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The collisional relaxation of a strongly magnetized pure ion plasma that is composed

of two species with slightly different masses is discussed. We have in mind two iso-

topes of the same singly ionized atom. Parameters are assumed to be ordered as

Ω1,Ω2 ≫ |Ω1 − Ω2| ≫ v̄ij/b̄ and v̄⊥j/Ωj ≪ b̄, where Ω1 and Ω2 are two cyclotron

frequencies, v̄ij =
√
T∥/µij is the relative parallel thermal velocity characterizing col-

lisions between particles of species i and j, and b̄ = 2e2/T∥ is the classical distance

of closest approach for such collisions, and v̄⊥j/Ωj =
√

2T⊥j/mj/Ωj is the character-

istic cyclotron radius for particles of species j. Here, µij is the reduced mass for the

two particles, and T∥ and T⊥j are temperatures that characterize velocity components

parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron

action for the two species, I1 =
∑

i∈1m1v
2
⊥i/(2Ω1) and I2 =

∑
i∈2m2v

2
⊥i/(2Ω2) are

adiabatic invariants that constrain the collisonal dynamics. On the timescale of a

few collisions, entropy is maximized subject to the constancy of the total Hamil-

tonian H and the two actions I1 and I2, yielding a modified Gibbs distribution

of the form exp[−H/T∥ − α1I1 − α2I2]. Here, the αj’s are related to T∥ and T⊥j

through T⊥j = (1/T∥ + αj/Ωj)
−1. Collisional relaxation to the usual Gibbs distri-

bution, exp[−H/T∥], takes place on two timescales. On a timescale longer than the

collisional timescale by a factor of (b̄2Ω2
1/v̄

2
11) exp{5[3π(b̄|Ω1 − Ω2|/v̄12)]2/5/6}, the

two species share action so that α1 and α2 relax to a common value α. On an

even longer timescale, longer than the collisional timescale by a factor of the order

exp{5[3π(b̄Ω1/v̄11)]
2/5/6}, the total action ceases to be a good constant of the motion

and α relaxes to zero.
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I. INTRODUCTION

There is good agreement between theory and experiment for the collisional relaxation of

strongly magnetized single species plasmas1–5. The relaxation is novel because the collisional

dynamics is contrained by adiabatic invariants associated with the cyclotron motion. Here

we extend the theory to the case of a two-species plasma, where the charges of the two

species are the same (e1 = e2) and the masses differ only slightly (i.e., |m1−m2| ≪ m1,m2).

We have in mind a pure ion plasma that is composed of two isotopes. Such isotopically

impure ion plasmas are often used in experiments6,7.

In Section II, we begin with an analysis of a collison between two isotopically different

ions that move in the uniform magnetic field B = Bẑ. For sufficiently strong magnetic

field, the collision looks very different from Rutherford scattering; the two ions approach

and move away from one another in tight helical orbits that follow magnetic field lines.

We will find that the sum of the cyclotron actions for the two ions, I1+I2 = m1v
2
⊥1/(2Ω1)+

m2v
2
⊥2/(2Ω2), is an adiabatic invariant that is nearly conserved in the collision. Here,

mjv
2
⊥j/2 and Ωj = eB/(mjc) are the cyclotron kinetic energy and cyclotron frequency

for the two ions (j = 1, 2). More specifically, the change in the total action is of order

∆(I1 + I2) ∼ exp[−Ωcτ ], where Ω1 ≃ Ω2 ≡ Ωc and τ is a time that characterizes the du-

ration of the collision. The time is shortest, and the change ∆(I1 + I2) largest, for nearly

head-on collisions, where τ ≃ (π/2)(b/v∥). Here v∥ is the initial relative velocity of the ions

parallel to the magnetic field, b = 2e2/(µv2∥) is the minimum separation between the ions

allowed on energetic grounds, and µ ≡ m1m2/(m1+m2) is the reduced mass. This estimate

of τ uses guiding center drift dynamics as a zeroth order approximation to the orbits and

so assumes that the cyclotron radii for the two ions are small compared to the ion separa-

tion [i.e., v⊥j/Ωj ≪ b]. For sufficiently large B, the product Ωcτ = (π/2)(Ωcb/v∥) is large

compared to unity and the change ∆(I1+ I2) ∼ exp[−(π/2)(Ωcb/v∥)] is exponentially small.

The same analysis shows that the change in the individual actions is of order ∆I1 ≃

−∆I2 ∼ exp[−|Ω1 − Ω2|τ ], which also is exponentially small if |Ω1 − Ω2|[πb/(2v∥)] is large.

By assumption, the ion masses, and therefore the ion cyclotron frequencies, differ only

slightly, so we have the ordering Ω1,Ω2 ≫ |Ω1 − Ω2| ≫ v∥/b, which implies the conclusion

I1, I2 ≫ |∆I1| ≃ |∆I2| ≫ |∆(I1 + I2)|. (1)

The individual actions are well conserved, and the sum of the two actions is conserved even
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better.

In Section III, we determine how these adiabatic invariants constrain the collisional re-

laxation of a strongly magnetized plasma composed of such ions. We say that the plasma is

strongly magnetized when

b̄≫ v̄⊥,jk
Ωj

and |Ω1 − Ω2| ≫
v̄jk
b̄
, (2)

where v̄ij =
√
T∥/µij is the relative parallel thermal velocity, b̄ = 2e2/(µjkv̄

2
jk) = 2e2/T∥ is

the distance of closest approach, v̄⊥j =
√
2T⊥j/mj is the perpendicular thermal velocity for

species j, and µjk is the reduced mass of two interacting particles from speices j and k. As

we will see, the temperatures T∥, T⊥1 and T⊥2 need not be equal during the evolution to

thermal equilibrium. The condition Ω1,Ω2 ≫ |Ω1 − Ω2| plus inequalities (2) imply that all

collisons between unlike ions are in the strongly magnetized parameter regime.

Note that this definition of strong magnetization is more restrictive than that used pre-

viously for the case of single-species plasmas3,4. The requirement |Ω1 − Ω2| ≫ v̄jk/b̄ has

replaced the less restrictive requirement Ω1,Ω2 ≫ v̄jk/b̄.

As a first step in determining the influence of the adiabatic invariants on the evolution,

we note that the difference between the cyclotron frequencies of like ions is zero, so the

change in the individual actions is not exponentially small. Of course, the change in the

sum of the two actions for the like ions is exponentially small.

Thus, on the timescale of a few collisions, one expects that like ions will interchange

cyclotron action with each other, but not with unlike ions. On this timescale, the total

cyclotron action of species 1 (i.e., I1 =
∑N1

j=1 I1j) and the total cyclotron action of species 2

(i.e., I2 =
∑N2

j=1 I2j) along with the total Hamiltonian H are constants of the motion, and a

modified Gibbs distribution, exp[−H/T∥ − α1I1 − α2I2] is established
8. Here T∥, α1 and α2

are thermodynamic variables. From the velocity dependence in H, I1 and I2, one can see

that T∥ is the temperature that characterizes velocity components parallel to the magnetic

field and that T⊥1 = [1/T∥ + α1/Ω1]
−1 and T⊥2 = [1/T∥ + α2/Ω2]

−1 are the temperatures

that characterize the perpendicular velocity components for species 1 and 2.

Inequalities (2) imply that on a longer timescale particles of the two species interchange

action with each other conserving the sum I1 + I2. On this timescale, the variables α1 and

α2 evolve to a common value, yielding the distribution exp[−H/T∥ − α(I1 + I2)], where α

is that common value. On a still longer timescale, I1 + I2 is not conserved, and α evolves
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to zero, yielding the usual Gibbs distribution exp[−H/T∥].

The purpose of this paper is to calculate the rate at which α1 and α2 evolve to the

common value α and the much slower rate at which α evolves to zero. We will find that

α1 − α2 satisfies the equation

d

dt
(α1 − α2) = −νa(α1 − α2) (3)

and that α satisfies the equation

d

dt
α = −νbα, (4)

where νa is of the order O[nb̄20v̄11,0Λ2(b̄|Ω1 − Ω2|/v̄12)(v̄11/(b̄Ω1))
2] and νb is of the order

O[nb̄20v̄11,0Λ1(b̄Ω1/v̄11)], and subscript 0 refers to initial values before equilibration. Λ1(κ̄)

and Λ2(κ̄) decrease exponentially with increasing κ̄. In the limit of κ̄≫ 1, Λ1(κ̄) and Λ2(κ̄)

are approximated by the asymptotic expressions

Λ1(κ̄) ≃ 3.10κ̄−7/15e−5(3πκ̄)2/5/6, (5)

Λ2(κ̄) ≃ 3.87κ̄13/15e−5(3πκ̄)2/5/6. (6)

In Λ1(κ̄), κ̄ is the magnetization κ̄ij = b̄Ωi/v̄ij, whereas in Λ2(κ̄), κ̄ is the magnetization

difference |κ̄12 − κ̄21|, when Λ1 and Λ2 are used to describe the equipartition rates.

II. TWO-PARTICLE COLLISION

In this section, we consider the isolated collision of two ions that have equal charges

(e1 = e2 ≡ e), slightly different masses (|m1 − m2| ≪ m1,m2), and move in the uniform

magnetic field B = Bẑ. The Hamiltonian for the two interacting charges can be written as

H =
2∑

k=1

[
p2zk
2mk

+
p2xk
2mk

+
(pyk − eBx/c)2

2mk

] +
e2

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]1/2
, (7)

where we have used the vector potential A = Bxŷ, and the quantities (xk, pxk), (yk, pyk),

(zk, pzk) are canonically conjugate coordinates and momenta9.

We assume that the magnetic field strength and initial velocities satisfy the conditions

for strong magnetization as defined in Section I (i.e., v⊥j/Ωj ≪ b and |Ω1 −Ω2| ≫ v∥/b). In
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this limit, the following transformation10 is useful:

Yk = yk −
c

eB
pxk, (8)

Xk =
c

eB
pyk, (9)

ψk = − tan−1(
yk − Yk
xk −Xk

), (10)

Ik =
p2xk + (pyk − eBxk/c)

2

2mkΩk

. (11)

One can check that (zk, pzk), (Yk, PYk ≡ eB
c
Xk) and (ψk, Ik) satisfy the usual Poisson brackets

required of canonically conjugate coordinates and momenta, i.e. {qi, pj} = δij. Here (Xk, Yk)

are the coordinates of the guiding center for the k-th particle, and (ψk, Ik) are the gyro-angle

and cyclotron action for the k-th particle. In terms of these new canonical variables, the

Hamiltonian takes the form

H =
2∑

k=1

(
p2zk
2mk

+ ΩkIk) +
e2

|r1 − r2|
, (12)

where

|r1 − r2|2 = (z1 − z2)
2 + (X1 + ρ1 cosψ1 −X2 − ρ2 cosψ2)

2

+(Y1 − ρ1 sinψ1 − Y2 + ρ2 sinψ2)
2. (13)

Here ρk =
√
2Ik/(mkΩk) is the cyclotron radius of the k-th particle.

Since |r1 − r2| is periodic in ψ1 and ψ2, the Hamiltonian can be written in the form

H =
2∑

k=1

(
p2zk
2mk

+ ΩkIk) +
∑
µ,ν

gµνe
i(µψ1+νψ2), (14)

where gµν = gµν(I1, I2, z1 − z2, X1 − X2, Y1 − Y2), and µ and ν run over all integer values

from −∞ to +∞.

We will find it instructive to calculate the change over the course of the collision in the

sum and difference of the cyclotron actions, ∆(I1+I2) and ∆(I1−I2). Hamilton’s equations

yield the time derivatives

d

dt
(I1 + I2) = −(

∂

∂ψ1

+
∂

∂ψ2

)H = −
∑
µν

i(µ+ ν)gµνe
i(µψ1+νψ2) (15)

and
d

dt
(I1 − I2) = −(

∂

∂ψ1

− ∂

∂ψ2

)H = −
∑
µν

i(µ− ν)gµνe
i(µψ1+νψ2) (16)
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For strong magnetization, one expects guiding center drift theory to provide a good

zeroth order approximation to the particle orbits. Moreover, the guiding center variables

are slowly varying in time compared to the rapidly varying gyro-angles ψ1 and ψ2. In

this approximation, the arguments of gµν = gµν(I1, I2, z1 − z2, X1 −X2, Y1 − Y2) are slowly

varying and the exponentials ei(µψ1+νψ2) are rapidly oscillating, and the time integral of such

a product phase mixes to a small value. We will find that the value is exponentially small

in the ratio of the rapid to the slow timescales.

At this point, we can anticipate the main result of the calculation. The smallest fre-

quency for the exponentials is |Ω1 − Ω2|, corresponding to the choice µ = −ν = ±1. Since

the coefficient for this term vanishes identically in Eq. (15) but not in Eq. (16), the change

|∆(I1 + I2)| is much smaller than the change |∆(I1 − I2)|. Equivalently, one may say that

the total action is conserved to much better accuracy than either of the two actions inde-

pendently, i.e. |∆(I1 + I2)| ≪ |∆I1|, |∆I2|.

The guiding center Hamiltonian11,12 is obtained simply by setting ρ1 = ρ2 = 0 in Eq.

(13), yielding

HGC =
2∑

k=1

(
p2zk
2mk

+ ΩkIk) +
e2

[(z1 − z2)2 + (X1 −X2)2 + (Y1 − Y2)2]1/2
, (17)

where PYk = c
eB
Xk. Making the canonical transformation to center-of-mass and relative

coordinates

z = z1 − z2, (18)

Z =
m1z1 +m2z2
m1 +m2

, (19)

pz =
m2pz1 −m1pz2
m1 +m2

, (20)

PZ = pz1 + pz2 (21)

yields the Hamiltonian

HGC =
P 2
Z

2M
+
p2z
2µ

+ I1Ω1 + I2Ω2 +
e2

[(z1 − z2)2 + (X1 −X2)2 + (Y1 − Y2)2]1/2
, (22)

where M = m1 +m2 and µ = m1m2/(m1 +m2).

Thus, with guiding center dynamics, the quantities HGC, PZ , I1, I2, and (X1 − X2)
2 +

(Y1−Y2)2 ≡ |∆R⊥|2 are constants of the motion, and the relative coordinate z(t) is governed

by the equation
µż2(t)

2
+

e2

(|∆R⊥|2 + z2(t))1/2
=
µv2∥
2
, (23)
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where v∥ ≡ ż(t = −∞) is the initial relative velocity. From this equation, one sees that the

minimum allowed separation between the guiding centers is given by b =
√
|∆R⊥|2 + z2|min =

2e2/(µv2∥). We choose t = 0 so that z2(t) is an even function of t. For the case where

|∆R⊥| < b, there is no reflection and we choose z(0) = 0, and for the case where |∆R⊥| > b,

we choose t = 0 to be at the point of reflection, that is, z2(0) = b2 − (∆R2
⊥).

In the guiding center drift approximation, the most rapidly varying variable in the argu-

ment of gµν(I1, I2, z1−z2, X1−X2, Y1−Y2) is the relative coordinate z(t) = z1(t)−z2(t), and

the timescale associated with this variation is of order b/v∥ or larger. By comparison, the

timescale for the oscillatory variation of the exponential exp(iµψ1+ iνψ2) is |µΩ1+νΩ2|−1 <

|Ω1 − Ω2|−1. Thus, the strong magnetization ordering v∥/b≪ |Ω1 − Ω2| ≪ Ω1,Ω2 is simply

a statement of the needed separation of timescales.

We Taylor expand gµν in powers of ρk/
√

|∆R⊥|2 + z2 ≤ ρk/b≪ 1. As one would expect,

each term in the expansion of gµν is of order (ρ/b)|µ|+|ν|, and for simplicity we retain only

the lowest order term. An equivalent way to do so is to expand H in powers of ρk and

collect terms of the right Fourier dependence exp(iµψ1 + iνψ2), so as to obtain the Taylor-

approximated gµν . Expressions of gµν that are used in the calculation are the following:

g10 = −e
i(Ω1t+ϕ1)

2

e2v⊥1/Ω1

|∆R⊥|2 + z2
= g∗−1,0, (24)

g01 =
ei(Ω2t+ϕ2)

2

e2v⊥2/Ω2

|∆R⊥|2 + z2
= g∗0,−1, (25)

g1,−1 = −e
i(Ω1−Ω2)t+i(ϕ1−ϕ2)

2

e2

(|∆R|2 + z2)3/2
(1− 3|∆R⊥|2

2(|∆R⊥|2 + z2)
)
v⊥1v⊥2

Ω1Ω2

= g∗−1,1, (26)

where v⊥k = ρkΩk is the cyclotron velocity, ϕk = ψk(t = 0) is the gyroangle at t = 0, and as

mentioned earlier we choose t = 0 so that z2(t) is an even function of time. Also we note that

|g10| and |g01| are of the order ρk ∝ Ω−1
k ∝ B−1, but |g1,−1| is of the order ρ2k ∝ Ω−2

k ∝ B−2.

Since the time integrals
∫∞
−∞ dtgµν exp(iµψ1+ iνψ2) turn out to be exponentially small in

the ratio of the slow to rapid timescales we need only to retain the lowest frequency terms

in the sum over µ and ν. Specifically, we retain the terms with frequencies |Ω1 − Ω2|, Ω1,

and Ω2, using Eqns. (24) to (26) to obtain the results

∆(I1 − I2)

= −
∫ ∞

−∞
e2
v⊥2

Ω2

sinϕ2
|∆R⊥|

(|∆R⊥|2 + z2)3/2
cos(Ω2t)dt−

∫ ∞

−∞
e2
v⊥1

Ω1

sinϕ1
|∆R⊥|

(|∆R⊥|2 + z2)3/2
cos(Ω1t)dt

+

∫ ∞

−∞

e2v⊥1v⊥2

(|∆R⊥|2 + z2)3/2
2

Ω1Ω2

cos[(Ω1 − Ω2)t] sin(ϕ1 − ϕ2)(1−
3|∆R⊥|2

2(|∆R⊥|2 + z2)
)dt, (27)
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and

∆(I1 + I2)

=

∫ ∞

−∞
e2
v⊥2

Ω2

sinϕ2
|∆R⊥|

(|∆R⊥|2 + z2)3/2
cos(Ω2t)dt−

∫ ∞

−∞
e2
v⊥1

Ω1

sinϕ1
|∆R⊥|

(|∆R⊥|2 + z2)3/2
cos(Ω1t)dt.

(28)

The integrals carrying cos(Ωit) are proportional to

f1(κi, η) =

∫ ∞

−∞

dξ cos(κiξ)

(η2 + ζ2(ξ))3/2
, (29)

while the integral carrying cos[(Ω1 − Ω2)t] is proportional to

f2(κ1 − κ2, η) =

∫ ∞

−∞

dξ cos[(κ1 − κ2)ξ]

(η2 + ζ2(ξ))3/2
(1− 3η2

2[η2 + ζ2(ξ)]
), (30)

where ξ = v∥t/b, κi = bΩi/v∥, η = |∆R⊥|/b and ζ = z/b. In terms of these variables,

differential equation (23) takes the form

(
dζ

dξ
)2 +

1√
η2 + ζ2(ξ)

= 1, (31)

where ζ2(0) = max(0, 1− η2). In the next section, we will need the results

∆(I1 + I2) = − e2

bΩ1

(
v⊥1

v∥
sinϕ1)ηf1(κ1, η) +

e2

bΩ2

(
v⊥2

v∥
sinϕ2)ηf1(κ2, η), (32)

∆I1 = − e2

bΩ1

(
v⊥1

v∥
sinϕ1)ηf1(κ1, η) +

e2

bΩ1Ω2

v⊥1v⊥2

v∥b
f2(κ1 − κ2, η) sin(ϕ1 − ϕ2),(33)

∆I2 =
e2

bΩ2

(
v⊥2

v∥
sinϕ2)ηf1(κ2, η) +

e2

bΩ1Ω2

v⊥1v⊥2

v∥b
f2(κ1 − κ2, η) sin(ϕ2 − ϕ1). (34)

In the regime of strong magnetization (i.e., 1 ≪ |κ1 − κ2| ≪ κ1, κ2), the integrals f1

and f2 are exponentially small, since the integrands are the product of a rapidly oscillating

cosine and a slowly varying function. The rapid oscillation makes a direct evaluation of such

integrals difficult.

In Appendix A, we analytically continue the integrals into the complex ξ-plane, making

the exponentially small value of the integrals manifest in the integrands themselves. This

facilitates numerical evaluation of the integrals and yields the asymptotic forms

f1(κj, η) = h1(κj, η) exp[−g(η)κj], (35)

f2(|κ1 − κ2|, η) = h2(|κ1 − κ2|, η) exp[−g(η)|κ1 − κ2|], (36)
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where

g(η) = |
∫ η

1

x3/2dx√
(x− 1)(η2 − x2)

| (37)

is shown in Fig. (1). From the numerical evaluations one can see that the quantities

hj(κ, η) are neither exponentially small nor large. Also for η = 0, one can show that

hj(κ, 0) = h2(κ, 0) ≃ 8πκ/9. In the next section, we will need the asymptotic forms only for

small η. Fig. (2) shows a comparison of the numerical solution for f1(κ, 0) = f2(κ, 0) ≡ f(κ)

(solid curve) with the asymptotic solution (dashed curve).
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FIG. 1. Graph of g(η).
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FIG. 2. Values of f(κ). Solid line: numerical integration of f(κ). Dashed line: asymptotic

expression for large κ.

As expected, the asymptotic forms are exponentially small in the ratio of the slow to

fast timescales. For example, for f1 the fast timescale is τf = Ω−1
j and the slow timescale

is τs ≃ (π/2)(b/v∥) for η = |R⊥|/b < 1 and τs ≃ |R⊥|/v∥ for η > 1. Note from Fig. (1)
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that g(0) = π/2 and that g(η) ≈ η for η ≫ 1. For f2, the only difference is that the fast

timescale is |Ω1 − Ω2|−1.

For strong magnetization (i.e., 1 ≪ |κ1 − κ2| ≪ κ1, κ2), the asymptotic forms verify the

expected ordering for the changes in the actions (i.e., |∆(I1 + I2)| ≪ |∆I1|, |∆I2| ≪ 1).

As a check on the accuracy of Eqs. (32), (33) and (34), we compare the predictions

for ∆(I1 − I2) and ∆(I1 + I2) with results obtained by direction numerical integrations

of the equations of motion for some sample collisions. For these comparisons, we choose

m2 = m1 + 0.1m1 and v⊥1 = v⊥2 = 0.01v∥. The two particles are initially separated by the

distance d = 100b and given the intial relative velocity vz = v∥

√
1− b/

√
|∆R|2 + d2. The

collision ends when the particles are again separated in the z-direction by the distance d.

The motion is followed with a sixth-order Runge-Kutta algorithm13, using a timestep that

is sufficiently small for the error in the total energy to be small compared to the change

∆(E⊥1 + E⊥2). The phase angles ϕj are varied to obtain the peak-to-peak variation in

∆(I1 − I2) and ∆(I1 + I2). The solid curves in Figs. (3) and (4) are the predictions of

Eqs. (32), (33) and (34), with numerical evaluation of integrals (29) and (30), for the scaled

changes ∆(I1 − I2)/(m1v
2
⊥1/Ω1) and ∆(I1 + I2)/(m1v

2
⊥1/Ω1), respectively. The points result

from integrating the particle equations of motion. For the collisions in these figures, η is near

zero, and κ2 is varied over a range of values. Of course, κ1 = 1.1κ2 and |κ2−κ1| = 0.1κ2. In

Fig. (5), κ1 is fixed at the value 21.0, and η is varied. We can see from the figures that our

theory matches with the simulation results as long as magnetization is strong, i.e. κ1 ≫ 1.

Particularly from Fig. (4), it is evident that the theory breaks down when κ1 goes lower

than around 2.
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FIG. 4. Change in cyclotron action sum vs magnetization κ1. Dots: simulation results. Line:

values using numerical integration of f1(κ1, η = 0).

III. COLLISIONAL EVOLUTION OF A PLASMA

This section discusses the collisional evolution of a two species, strongly magnetized, pure

ion plasma. Species 1 consists of N1 singly ionized atoms of mass m1 and species 2 of N2

singly ionized atoms of mass m2, where |m1 −m2| ≪ m1,m2. For simplicity, the plasma is

assumed to be uniform and immersed in a continuous neutralizing background charge. A

laboratory realization of such a plasma is a thermal equilibrium, pure ion plasma that is

confined in a Malmberg-Penning trap. Plasma rotation in the uniform axial magnetic field

of the trap is equivalent to neutralization by a continuous background charge.

The plasma is assumed to be in the weakly correlated parameter regime, e2n1/3/T∥ ≪ 1,

where n is the density14,15. The inequality can be written as b̄ ≪ n−1/3, so close collisions,
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FIG. 5. Change in cyclotron action difference vs rescaled transverse separation η, for κ1 = 21

and |κ1 − κ2| = 1.9. Dots: simulation results. Line: values using exact numerical integration of

f2(|κ1 − κ2|, η).

which are primarily responsible for changes in the cyclotron actions, are well separated

binary interactions of the kind considered in the previous section. Furthermore, the plasma

is assumed to satisfy the strong magnetization ordering in Eq. (2), so all collisions between

unlike ions are of the kind considered in the previous section.

To understand the final assumption, first recall from Eqs. (32)-(34) of the previous section

that the change in actions during a collision depends sinusoidally on the initial gyroangles

ϕkj = ϕkj(t = 0). The time between close collisions is much larger than a cyclotron period,

so we assume that the particles enter each collision with random gyroangles.

Thus, the N -particle dynamics consists of many statistically independent, binary inter-

actions of the kind considered in the previous section. In this section, we simply establish a

statistical framework to understand the cumulative effect of these collisions. The derivation

follows an approach similar to the Green-Kubo relations16.

For a collision between unlike particles, we found in the previous section that the changes

in the individual actions are exponentially small, |∆I1| ≃ |∆I2| ∼ O(exp[−π|κ1 − κ2|/2]),

and that the change in the sum of the actions is even smaller |∆(I1+ I2)| ∼ O(exp[−πκ/2]).

However, for a collision between like particles, the change in the individual actions is not

exponentially small since Ω1 = Ω2 and exp[−π/2|κ1−κ2|] = 1. Of course, the change in the

sum of the actions is exponentially small since κ = κ1 ≃ κ2 ≫ 1.

Thus, on the timescale of a few collisions, one expects the like particles to interchange

action with each other nearly preserving the sums I1 =
∑N1

j=1 I(j1) and I2 =
∑N2

j=2 I(j2),

where I(jk) is the action of the j-th particle of species k (k = 1, 2). Maximizing entropy

12



subject to the constancy of the total Hamiltonian H and the total actions I1 and I2 yields

a modified Gibbs distribution of the form8

D0 =
1

Z
exp[−H

T∥
− α1I1 − α2I2], (38)

where Z and the thermodynamic variables T∥, α1 and α2 are determined by the normalization

1 =
∫
dΓD0(Γ) and the expectation values

⟨Ik⟩ =
∫
dΓD0(Γ)Ik =

Nk

αk + Ωk/T∥
, (39)

⟨H⟩ =
∫
dΓD0(Γ)H = (N1 +N2)T∥ + ⟨I1⟩Ω1 + ⟨I2⟩Ω2 + Ucorr. (40)

Here, dΓ is a volume element in the N -particle phase space (N = N1 +N2). The first three

terms in the expression for ⟨H⟩ are kinetic energy terms, whose form can be understood

from the velocity dependence in H [i.e.,
∑N1

j=1m1(v
2
∥j + v2⊥j)/2 +

∑N2

j=1m2(v
2
∥j + v2⊥j)/2] and

in Ik [i.e.,
∑Nk

j=1mkv
2
⊥j/(2Ωk)]. The last term, Ucorr, is the correlation energy due to the

interaction potentials in H. For a weakly correlated and neutralized plasma, this latter term

is small compared to the kinetic energy terms14, so we drop this term and use

⟨H⟩ ≃
(N1 +N2)T∥

2
+ ⟨I1⟩Ω1 + ⟨I2⟩Ω2. (41)

Because the Ik’s are not exact constants of the motion, the Liouville distribution, D, is

not given exactly by D0. We set D = D0 + D1, where D1 is a small correction due to the

time variation of the Ik. Also, the thermodynamic variables, T∥, α1 and α2 vary slowly in

time, and the purpose of this section is to determine that variation.

To that end, we must evaluate the rates of change

d⟨Ik⟩
dt

=

∫
dΓ
∂D

∂t
Ik =

∫
dΓD{Ik,H}, (42)

d⟨H⟩
dt

=

∫
dΓ
∂D

∂t
H=

∫
dΓD{H,H} = 0, (43)

where {, } is the Poisson bracket, and use has been made of the Liouville equation, 0 = dD
dt

=

∂D
∂t

+ {D,H}, and of integration by parts.

There is a subtle point in the evaluation of the Right Hand Side of Eq. (42). If one were

to approximate D by D0, the resulting integral would be zero∫
dΓD0{Ik,H} =

∫
dΓ

Nk∑
j=1

(−T∥
∂D0

∂ψkj
) = 0, (44)
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where ψkj is the gyroangle conjugate to Ikj and use has been made of the facts that the only

dependence on ψkj is in H and that dependence is periodic. The non-zero contribution to

the Right Hand Side of Eq. (42) comes exclusively from D1, and to know D1 one must solve

the Liouville equation.

We suppose that at some time t−τ , the correction D1 is zero and let D1 develop through

the collisional dynamics. From the Liouville equation, dD/dt = 0, one finds that D(t,Γ) =

D0[t − τ,Γ′(Γ,−τ)] where the phase point Γ′ = Γ′(Γ, t′ − t) evolves to the phase point Γ

as the time evolves from t′ to t. In evaluating D0[t − τ,Γ′], we use H(Γ′) = H(Γ) and

Ik(Γ′) = Ik(Γ)− δIk, where

δIk =
∫ t

t−τ
dt′{Ik,H}|Γ′(Γ,t′−t). (45)

By hypothesis, Ik changes through a sequence of close collisions entered with randomly

phased initial gyroangles. Thus, one can think of Ik(t) as a stochastic variable that suffers

a sequence of many small and random changes. The correlation time for İk(t) is about the

duration of a close collision, and the change in Ik(t) during that time is small. We choose

the time interval τ to be longer than the correlation time but still small enough that δIk is

a small change.

Taylor expanding D0[t− τ,Γ′] with respect to the δIk’s yields the distribution

D(t,Γ) ≃ D0(t− τ,Γ) +
2∑

h=1

αhD0(t− τ,Γ)

∫ t

t−τ
dt′{Ih,H}|Γ′(Γ,t′−t). (46)

When this distribution is substituted into integrand (42), the first term integrates to zero

according to Eq.(44). Since the thermodynamic variables change only by a small amount

during the time τ , D0(t−τ,Γ) may be approximated by D0(t,Γ) in the second term yielding

the result

d⟨Ik⟩
dt

=
2∑

h=1

αh

∫ t

t−τ
dt′

∫
dΓD0(t,Γ){Ik,H}|Γ{Ih,H}|Γ′(Γ,t′−t). (47)

The Poisson brackets in Eq. (47) are non-zero only in regions of Γ-space corresponding

to close, well-separated, binary collisions. In those regions the Poisson brackets depend pri-

marily on the coordinates and velocities of the two colliding particles. Thus, the coordinates
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of all the other particles may be integrated out, reducing Eq. (47) to the form

d⟨Ik⟩
dt

= αk
Nk(Nk − 1)

2

∫ t

t−τ
dt′

∫
dγF(1k, 2k){I(1k) + I(2k), H(1k, 2k)}|γ

·{I(1k) + I(2k), H(1k, 2k)}|γ′=γ′(γ,t′−t)

+αkNkNk′

∫ t

t−τ
dt′

∫
dγF(1k, 1k′){I(1k), H(1k, 1k′)}|γ{I(1k), H(1k, 1k′)}|γ′=γ′(γ,t′−t)

+αk′NkNk′

∫ t

t−τ
dt′

∫
dγF(1k, 1k′){I(1k), H(1k, 1k′)}|γ{I(1k′), H(1k, 1k′)}|γ′=γ′(γ,t′−t).

(48)

Here k′ = 2 if k = 1 and k′ = 1 if k = 2. The two-particle function F(ik, jq) is obtained

by integrating D(Γ) over coordinates and velocities for all particles except ik and jq, and

H(ik, jq) is the two-particle Hamiltonian governing the collisions between ik and jq (see

Eq.(12) of the previous section). The first term in Eq.(48) describes a collision between

particles 1 and 2 of species k, and there are Nk(Nk − 1)/2 such collisions. The next two

terms describe a collision between particle 1 of species k and particle 1 of species k′, and

there are NkNk′ such collisions. If for brevity we refer to particles ik and jq as particles 1

and 2, the two-particle phase-space volume element dγ is given by

dγ = dz1dp1dz2dp2dψ1dI1dψ2dI2dY1dPY1dY2dPY2

= (mkmq)
3dzdvzdZdVzdψ1dψ2v⊥1dv⊥1v⊥2dv⊥2 · dX1dY1dX2dY2, (49)

where use has been made of the definitions Ij = mjv
2
⊥j/(2Ωj) and PYj = mjΩjXj, and where

(z, vz) are the relative position and velocity in z and (Z, Vz) are the center of mass position

and velocity. These latter two variables do not enter the Poisson brackets.

Next we argue that the t′ − t dependence in the dγ-integrals of Eq.(48) is even in t′ − t.

From Hamiltonian (14), we see that the Poisson brackets in Eq.(48) involve terms of the

form gµν exp[iµψ1 + iνψ2]. The dependence on t′ − t enters because the second bracket in

each product of brackets is evaluated at the primed phase point Γ′ = Γ′(Γ, t′ − t). When

the products of brackets are averaged over the random initial phases of the gyroangles, the

resulting time dependence from the gygroangles is of the form cos[µ(ψ′
1−ψ1)+ν(ψ

′
2−ψ2)] =

cos[(µΩ1 + νΩ2)(t
′ − t)], which is even in (t′ − t). The remaining time dependence comes

from the relative coordinate z′ = z′(z, t′ − t), which enters gµν(γ
′). From Eq.(23), one can

see that z′ is unchanged for (t′ − t) → −(t′ − t) and v∥ → −v∥, where v∥ is the value of
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the relative velocity vz before the interaction. This is seen most simply for the simple case

where the particles stream without interaction and z′ = z + vz(t
′ − t). Of course, f(γ) is

invariant under the interchange vz → −vz, so the dγ-integrals are even in (t′ − t).

Thus, the integral
∫ t
t−τ dt

′ in Eq.(48), can be replaced by the integral 1
2

∫ t+τ
t−τ dt

′. The dt′

integral then extends over the full duration of a collision, and Eq.(48) can be rewritten as

d⟨Ik⟩
dt

=
1

2
{αk

Nk(Nk − 1)

2

∫
dγF(1k, 2k){I(1k) + I(2k), H(1k, 2k)}∆(I(1k) + I(2k))(1k,2k)

+αkNkNk′

∫
dγF(1k, 1k′){I(1k), H((1k, 1k′))}∆(I(1k))(1k,1k′ )

+αk′NkNk′

∫
dγF(1k, 1k′){I(1k), H((1k, 1k′))}∆(I(1k′))(1k,1k′ )}, (50)

where

∆(I(1k) + I(2k))(1k,2k) ≡
∫ t+τ

t−τ
dt′{I(1k) + I(2k), H(1k, 2k)}|γ′=γ′(γ,t′−t), (51)

is the change in (I(1k)+I(2k)) during a collision between particles 1k and 2k. The quantities

∆(I(1k))(1k,1k′ ) and ∆(I(1k′))(1k,1k′ ) follow the same notation. These changes were evaluated

in Section II.
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FIG. 6. A typical trajectory for a collision in the (z, vz) plane. Here b is the distance of closest

approach, and v∥ is the velocity at t = ±∞.

Next we note that one coordinate in the dγ-integral can be written as a time integral.

Figure (6) shows the (z, vz) phase space with a typical trajectory for a collision. Such a

trajectory is described by Eq.(23). The dγ-integral includes an integral over the dzdvz plane,
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and we propose to carry out the integral by arranging area elements in a sequence along

each phase in the trajectory using the incompressible nature of the flow, dz′dv′z = dzdvz.

Along the trajectory, the two-particle distribtuion F is a constant, so it may be evaluated

at some starting area element before the interaction, say at dzdvz. At this starting element

we set dz = |vz|dt, where |vz| is the initial relative velocity defined in Eq.(23). Thus for each

element along the trajectory, we have the integration element dz′dv′z = |vz|dtdvz. The time

integral dt is an integral of the Poisson bracket along the trajectory, that is, over the course

of the collision, and yields the change in the actions during the collision. Thus, Eq. (50)

reduces to the form

d⟨Ik⟩
dt

=
1

2
{αk

Nk(Nk − 1)

2

∫
dγ̃F (0)[∆(I(1k) + I(2k))(1k,2k)]

2

+αkNkNk′

∫
dγ̃F (0)[∆(I(1k))(1k,1k′ )]

2

+αk′NkNk′

∫
dγ̃F (0)[∆(I(1k))(1k,1k′ )][∆(I(1k′))(1k,1k′ )]}. (52)

where F (0) is the distribution evaluated at a phase point before the interaction and

dγ̃ =
dγ

dt

= (mkmq)
3|vz|dvzdZdVzdψ1dψ2v⊥1dv⊥1v⊥2dv⊥2 · dX1dY1dX2dY2. (53)

Here the subscripts 1 and 2 stand for ik and jq as in Eq. (48).

In this same notation, the distribution before the interaction is given by

F (0) = C exp[−H(1, 2)

T∥
− α1I1 − α2I2], (54)

where C is a normalization constant and

H(1, 2) =
mk

2
(v2z1 + v2⊥1) +

mq

2
(v2z2 + v2⊥2)

=
µkqv

2
z

2
+
MkqV

2
z

2
+
mkv

2
⊥1

2
+
mqv

2
⊥2

2
. (55)

Here µkq = mkmq/(mk +mq) is the reduced mass and Mkq = mk +mq is the total mass of

the two particles. From the normalization
∫
dγF (0) = 1, we find the distribution

F (0) =
1

L6(mkmq)3(2π)2

√
mkmq

2πT∥

mkmq

T⊥kT⊥q

· exp(−µkqv
2
z

2T∥
− MkqV

2
z

2T∥
− mkv

2
⊥1

2T⊥k
− mqv

2
⊥2

2T⊥q
), (56)
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where L3 is the volume of the plasma and T⊥k = T∥/(1 + αkT∥/Ωk).

It is convenient to define the relative, parallel thermal velocity of a species i particle and

a species j particle as

v̄ij =

√
T∥
µij

, (57)

and the magnetization of a species-i particle in interaction with a species-j particle as

κ̄ij =
b̄Ωi

v̄ij
, (58)

where the distance of closest approach is b̄ = 2e2/T∥.

Note that because of this definition the κ̄ij’s are related to κ̄11 by ratios of masses:

κ̄ij = κ̄11
m1

mi

√
2mi/m1

(1 +mi/mj)
. (59)

Specifically,

κ̄22 = κ̄11(
m1

m2

)1/2, (60)

κ̄12 = κ̄11

√
2

(1 +m1/m2)
, (61)

and κ̄21 = κ̄11
m1

m2

√
2

(1 +m1/m2)
. (62)

According to Eq. (32)-(34), the change in actions depend on the initial gyroangles ϕ1

and ϕ2. Along any trajectory of the kind shown in Fig. (6), the gyroangle ϕj differs

from the ψj in the differential for dγ̃ only by a constant, so we can replace dψ1dψ2 in the

differential with dϕ1dϕ2. Also, the change in actions depend on X1, Y1, X2, Y2 only through

η = |∆R⊥|/b, where |∆R⊥|2 = (X1 − X2)
2 + (Y1 − Y2)

2, so in the differential dγ̃ we set

dX1dY1dX2dY2 = 2πb2ηdηdX2dY2. The integral over dZdX2dY2 then trivially gives a factor

of L3. The change in actions does not depend on Vz, so the Vz integral yields
√

2πTz/Mkq.

When substituting Eq.(56) for F (0)(1, 2), one must be careful to identify the species of

particles 1 and 2. For example, in the first term of Eq. (52) both 1 and 2 are of species k,

and in the second and third terms, particles 1 and 2 are of species k and k′. Making these

substitutions and using the relations Ik = NkT⊥k/Ωk and αk/Ωk = (1/T⊥k − 1/T∥) yields
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the result

dT⊥k
dt

= (T∥ − T⊥k)[nkb̄
2v̄kk ·

√
2π

8
Λ1(κ̄kk) + nk′ b̄

2v̄kk′ ·
√
2π

4

µkk′

mk

Λ1(κ̄kk′)]

+
(αk − αk′)T⊥kT⊥k′

Ωk′
· µ2

kk′

mkmk′
· nk

′ b̄2v̄kk′

κ̄kk′κ̄k′k

√
2π

2
Λ2(|κ̄kk′ − κ̄k′k|), (63)

where

Λ1(κ̄) =

∫ ∞

0

dσ

σ

∫ ∞

0

η3dηf 2
1 (
κ̄

σ3
, η)e−σ

2/2 (64)

Λ2(κ̄) =

∫ ∞

0

dσσ3

∫ ∞

0

ηdηf 2
2 (
κ̄

σ3
, η)e−σ

2/2. (65)

In Appendix A, we obtain the large κ̄ asymptotic limits

Λ1(κ̄) = 3.10κ̄−7/15e−5(3πκ̄)2/5/6, (66)

Λ2(κ̄) = 3.87κ̄13/15e−5(3πκ̄)2/5/6. (67)

For the strong magnetization ordering κ̄ij ≫ |κ̄12 − κ̄21| ≫ 1, we note that Λ1(κ̄ij) ≪

Λ2(|κ̄12 − κ̄21|).

Here, the last term on the Right Hand Side of Eq. (63) describes the rapid relaxation

where particles of species k collide with particles of species k′ and exchange cyclotron actions.

As one would expect, this term is proportional to (αk − αk′) and vanishes when αk = αk′ .

The first term describes the slow relaxation where the total cyclotron action is broken and

liberated (or absorbed) cyclotron energy is exchanged with parallel energy. As one would

expect, this term is proportional to T∥ − T⊥k, and vanishes when T∥ = T⊥k. Note here that

(T∥−T⊥k) is proportional to αk, so one may equally say that the term vanishes when αk = 0.

Also, note that when the two species are the same (i.e. when k = k′) and when αk = αk′ ,

the rate equation reduces to that obtained in the work of O’Neil and Hjorth4. Finally, we

will argue in the next section that Eq. (63) is an easy place to generalize the treatment to

more than two species. One simply sums k′ over all species except k′ = k.

Next we introduce scaled variables. The thermodynamic variables T∥, α1 and α2 are the

three unknowns, which we scale as T̂∥ = T∥/T∥0 and α̂k = αkT∥0/Ω1, where T∥0 = T∥(0) is the

initial value of T∥. An equivalent set of thermodynamic variables is the three temperatures

T∥, T⊥1 and T⊥2; we scale the perpendicular temperatures as T̂⊥k = T⊥k/T∥0. α̂k and T̂⊥k are

related by α̂k = (m1/mk)(1/T̂⊥k−1/T̂∥). The actions are scaled as ⟨Îk⟩ = ⟨Ik⟩(Ω1/T∥0). We
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introduce a scaled time t̂ = tnb̄20v̄11,0, where again subscripts zero refer to initial values and

nb̄2v̄11 = nb̄20v̄11,0(T∥0/T∥)
3/2. The magnetization parameter κ̄ij is already dimensionless, but

does have a temperature dependence κ̄ij = κ̄ij,0(T∥0/T∥)
3/2. Following the same notation,

we write density ratios as n̂k = nk/n The scaling removes dependence on the total density

n, and dependence on B enters only in the combination with T∥0 through the magnetization

parameter κ̄11,0. As we will see, the solution depends only on the initial values of the scaled

thermodynamic variables, the initial magnetization strength κ̄11,0 = Ω1b̄0/v̄11,0, the mass

ratio m1/m2, and the density ratios n̂k = nk/n.

In terms of these scaled variables Eq.(63) takes the form

dT̂⊥k

dt̂
= [α̂k

Ĝk

n̂k
+ (α̂k − α̂k′)

K̂k

n̂k
]
m1

mk

, (68)

where

Ĝk =
T̂⊥k

T̂
1/2
∥

· (mk

m1

)3/2
√
2π

8
[n̂2
kΛ1(κ̄kk) + n̂kn̂k′

√
2

1 +mk/mk′
Λ1(κ̄kk′)] (69)

regulates equipartition of T̂⊥k with T̂∥ on the slower timescale, and

K̂k =
T̂⊥kT̂k′

T̂∥
3/2

· n̂kn̂k′
√
2π

8
·
√

(
mk

m1

mk′

m1

)3
2m1

mk +mk′
· Λ2(|κ̄kk′ − κ̄k′k|)

κ̄211
(70)

regulates equipartition of αk with αk′ on the faster timescale. The statement of conservation

of energy in Eq.(41) can be rewritten as the relation

T̂∥(t) = 1 + 2{n̂1[T̂⊥1(0)− T̂⊥1(t)] + n̂2[T̂⊥2(0)− T̂⊥2(t)]}. (71)

This equation plus Eq.(68) for k = 1 and 2 and the relation α̂k = (m1/mk)(1/T̂⊥k − 1/T̂∥)

determine the evolution of the three unknowns T∥, T⊥1 and T⊥2 (or equivalently T∥, α1 and

α2).

To obtain equations for α̂1(t) and α̂2(t) alone, we combine Eq. (68) with the relations

dα̂k

dt̂
=
m1

mk

(
1

T̂ 2
∥

dT̂∥

dt̂
− 1

T̂ 2
⊥k

dT̂⊥k

dt̂
), (72)

0 =
1

2

dT̂∥

dt̂
+ n̂1

dT̂⊥1

dt̂
+ n̂2

dT̂⊥2

dt̂
. (73)

The result is

dα̂1

dt̂
= −ν̂11α̂1 − ν̂12α̂2 − Γ̂1(α̂1 − α̂2), (74)

dα̂2

dt̂
= −ν̂21α̂1 − ν̂22α̂2 − Γ̂2(α̂2 − α̂1), (75)
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where the ν̂ij’s and the Γ̂k’s are given by

ν̂ij = (
δijm

2
1

T̂ 2
⊥in̂im

2
i

+
2m2

1

T̂ 2
∥mimj

)Ĝj, (76)

Γ̂k = [
m2

1

T̂ 2
⊥kn̂km

2
k

+
2(1−mk/mk′)

T̂ 2
∥m

2
k/m

2
1

]K̂k, (77)

and T̂⊥k = T̂∥/(1 + α̂kT̂∥mk/m1). In these coefficients, T̂∥(t) and T̂⊥k(t) are determined by

Eq. (71) and the relation T̂⊥k = T̂∥/(1 + α̂kT̂∥mk/m1).

Analytic progress in solving Eqs. (74) and (75) is possible in two separate limits. We

first discuss the solutions in these limits and then solve the equations numerically for var-

ious values of the parameters, verifying the limiting behaviors expected from the analytic

solutions.

For sufficiently strong magnetization, the K̂k and Ĝj integrals satisfy the inequality

K̂1, K̂2 ≫ Ĝ1, Ĝ2, and the collisional relaxation takes place on two timescales. By sub-

tracting Eq. (75) from Eq. (74) and neglecting Ĝ1 and Ĝ2 compared to K̂1, K̂2, we obtain

the equation

d

dt̂
(α̂1 − α̂2) = −ν̂a(α̂1 − α̂2), (78)

where

ν̂a = Γ̂1 + Γ̂2

= K̂1 · [
1

T̂ 2
⊥1n̂1

+
1

T̂ 2
⊥2n̂2

m2
1

m2
2

+
2(1−m1/m2)

2

T̂ 2
∥

] (79)

is the rate at which α̂1 and α̂2 relax to a common value α̂.

At a slower rate, α̂ relaxes to zero. To obtain this rate, we multiply Eq. (74) by Γ̂2 and

Eq. (75) by Γ̂1 and add to obtain the result

Γ̂2
dα̂1

dt̂
+ Γ̂1

dα̂2

dt̂
= −Γ̂2(ν̂11α̂1 + ν̂12α̂2)− Γ̂1(ν̂21α̂1 + ν̂22α̂2). (80)

The large quantity K̂1 enters the Γ̂j on both sides of this equation and cancels, leaving a

slow rate of order Ĝj. Setting α̂1 = α̂2 = α̂ then yields the equation

dα̂

dt̂
= −ν̂bα̂, (81)
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where

ν̂b =
Γ̂2(ν̂11 + ν̂12)

Γ̂1 + Γ̂2

+
Γ̂1(ν̂21 + ν̂22)

Γ̂1 + Γ̂2

= {
2∑

k=1

[
m2

1/m
2
k′

T̂ 2
⊥k′n̂k′

+
2m1/mk′(m1/mk′ − 1)

T̂ 2
∥

] · [2m1/mk(1 +m1/mk)

T̂ 2
∥

+
m2

1/m
2
k

T̂ 2
⊥kn̂k

]Ĝk}

·[ 1

T̂ 2
⊥1n̂1

+
m2

1/m
2
2

T̂ 2
⊥2n̂2

+
2(1−m1/m2)

2

T̂ 2
∥

]−1 (82)

is the rate at which α̂ decays to zero, and hence from the relation α̂k = (m1/mk)(1/T̂⊥k −

1/T̂∥), the rate at which T̂⊥1 and T̂⊥2 approaches T̂∥.

Of course, this approximate solution is only accurate to order |Ĝj/K̂k| ≪ 1. For example,

α̂1(t)− α̂2(t) does not decay to exactly zero during the first phase of the evolution but rather

to the small value (α̂1 − α̂2) ≃ [(ν̂22 + ν̂21 − ν̂11 − ν̂12)/(Γ̂1 + Γ̂2)]α̂ ∼ O(Ĝj/K̂k)α̂≪ α̂. One

can understand this by setting dα̂1/dt̂, dα̂2/dt̂ ≈ 0 in Eqs. (74) and (75) and solving for

α̂1 − α̂2.

Another analytic solution is possible when α̂1 and α̂2 are small, and Eqs. (74) and (75)

may be treated as linear coupled equations with constant coefficients ν̂ij and Γ̂j. In these

coefficients, one must set T̂∥ = T̂⊥1 = T̂⊥2 = T̂ . A normal mode analysis9 then yields the

solution α̂1(t)

α̂2(t)

 = C+

α̂1+

α̂2+

 eŜ+ t̂ + C−

α̂1−

α̂2−

 eŜ− t̂, (83)

where C+ and C− are constants determined by the initial values α̂1(0) and α̂2(0), the damping

decrements Ŝ+ and Ŝ− are given by

Ŝ± =
1

2
{−(ν̂22 + ν̂11 + Γ̂1 + Γ̂2)± [(ν̂22 + ν̂11 + Γ̂1 + Γ̂2)

2

−4[(ν̂11ν̂22 − ν̂12ν̂21 + (ν̂11 + ν̂12)Γ̂2 + (ν̂22 + ν̂21)Γ̂1)]]
1/2}, (84)

and the eigenvectors byα̂1+

α̂2+

 =

 Γ̂1 − ν̂12

Ŝ+ + ν̂11 + Γ̂1

 ,

α̂1−

α̂2−

 =

 Γ̂1 − ν̂12

Ŝ− + ν̂11 + Γ̂1

 . (85)

In the strongly magnetized limit where Γ̂j ≫ ν̂ij, we recover the previous solution. The

damping decrements are approximately

Ŝ− ≃ −(Γ̂1 + Γ̂2), Ŝ+ ≃ −(ν̂11 + ν̂12)Γ̂2 + (ν̂22 + ν̂21)Γ̂1

Γ̂1 + Γ̂2

, (86)
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in agreement with Eqs. (79) and (82). In this limit, the |+⟩ eigenvector is proportional toα̂1+

α̂2+

 =

 1

1 + (ν̂11+ν̂12−ν̂21−ν̂22)
Γ̂1+Γ̂2

 , (87)

and [α̂1(t)− α̂2(t)] evolves to near zero on the timescale S−1
− ≃ 1/(Γ1 + Γ2). As mentioned

earlier, the correction is of order (ν̂11 + ν̂12 − ν̂21 − ν̂22)/(Γ̂1 + Γ̂2) ∼ O(Ĝj/K̂k) ≪ 1.

When the Γ̂k’s are comparable to the ν̂ij, the separation in timescales between Ŝ+ and

Ŝ− no longer exists. This is the case when magnetization is low or the ion mass difference

between the two species is large. However, we note again that our rates only apply to the

strong magnetization regime |κ̄12 − κ̄21| ≫ 1. If magnetization is low and |κ̄12 − κ̄21| . 1,

the timescale in which particles of different species exchange cyclotron action is comparable

to the timescale of a few collisions. Over this timescale, the distribution would not be cast

into the modified Maxwellian in Eq. (38) as assumed.

We convert the rate equations back to unscaled version for easier reference, using the

definitions of the scaled physical quantities. The unscaled version of Eqn. (74) and (75) is

dαk
dt

= −νkkαk − νkk′αk′ − Γk(αk − αk′), (88)

where

νkl = (
2ΩkΩl

nT 2
∥

+
Ω2
kδkl

nkT 2
⊥k

)Gk, (89)

Γk = [
Ω2
k

nkT 2
⊥k

+
2Ωk(Ωk − Ωk′)

nT 2
∥

]Kk, (90)

and

Gk =
T∥T⊥k
Ω2
k

[n2
kb̄v̄kk

√
2π

8
Λ1(κ̄kk) + nknk′ b̄v̄kk′

√
2π

4

µkk′

mk

Λ1(κ̄kk′)], (91)

Kk =
T⊥kT⊥k′

ΩkΩk′

µ2
kk′

mkmk′

nknk′ b̄
2v̄kk′

κ̄kk′κ̄k′k

√
2π

2
Λ2(|κ̄kk′ − κ̄k′k|). (92)

Then in the first stage of equilibration,

d

dt
(α1 − α2) = −νa(α1 − α2), (93)

where

νa = [
Ω2

1

n1T 2
⊥1

+
Ω2

2

n2T 2
⊥2

+
2(Ω1 − Ω2)

2

nT 2
∥

]K1. (94)
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And then in the next stage of equilibration, where α1 = α = α2,

dα

dt
= −νbα, (95)

where

νb =
Γ2(ν11 + ν12) + Γ1(ν21 + ν22)

Γ1 + Γ2

= [
2∑

k=1

(
2Ωk′(Ωk′ − Ωk)

nT 2
∥

+
Ω2
k′

nk′T 2
⊥k′

)(
2Ωk(Ωk + Ωk′)

nT 2
∥

+
Ω2
k

nkT 2
⊥k

)Gk]

·[ Ω2
1

n1T 2
⊥1

+
Ω2

2

n2T 2
⊥2

+
2(Ω1 − Ω2)

2

nT∥
]−1. (96)

Next we consider three numerical integrations of (74) and (75). For both the first and

the second integrations, we choose n̂1 = n̂2 = 1/2 for convenience, and m2/m1 = 25/24, as

that is the mass ratio of two common constituent ions in a pure ion plasma, namely Mg+25

and Mg+24
6,7. For all the cases, the lighter ion has a mass of m1 = 24mp, where mp is the

proton mass. We choose the total density to be n = 105 cm−3. The parallel temperature T∥

is assumed to be in the range where the plasma is weakly correlated, i.e., Γcorr < 1, where

Γcorr = (4πn/3)1/3e2/T∥ is the coupling parameter14. This requires T∥ > 1.1 × 10−5 eV.

We also choose the magnetic field to be B = 60 kG, a value that was realized in past

experiments1,2.

The first integration is for a case of strong magnetization κ̄11,0 = 80.0 and correspondingly

κ̄12,0 − κ̄21,0 = 3.2. The initial parallel temperature T∥0 under this value of κ̄11,0 is 4.5 ×

10−5 eV. With this temperature, the system has a weak correlation of Γcorr = 0.24. For

such a density and temperature, the collision rate is nb̄20v̄11,0 = 7.7 × 103 s−1. Also, the

initial scaled perpendicular temperatures are taken to be T̂⊥1,0 = 0.5 and T̂⊥2,0 = 0.25.

The evolution of α̂1 and α̂2 is shown in Fig. (7) and of T̂⊥1, T̂⊥1 and T̂∥ in Fig. (8). In

this case, the separation of timescales is clearly apparent. α̂1 and α̂2 evolve to a common

value in a time of 10 s and then evolve to zero in the longer time of 1000 s, or 17 minutes.

Note in both figures that the abscissa is a logarithmic scale. As T∥ decreases during the

final relaxation, the magnetization κ̄11 ∝ T
−3/2
∥ rises and the equiparition rate, which has

the exp[−5(3πκ̄
2/5
11 )/6] dependence, is exponentially suppressed. This accounts for the fact

that the final equipartition takes place over a long three decades of time. In Fig. (8), the

temperatures T̂⊥1 and T̂⊥2 have slightly different values even after α̂1 and α̂2 have reached
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common value because of the mass dependence in the relation T̂⊥k = T̂∥(1 + α̂kT̂∥mk/m1).

Note that the correction in Eq. (87) is not visible on the scale of the figures.

The second case, as shown in Fig. (9) and (10), is for a case where the initial parallel

temperature is lower than the perpendicular temperatures, but the magnetization and ion

masses stay the same as in the first case. The first equipartition, when α̂1 and α̂2 are

approaching to the same value, has similar duration as in the previous case, but the final

equipartition occurs over an exponentially much shorter duration of 20 s than in that previous

case, as the increase in parallel temperature speeds up equipartition exponentially.

The third integration is for a case of strong magnetization, but large ion mass difference

between the two species. κ̄11,0 = 80.0 and κ̄12,0− κ̄21,0 = 24.7, with a choice of m2/m1 = 1.4.

The values of n and T∥,0 are the same as in the previous cases. In this case, the rate

ν̂a ∼ O(exp[−5(3π|κ̄12 − κ̄21|2/5)/6]/κ̄211) of the first equipartition is comparable to the rate

ν̂b ∼ O(exp[−5(3πκ̄
2/5
11 )/6]) of the second stage. The thermodynamic variables α̂1 and α̂2

decay to zero without equilibrating first to a common value, and the temperatures T̂∥, T̂⊥1

and T̂⊥2 converge to the same value, as in Fig. (11) and (12).
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FIG. 7. The time evolution of α̂1 and α̂2 for the case of κ̄11,0 = 80.0, m2/m1 = 25/24 and

n̂1 = n̂2 = .5. Here nb̄20v̄11,0 = 7.7× 103 s−1 and T∥0 = 4.5× 10−5 eV.
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FIG. 8. The time evolution of T̂⊥1, T̂⊥2 and T̂∥ for the case of κ̄11,0 = 80.0, m2/m1 = 25/24 and

n̂1 = n̂2 = .5. Here nb̄20v̄11,0 = 7.7× 103 s−1 and T∥0 = 4.5× 10−5 eV.
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FIG. 9. The time evolution of α̂1 and α̂2 for the case of κ̄11,0 = 80.0, m2/m1 = 25/24 and

n̂1 = n̂2 = .5. Here nb̄20v̄11,0 = 7.7× 103 s−1 and T∥0 = 4.5× 10−5 eV.
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FIG. 10. The time evolution of T̂⊥1, T̂⊥2 and T̂∥ for the case of κ̄11,0 = 80.0, m2/m1 = 25/24, and

n̂1 = n̂2 = .5. Here nb̄20v̄11,0 = 7.7× 103 s−1 and T∥0 = 4.5× 10−5 eV.
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FIG. 11. The time evolution of α̂1 and α̂2 for the case of κ̄11,0 = 80.0 and |κ̄21,0 − κ̄12,0| = 24.7.

Here m2/m1 = 1.4, n̂1 = n̂2 = .5, nb̄20v̄11,0 = 7.7× 103 s−1 and T∥0 = 4.5× 10−5 eV.
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FIG. 12. The time evolution of T̂⊥1, T̂⊥2 and T̂∥ for the case of κ̄11,0 = 80.0 and |κ̄21,0−κ̄12,0| = 24.7.

Here m2/m1 = 1.4, n̂1 = n̂2 = .5, nb̄20v̄11,0 = 7.7× 103 s−1 and T∥0 = 4.5× 10−5 eV.
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IV. DISCUSSION

The analysis of Section III assumes that the ion plasma is immersed in a uniform neutral-

izing background charge. For the case of a single species ion plasma, a laboratory realization

of this simple theoretical model is a pure ion plasma in a Malmberg-Penning trap17. Rotation

of the plasma in the uniform axial magnetic field of the trap induces a radial electric field

and a radial centrifugal force that can be thought of as arising from an imaginary cylinder of

uniform neutralizing background charge14,18. The Gibb’s distribution for the magnetically

confined single-species plasma differs only by rigid rotation from that for a plasma confined

by a cylinder of neutralizing charge14,18.

However, there is a caveat to this equivalence for the case of a pure ion plasma with differ-

ent mass species. The rotation can give rise to centrifugal separation of the species6,19,20. A

parameter that determines the degree of separation is the quantity ω2|m2−m1|r2p/T∥, where

ω is the plasma rotation frequency and rp is the radius of the cylindrical plasma column.

We assume that this quantity is small compared to unity so that centrifugal separation is

negligible and the equivalence is preserved. Note that ω varies inversely with magnetic field

strength14, so small ω2|m2 −m1|r2p/T∥ can be consistent with strong magnetization.

For a plasma in a Malmberg-Penning trap, the Hamiltonian H and the actions Ik are to

be interpreted as the Hamiltonian and actions in the rotating frame of the plasma. To be

precise, the actions are defined in the local drift frame21, but for the plasmas of interest, the

difference between the local drift velocity and the local plasma velocity (i.e. rω) is negligibly

small, that is, small compared to the thermal velocity.

Another caveat concerns the statement of conservation of kinetic energy in Eq. (63). In

some experiments heating processes have rates that are comparable to the rate at which the

αk’s relax. If the heating process is understood and the rate can be quantified in a formula,

the heating rate should replace the zero on the Left Hand Side of Eq. (73). Alternatively,

one can proceed empirically and measure T∥(t), say using Laser Induced Fluorescence17, and

then use Eq. (63) to determine the evolution of T⊥1(t) and T⊥2(t), or equivalently of α1(t)

and α2(t). Of course, the relaxation of the α’s can occur on two timescales, and it may

be that the heating is negligible for the relatively rapid relaxation of α1(t) and α2(t) to a

common value, but not negligible on the longer timescale where that common value relaxes

to zero.
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Finally, there is the question of how the theory should be generalized for the case of

three or more isotopic ions. In the discussion following Eq. (63), we noted that this can

accomplished by summing the Right Hand Side over k′ for k′ ̸= k. In terms of scaled

variables, one can sum over k′ for subscript k′ ̸= k on the Right Hand Side of Eq. (68).

Note that subscript k′ is also implicitly hidden in the expressions (69) and (70) for Gk and

Kk. Eq. (68) then provides k equations for the T⊥k. Also, Eq. (73) for conservation of

energy must be modified by summing over terms for each T⊥k. This generalization is valid

because we keep the assumption of the dominance of uncorrelated binary collisions, among

particles of all the k species.
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Appendix A: Evaluation of integrals Λ1 and Λ2

In this appendix, we evaluate the integrals

Λ1(κ̄) =

∫ ∞

0

dσ

σ

∫ ∞

0

η3dηf 2
1 (
κ̄

σ3
, η)e−σ

2/2, (A1)

Λ2(κ̄) =

∫ ∞

0

dσσ3

∫ ∞

0

ηdηf 2
2 (
κ̄

σ3
, η)e−σ

2/2, (A2)

where

f1(κ, η) =

∫ ∞

−∞

cos(κξ)dξ

[η2 + ζ2(ξ)]3/2
, (A3)

f2(κ, η) =

∫ ∞

−∞

cos(κξ)dξ

[η2 + ζ2(ξ)]3/2
(1− 3η2

2[η2 + ζ2(ξ)]
). (A4)

Here, ζ(ξ) satisfies the differential equation

(
dζ

dξ
)2 +

1√
η2 + ζ2(ξ)

= 1, (A5)

where ξ = is chosen so that ζ2(ξ) is even in ξ. This is the case when ζ2(0) = max(0, 1− η2).

Also, note that in Eqs. (A3) and (A4) κ stands in for κ = κ̄/σ3.

For large κ̄, the integrands in Eqs. (A3) and (A4) involve the product of a rapidly

oscillating function and a slowly varying function, and efficient evaluation of such integrals
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can be effected through analytic continuation. Following the earlier work of O’Neil and

Hjorth4, we define x =
√
η2 + ζ2(ξ), which satisfies the differential equation

dx

dξ
=
i
√
x− η

√
x+ η

√
x− 1

x
√
−x

, (A6)

where x(ξ = 0) = max(η, 1). In the square roots of Eq. (A6), the branch cut for any

function
√
w(x) is taken along argw(x) = 0. The Right Hand Side of Eq. (A6) then has

branch cuts for x < −η, 0 < x < min(η, 1) and x > max(η, 1).

We first consider the case where η < 1, that is, where there is reflection. The case of no

reflection (η > 1) follows similarly. For η < 1, the branch cuts are indicated by the thick

solid lines in Fig. 13(b). As ξ moves from −∞ to ∞ along the dashed contour in Fig. 13(a),

x(ξ) moves along the dashed contour in Fig. 13(b), reaching the turning point x = 1 at

ξ = 0, i.e. x(0) = 1. Because x(ξ) is even in ξ, the integrals in Eqs. (A3) and (A4) can be

rewritten as

f1(κ, η) =

∫
C

exp(iκξ)dξ

x3(ξ)
, (A7)

f2(κ, η) =

∫
C

exp(iκξ)dξ

x3(ξ)
[1− η2

x2(ξ)
]. (A8)
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FIG. 13. Path (dashed curve) of the original contour in ξ-plane (a) and x-plane (b). Branch cuts

are denoted by thick solid lines, and in this figure, η = 0.5.

The goal here is to analytically continue the ξ-contour so that the integrands themselves

exhibit the exponentially small value of the integrands, so we push the ξ-contour toward
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positive imaginary values. The deformation can continue until the x(ξ) contour collides with

the branch cut ending at x = η as shown in Figs. 14(a) and 14(b).

-1.0 -0.5 0.0 0.5 1.0

-4

-2

0

2

4

ReHΞL

Im
HΞ
L

-1 0 1 2 3
-3

-2

-1

0

1

2

3

ReHx L

Im
Hx
L

FIG. 14. Path (dashed curve) of the deformed contour in ξ-plane (a) and x-plane (b). Branch cuts

are denoted by thick solid lines, and in this figure, η = 0.5.

During the deformation, the turning point moves from x = 1 to x = η, and ξ-image of

the turning point moves from ξ = 0 to

ξ = ig(η) = i

∫ 1

η

x2/3dx
√
1− x

√
x2 − η2

, (A9)

where use has been made of Eq. (A6). The two points around which the x-contour loop

are the images of x = 0 approached from opposite sides of the branch cut between x = 0

and x = η. From Eq. (A6), we see that the coordinates of these two points in the complex

ξ-plane are ξ = ig(η)± r(η), where

r(η) =

∫ η

0

x2/3dx
√
1− x

√
η2 − x2

. (A10)

There is a branch cut between the two points in the function x(ξ).

Since the singularities of the integrands in Eqs. (A7) and (A8) involve more than just

isolated poles, the integrals cannot be expressed as the sum of residues. Nevertheless, for

sufficiently large κ, one can see that the integrals are of order exp[−g(η)κ], that is, one

obtains the asymptotic forms fj(κ, η) = hj(κ, η) exp[−g(η)κ] quoted in Eqs. (20) and (21)

of Section II. Here, the quantities hj(κ, η) are neither exponentially small nor large, and for

small η are given by4 hj(κ, η) ≃ 8πκ/9.
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The integrals also are evaluated by numerically carrying out the ξ-integral along the

deformed contour in Fig. 14(a). Fig. (1) of Section II shows a comparison of the numerical

and asymptotic evaluations of f1(κ, η = 0) = f2(κ, η = 0).
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FIG. 15. Curve fitting of g(η) against η, showing that g(η)− g(0) ∼ O(η3/2).

Returning to an evaluation of integrals (A3) and (A4), we first note that g(η) is an

increasing function of η. Thus, for sufficiently large values of κ̄, only small values of η

contribute to the integrals, and we may use the approximation hj(κ, η) ≃ hj(κ, 0) = 8πκ/9,

or hj(κ̄/σ
3, η) ≃ hj(κ, 0) = 8πκ̄/(9σ3). Also, for small values of η, one can see by curve

fitting that g(η) ≃ π/2 + λη3/2, where λ = 0.874 (see Fig. 15). The integrations over η can

then be carried out in Eqs. (A3) and (A4) yielding the integrals

Λ1(κ̄) = (
8π

9
)2

κ̄2

(2κ̄λ)8/3
· 2
3
Γ(

8

3
)

∫ ∞

0

dσσe−σ
2/2e−πκ̄/σ

3

, (A11)

Λ2(κ̄) = (
8π

9
)2

κ̄2

(2κ̄λ)4/3
· 2
3
Γ(

4

3
)

∫ ∞

0

dσσe−σ
2/2e−πκ̄/σ

3

. (A12)

The σ-integrals in these two equations are identical and involve the product of an ex-

ponentially decreasing function, exp(−σ2/2), and an exponentially increasing function,

exp(−πκ̄/σ3). Evaluating the integrals by the saddle point method yields the large κ̄

asymptotic formulae

Λ1(κ̄) = 3.10κ̄−7/15e−5(3πκ̄)2/5/6, (A13)

Λ2(κ̄) = 3.87κ̄13/15e−5(3πκ̄)2/5/6. (A14)

Numerical evaluations of Λ1(κ̄) and Λ2(κ̄) have been carried out for a series of κ̄ values.

At each of these values, the quantities hj(κ̄/σ
3, η) are evaluated for an array of (σ, η) values
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using the analytic continuation described earlier. The integrands are peaked near some

values (σ0, η0), and the (σ, η) integrands are evaluated by choosing (σ, η) values near the

peak and smoothly interpolating the integrand between these points. The results of the

integration are given for a series of κ̄ values in Table (I) and (II). Also, Figs. (16) and (17)

show a comparison of the numerical evaluations (dots) and the asymptotic formulae (solid

curves).

TABLE I. Numerically integrated values of Λ1(κ̄) for different values of κ̄

κ̄ Λ1(κ̄) κ̄ Λ1(κ̄)

5 0.222 200 5.06× 10−8

10 5.06× 10−2 300 6.92× 10−10

20 7.71× 10−3 500 1.29× 10−11

50 2.41× 10−4 700 2.89× 10−13

100 5.95× 10−6 1000 3.15× 10−15

TABLE II. Numerically integrated values of Λ2(κ̄) for different values of κ̄

κ̄ Λ2(κ̄) κ̄ Λ2(κ̄)

0.01 3.250 20 2.837× 10−1

0.05 3.230 50 3.074× 10−2

0.1 3.201 100 2.338× 10−3

0.7 2.850 200 4.989× 10−5

2 2.419 350 1.685× 10−6

6 1.251 500 4.195× 10−8

10 7.523× 10−1

We can compare our results with previous work. If we consider equipartition of a strongly

magnetized single-species plasma, where n = n1 and n2 = 0, T⊥1 equilibrates with T∥

following the rate equation

dT⊥1

dt
= (T∥ − T⊥1)n̄1b̄

2v̄11I(κ̄11), (A15)

where I(κ̄11) =
√
2πΛ1(κ̄11)/8 from Eqn. (63). The function I(κ̄) was evaluated in the work

of O’Neil and Hjorth4 and Glinksy et. al.3. In Fig. (18), numerical values of I(κ̄) in our
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FIG. 16. Numerically integrated values of Λ1(κ̄) (dots) and its asymptotic graph (red line).
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FIG. 17. Numerically integrated values of Λ2(κ̄) (dots) and its asymptotic graph (red line).

work are plotted as points together with values obtained by Glinsky et. al. using Monte

Carlo simulations. The different sets of values follow very close trends. Furthermore, in the

limit of large κ̄, O’Neil and Hjorth obtained an asymptotic formula for I(κ̄)

I(κ̄) = 0.47κ̄−1/5 exp[−5

6
(3πκ̄)2/5], (A16)

while the asymptotic formula from Glinsky et. al. is

I(κ̄) = (1.83κ̄−7/15 + 20.9κ̄−11/15 + 0.347κ̄−13/15

+87.8κ̄−15/15 + 6.68κ̄−17/15) exp[−5

6
(3πκ̄)2/5]. (A17)
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From Eqn. (A13), our version is

I(κ̄) = 0.97κ̄−7/15 exp[−5

6
(3πκ̄)2/5]. (A18)

Our asymptotic formula is an improved version of the work of O’Neil and Hjorth. We

approximate g(η) with η3/2 as the lowest-order non-constant term, which is more accurate

than η2 in the work of O’Neil and Hjorth. However, we believe the result from Glinsky et.

al. is even better, since their work investigated the cyclotron motion in much greater detail.

In the same Fig. (18), we plot the graphs of the three asymptotic expressions together with

the points of numerically integrated values mentioned above. All the plotted graphs and

data points show the similar exponential decrease of I(κ̄) with increasing κ̄.
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FIG. 18. Numerical values and asymptotic graphs of I(κ̄). Solid triangles correspond to our

calculated values. Empty circles and squares are values calculated by Glinsky et. al. using

two different sets of Monte Carlo simulations3. The solid line is the graph of our asymptotic

expressions. The dashed and dot-dashed curves corresponds to the asymptotic expressions from

O’Neil and Hjorth and Glinsky et. al. respectively.
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