaded region of the
inset. This figure repeats for (0,0) in other quadrants of the sphere.

4.5 Appendix 4A: Asymptotic Expression for
Mg) in the fl >> 1 Limit

In this appendix, we derive an asymptotic formula for the correlation function

Mii) in the Iti > 1 Limit, where Mit) is defined by equation ( 3.25) for a three

dimensional crystallized and strongly magnetized plasma.

For a 3D system, Mil) can be written as a 3D integral in the Biillouin zone:

1 f vd3k 1 — cos k • It/
h(ii) = 2 ./B.z (2703 ti,z(k)2 

cosh(Dz(k)t) (4.60)

Here v = 4a, I = copt and k and R.1 are normalized by 1/no and a() respectively,

where al) is half of the lattice constant.

For I>> 1,Mil) is dominated by the contribution from the largest frequency
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Ic

Figure 4.18: A schematic picture for the eigenmodes for a unmagnetized bcc
Coulomb crystal

Cvz(k). In the guiding center limit, Caz is given by

= 1; • G • 1;

where to is the unit vector along the magnetic field and C is the dynamical matrix

normalized by mcap2. The condition for the largest cp, can be found by maximizing

the Lagrange target function F(b) 1; • G • 1; — A211;12 subject to the constraint

$12 = 1, where A is the Lagrange multiplier. 01'0;VA = 0 yields

G • = A21;

which means that the maxima of Ci./z occurs when 1; is a polarization vector of d

with eigenfrquency A. The eigenmodes of d was found to be one longitudinal mode

and two transverse modest'', as shown schematically in Fig.4.18. From the figure

we see that the maximum frequency comes from the long wavelength longitudinal

mode. At k = 0, the frequencies of the the transverse modes, A1 and A2, vanish and
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A3 reaches its maximum value :A3 = 1. Furthermore, this frequency must be the

largest possible frequency of the modes because of the Kohn rule: A? + A + 4 = 1.

Before proceeding to derive the asymptotic formula of fag), we first need to

obtain an expression forci.,z(k) in the small k limit. We start with a formula for G

derived by Dubin[n] using the Ewald sum technique:

with the matrix G(k) given by

Gij =--

G(k) = G(0) — G(k) (4.61)

V 6 j

47r [61FrR2 
3 + + -7PiP .F2] cos k • p —

p p3 ps

v, (g — k)i(g — k)a e_ig_ki2R2 02 e2
gtk Oxiuxj 

kk(x)_ ;4].=0T 

and F1 and F2 are given by

= erfc( 
P2R 

P 
AgrR

p2  p *FPErR )2

F2 = 3erfc(L)+ (3 + ) 2R2 ' ViRe

(4.62)

Here R is the parameter introduced to break the Ewald sum into two terms; in fact,

Gij is independent of the choice of R. Ep 'is the sum over all the lattice sites except

p = 0 and Ego', is the sum over the reciprocal lattice points. The last term in

Eq. (4.62) is added to remove the singularity at x = 0.

Expansion of Gij up to the second order in k yields

LD,(k)2 = 1.; • (G(0) — G(k)) •1;

(k •1?))2
ci(k • 1.'3)2 c2k2 — c3(k:b2. kq + k:b2z) (4.63)k2
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where (lc, ky, kz) are the components of k along the crystal axes, (bm, by, bz) are the

components of 1; along the crystal axes, and where the coefficients cl, c2 and c3 are

given by

2,7,2 R- 2g2
1,Nry e

= R2 v E  F2
4 p Ps 

g
2

C2 =

2(g2
2 

g2)
2 Y (1 R2 gz) 2 (gm + gy) + (1 + g R ) + 4 Y

2 2R2
1 

 4 4 4gg2 R2 2 2 8gg2)

-v E /(-- wr -F1+ F2) +E
_112g2

87r P3 P5

7,2 7,2
Frn Jry

g 92

(_4(1+92R2) ,_ 4g-291/2 29
 g2Y2R2 (2 + g2R2))g g4

13n2m,y2 n4z 
2e-R2g

8
C3 = r 5 r F2 + E  2 7r is g g

(2R4g(3gy2 g)+(3 g2
A 

a 
Z+g

2 n2)gX 
92 

gy2 g22 2R  (g: dyt)
 

12 R2)
z it g2

The numerical values of el, c2 and c3 for a bcc lattice are calculated and are found

to be:

r-± 7.491 x 10-2; c2 ce 5.908 x 10-2; c3 0.102

We have tested our results by choosing different values of parameter R and we find

that the results are indeed independent of the choice of R. In Fig.4.6 Co2(k)2 given by

Eq. (4.63) is compared with the numerical result given by Eq. (4.61) and Eq. (4.62)

for k along [001] direction and [111] directions. We can see that for small k these

two results are in good agreement.
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Figure 4.19: A schematic picture for the Frenet coordinate system (n, t, b), where
b == B/B and (n, t) are two orthogonal unit vectors in the plane perpendicular to
b. (0,0) are the polar and azimuthal angle for the wavevector k with respect to
(n, t, b). (th, i, 1) are the crystal axes.

We now proceed to calculate fi(a). It proves useful to use the Frenet co-

ordinate system which is described by three orthogonal base vectors: (n, t, b) (see

Fig.4.19). Here b B/B and (n,t) are two orthogonal unit vectors in the plane

perpendicular to b. In this coordinate system, the direction of any vector, e.g., k,

can be described by the the polar and azimuthal angle (8,0) with respect to 1̂3.

Though the choice of (n, t) is arbitrary, we will see that our results only depend on

the relative azimuthal angle between two vectors, which is independent of the choice

of (n, t).

We rewrite Eq. (4.63) as

aiz(k)2 r• -d cos2 8 — s(8, )k2 (4.64)
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where (0,0) are the polar and azimuthal angles of k.

s(0, = Cj COS2 8 — C2 + 
C3(k:b2r ky261/2 kz2bz202.

Here (k, ky, kz)lk and (bx,11,,k) are the components of k and fi along the crys-

tal axes (i4,1). In the following calculation, we will write these components as

functions of the polar and azimuthal angles in the Frenet coordinate system.

From Eq. (4.64) we see that the maximum rikz(k)2 occurs for k = 0 and 0 = 0

or 7r. We also see that for small 0, where the maximum cDz(k) occurs, .s(O, 0) is always

positive.

We now substitute Eq. (4.64) into Eq. (4.60) and assume I is large. Then by

expanding the integrand for small k, and for 9 near 0 or r, we obtain

oo (k • Ft/ )2 cos 91-122= /[1 0(1/1)]fi(i0 .° 127r for c10 sin 0 jo dkk2
2(cos 6)24(2r)3 o

3 ei
gr2 _5/2 i7/2 [1 + 0(1/01

co
(4.65)

where co 3(0, 0) = — c2 + c3(t4 + 194y + 192), Z fi • rit•

The asymptotic formula given by Eq. (4.65), which is to the lowest order in

VI, is proportional to 2?. However, in our asymptotic analysis for the temperature

equilibration rate , we will see that keeping only terms proportional to 2? will make

the contribution from Fti cancel the contribution from causing a zero rate,

which is obviously not correct. In order to obtain a sensible result in our asymptotic

analysis for the rate, we must include the 0(111) term, particularly those terms not

in the form of 2?.

In order to find the 0(1/1) term, we make use of the following formula:

k • fti = kiii[cos 9 cos 01 + sin 0 sin 9i cos( ck —
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k. = b. cos 0 + sin — cos(4) — (/).)

ky = by cos 0 + sin Mil — cos(0 — 4.y)

kz = 19, cos + sin 0 \ — cos(0 — 0.)

where Ph OE) is the polar and azimuthal angle of ft., and (O., cky, 02) are the azimuthal

angles of the three orthogonal crystal axis in the Frenet coordinate system. Substi-

tuting the above formulas into Eq. (4.60) and expanding the integrand to higher

orders in 0(1/0, we obtain the next order correction to Eq. (4.65):

5.N.7ré - 15-Virc3 et
aft(i0 = 32704/2 i 27r24/2 0/2PI (4.66)s/24 + 

where

piZi[bW — b2,, cos(4n — sz) [b:\.11 — b coo, - + EbWi - b coo, - oz)]
(4.67)

where terms which depend on 111 only through 2? have been ignored.

Fig.4.7 and Fig.4.8 show the comparisons between the direct numerical in-

tegration results and the asymptotic analysis results given by Eq. (4.65). We find

that the numerical and analytical results agree with each other only for sufficiently

large T. This is because that in order for the asymptotic formula to be valid, we must

require tf(0, 0) >> 1, i.e., 1>> Vey 10/(0.16+ b: +b:+b!), otherwise the boundary

of the Brillouin zone may play an important role. Notice that this is a rather strong

condition for L Furthermore, from this condition we see that the numerical and

analytical results would converge faster for a larger b: + b: + b. In the figures, we do

see a faster convergence for the 1; = [0,0,1] case compared with the b = [1,1,1]/0

case. In fact, from Fig.4.6, we find that a).(k) given by Eq. (4.64) is a much better
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approximation for the 1; = [0,0,1] case than the 1; = [1,1, WO case, this fact also

makes the numerical and analytical results converge faster for the 1; = [0,0,1] case.

In addition, in Fig.4.7 (Fig.4.8) we see that the asymptotic result is larger

(smaller) than the numerical result for 1; along [1,1,1] ([0,0,1]). This is because,

as shown in Fig.4.6, that the analytical approximation for ciI2(k) is larger (smaller)

than the exact numerical result for 1; along [1,1,1] ([0,0,1]).

4.6 Appendix 4B: Formalism for the Canoni-
cal Transformation to Diagonalize a General
Quadratic Hamiltonian

In this appendix we derive a canonical transformation L which transforms

the canonical variables (q, p) to new canonical variables (Q, P) via

[ qp

so that the Hamiltonian, which is generally in the form of

H = (q, p)
Ag B

Bfr Ap ( :]
is diagonalized in the representation of the new canonical variables:

(4.68)

(4.69)
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where

q=

qi P1 Q1

92 P2 Q2

; P =

/
P1

P2

977 j \ /QnjPn\

and where Aq and Ap are n x n real matrices satisfying At; = Ag, and Apt'. = Ap.

In quantum many-body theory there exists the well-known Bogoliubov trans-

formation to diagonalize a quadratic Hamiltonian in the creation and annihilation

operator representation. In classical mechanics, such a canonical transformation also

exists if one notices that the creation and annihilation operators can be written as

linear combinations of the coordinate and momentum operators. In this appendix,

by closely following the quantum formalism we derive a classical canonical transfor-

mation which diagonalizes the Hamiltonian H. In order to manipulate the symmetry

of H and thereby simplify our argument, we define auxiliary variables ci through

C • + Ctj 
g3 V2MCV1

tua • 
Pa = (4.70)

where cpj is a properly chosen positive frequency from the coefficients ki j and Apm.

In principle, we can choose any positive numbers for aij and the result for matrix L

is independent of the artificially constructed variables (c5, c). However, in practice,

we find that suitably chosen aii's can simplify the algebra. We find that using (cj, c;)
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formalism is advantageous because (q1, pi) appear in pairs in cis, the Hamiltonian

H is symmetrized :

where

C
H = (c+, cfr)h ( 

C=

Cl

C2

e"

NM
h=

M* N*

(4.71)

where M and N are n x 71 matrices which are related to the matrices AI, Ap and B

by

,e Mij =  412.7 
alt411 

i 
.7 Amu 22m al./coi 2 L LsJj

-
q43  M 

2 
i D j

Nsi — 
2rn cilia 

016) 3 Ap,ij 
(\I 

- — Bij —
i 2 -I- — (Di dij 2

Obviously M and N satisfies Mt' = M, N+ = N, and hence h+ = h.

In this appendix we derive a canonical transformation which diagonalize the matrix

h. Specifically, we need to find a 2m x 2n matrix S to generate a transformation
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from (c, c*) to (e, e*) through

1 e=sCt

such that in the new representation,

is diagonalized i.e.

7 iH = (e+, efr )S+hS e

(4.72)

S-EhS = diagonal (4.73)

In order to ensure the transformation to be canonical, we require that all the Poisson

brackets must be be invariant under the transformation. Specifically, because (g pi)

are canonical, we have

[c, o; [c, el = —a; [c., =- 0. (4.74)

Since the Poisson bracket is invariant, we require that the same commutation rela-

tions hold for (e, es):

[e, ej = 0; [e, es] = —ii; [e*, es] = 0

Combining Eq.( 4.75) with Eq.(4.72), we have

AB
S =

BA

where n x n matrices A and B are defined by

-= j, en

(4.75)

(4.76)
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i[c;

Moreover,because (e, el has the same commutation relations as (c, e), the matrix

S-1 which generates the inverse transformation must have the same form as shown

in Eq.( 4.76) with c and e exchanged:

At _Bt
=

Btr At?

= AStA

which, in turn, yields the condition for S:

SAS = A; or, SAS t = A

where A is a n x it matrix defined as

(4.77)

• and we have used the identity AA = 1 to derive Eq.( 4.77).

Here we must note that Eq.( 4.77) does not look the same as the conventional

symplectic conditioni"I. In order to show its equivalence to the usual symplectic

condition, in what follows, we prove that Eq.( 4.77) combined with Eq.( 4.75) lead

to the usual symplectic condition for the transformation matrix L. We begin with

the definition of (ci,c;) and write
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where

=

T1=

Vmc2i,

0

2

Vni.c22 

Similarly, the new variables are related by

e*

where

2

/ma2 a

=T2

Q13

2 2

—IU2 2

(4.78)

(4.79)

where matrix U2 has the same form as 1151 except that Gii is replaced by w, the

frequency appearing in Eq.( 4.69). With the aid of Eq.( 4.78) and Eq.( 4.79), we

find that

= ET1,2 (4.80)

TiF2AT1,2 = a (4.81)
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where

E =
01 { 0 1

;•1
1 0 —1 0

Due to the definition of the transformation matrices, L is found to be related to S

through

L = TriST2 (4.82)

or, equivalently, S = TiLTil. In what follows, we first show that L is real. By taking

the complex conjugate of the Eq.(4.82), we have L* = (Tn.' S*T; = Tj1ESET2 =

L, which means that L is real. Here we have used Eq.( 4.80) and we have also

used the fact that ESE = S due to Eq.( 4.76). We next prove that L satisfies the

symplectic condition if Eq.( 4.77) is satisfied by S. To show this, we substitute

S = TiLTil into Eq.( 4.77), and then obtain Int ATiL = TAT2, which leads

to the symplectic condition Lfr.IL = J due to Eq.( 4.81).

In summary, Eq.( 4.73), Eq.( 4.76) and Eq.( 4.77) are the three conditions

which must be satisfied by S. In what follows, we will derive S according to these

three equations. However, before proceeding we first examine the number of the

equations and the number of the unknown variables. According to Eq.( 4.76), we

have a total of 470 unknown variables that need to be solved from Eq.( 4.73) and

Eq.( 4.77). In order to see how many equations are implied by Eq.( 4.73), we make

use of the S given by Eq.( 4.76), and find that

1c4
S-EhS =
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Here 1CA and ST are 71 X n matrices:

ICA = A+NB. BMA*

= A+NA B+M*B.

One may easily check that 1CA1' = 1(4 and 11/4.1± = N. Since S-EhS must be diagonal,

we have n2 — 71 equations from matrix & and n2 + 71 equations from matrix M. For

equation ( 4.77), again we make use of the S given by Eq.( 4.76),and find that

SASt =
AA + — BB + AB + — B*Atr

BA + — Asir BB + — A*Afr

Notice that the matrix on the right hand side is hermitian and we have n.2 equations

from condition AA+ — B*B+ = 1 and we have n2 — 71 equations from condition

AB + — BeAtr. So, totally we have (n2 — n) + (n2 + n) + +(n.2 —it) = 4n2 —n

equations and we have 4n2 unknowns, which means that we have n free choices

left over. As we will see, these it free choices corresponds to the it phases of the

eigenvectors of matrix K = Ah.

We now proceed to calculate S according to Eq.( 4.73), Eq.( 4.76) and

Eq.( 4.77). We start with the following observation. From Eq.( 4.77) we have

St = (SA)-1A = AS-1A. Substitution of this result into Eq.( 4.73) yields a diago-

nal matrix AS-1AhS. This shows that matrix K = Ah is diagonalized by S since A

is diagonal. Note that strictly speaking h is not diagonalized by S because ni's are

not the eigenvectors of h. This observation proves that matrix S may be constructed

by the eigenvectors of matrix K:

s = (ni,n2,n3, • • •, 71n) tin-I-1, .1/7n) (4.83)
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where ni(/ = 1, 2, • • •, 2n) are the eigenvectors of K. In order to confirm this conclu-

sion, we proceed to show that such S also satisfies Eq.( 4.76) and Eq.( 4.77).

We first show that the eigenvalues of K are real. We begin with the eigenvalue

equation

=

Multiplying the both sides of above equation by n1A yields

t = t Ani inn tom

(4.84)

which shows that the eigenvalue col is real because both nIhni and ntAni are real

due to the ilermitean property of matrix h and A.

We next show that the eigenvalues occur in pairs. We notice that the form

of h given in Eq.( 4.76) is special and satisfies

which yields

EhE =ht; E =
10

K = —EKE

Substituting this equation in Eq.( 4.84), then after taking the complex conjugate on

both sides , we are left with

K(Eni)* = (4.85)

where identity EE = 1 has been used. Thus —col is also a eigenvalue with eigenvector

(Ern). To be specific, we set Wi+n = and 711-En = Enr for 1 = 1, 2, 3, - • n. Then
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Eq.( 4.83) becomes

s = 7/2, • • •om, EnT, En;, • • En;‘) (4.86)

which obviously satisfies Eq.( 4.76). According to Eq.( 4.86), we have Su =

where 74i) is the ith component of the jth eigenvector. Finally, we show that S given

by Eq.( 4.86) satisfies Eq.( 4.77). We take the Hermitian conjugate of Eq.( 4.84),

yielding:

thA =

where we have used the fact that h+ = h. Furthermore, multiplying above equation

by Any and inserting 1 = AA between 71, and h, we have:

(u4 —(40(771A7P) = 0 (4.87)

where the eigenvalue equation for np: Km, = wpm, has been used. We assume that

matrix K is nondegenerate, then Eq.( 4.87) implies that

tA tA
711 711° Multi

which leads to Eq.( 4.77) provided that the normalization condition

tA =

is satisfied.

Finally, in the (e, es) representation, 8-1KS is diagonal with the diagonal elements

wi,w2, • • •,con, —co1, •,—(44, and h becomes SthS = A(S-1KS), which is

also diagonal with the diagonal elements w1,w2, • • •,(4„,w1, co2,•, •,con and then the
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Hamiltonian take the following form.

H = Eco. e •3 3 3
3=1

(4.88)

The final new canonical variable can be constructed in terms of (e, es) through

Eq.( 4.70 ) with (qi , pi) replaced by (Qa, Pi) and c03 replaced by caj. Also, by writing

(e, es) in terms of (Q1, 133), we find that Eq.( 4.88) becomes Eq.( 4.69). Evidently,

the time evolution of (WO, P3(0) is a linear superpositions of the three simple har-

monic oscillators determined by Eq.( 4.69). The particle's trajectory (qi(t), pi(t))

can thus be obtained from Eq.( 4.68) with L given by Eq.( 4.82) and the particle's

motion is then completely solved.
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