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ABSTRACT

An Eulerian, numerical simulation is used to model the launching of plasma waves in a non-neutral plasma that is confined in a
Penning–Malmberg trap. The waves are launched by applying an oscillating potential to an electrically isolated sector at one end of the con-
ducting cylinder that bounds the confinement region and are received by another electrically isolated sector at the other end of the cylinder.
The launching of both Trivelpiece–Gould waves and electron acoustic waves is investigated. Adopting a stratagem, the simulation captures
essential features of the finite length plasma, while retaining the numerical advantages of a simulation employing periodic spatial boundary
conditions. As a benchmark test of the simulation, the results for launched Trivelpiece–Gould waves of small amplitude are successfully
compared to a linearized analytic solution for these fluctuations.
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I. INTRODUCTION

Nowadays, the rapid increase in the capabilities of computational
resources gives the possibility of running Eulerian simulations for the
description of the kinetic dynamics of collisionless plasmas in physical
conditions close to reality. Eulerian codes have then become in the last
few years an indispensable tool to support the physical interpretation
of the measurements both from space satellites and laboratory experi-
ments. At variance with Lagrangian particle-in-cell (PIC) codes,1 in
which the equations of motion of a large number of macro-particles
are integrated in time under the effects of electric and magnetic fields,
Eulerian codes2–5 solve numerically the kinetic equation for the parti-
cle distribution function in phase space, self-consistently coupled to
Maxwell’s equations for fields.

It is clear that the Eulerian algorithms are, in general, more com-
putationally demanding than PIC algorithms in terms of both execu-
tion time and memory requirements for data allocation and storage.
On the other hand, the main advantage of Eulerian schemes with
respect to Lagrangian ones principally consists in the fact that the out-
come of Eulerian computations does not suffer from the statistical
noise intrinsic in Lagrangian schemes, which is mainly due to the lim-
ited number of macro-particles that can be loaded in a PIC simulation.
Specifically, this noise can affect the phase-space features as well as the
higher-order moments of the particle distribution function.6–8

In recent years, the number of numerical analyses based on the
Eulerian integration of the kinetic equations has impressively
increased, especially in the study of the kinetic dynamics of the turbu-
lent solar wind.9,10 Moreover, huge efforts have been also devoted to
modeling weakly collisional plasmas as the interplanetary medium
(e.g., Refs. 11 and 12 and references therein), where even a low colli-
sionality could play a relevant role in the processes of turbulent energy
dissipation and plasma heating. The inclusion of collisional effects
might be even more significant for laboratory plasmas.13,14

Here, we use an Eulerian simulation to model the launching of
plasma waves in a non-neutral plasma confined in a Penning–
Malmberg trap, whose schematic representation is given in Fig. 1.
Non-neutral plasmas confined in these devices show a rich collective
behavior akin to quasi-neutral plasmas. Their collisionality is often
quite small, thus allowing kinetic effects to play a significant role in the
plasma dynamics. Several fluctuations and instabilities are supported
by these plasmas. Trivelpiece–Gould waves (TGWs),15 the counterpart
of Langmuir waves in non-neutral plasmas, and electron acoustic
waves (EAWs)16–18 are typical longitudinal fluctuations occurring in
Penning–Malmberg devices, while diocotron,20–22 cyclotron,23,24 and
Bernstein25 waves oscillate in the transverse directions. The perpendic-
ular dynamics shows also significant analogies with a two-dimensional
inviscid fluid,26 thus motivating several experimental and numerical
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efforts to study, for example, the vortex dynamics subject to an exter-
nal strain.27,28 More recently, Penning–Malmberg devices have been
exploited in experiments aimed at determining the gravitational prop-
erties of antimatter.29 In our numerical model, waves are excited by
applying an oscillating potential to an electrically isolated section of
the conducting cylindrical wall that bounds the confinement region.
This launching electrode is near one end of the cylinder, and a receiv-
ing electrode is located near the other end. As will be described, an
artifice is used to capture essential aspects of launching in a finite
length plasma, while retaining the numerical advantages of periodic
boundary conditions on an infinitely long plasma column.

The launching of both Trivelpiece–Gould waves (TGWs)15 and
electron acoustic waves (EAWs) is investigated. TGWs are simply
Langmuir waves on a long magnetized plasma column, while EAWs
are intrinsically nonlinear waves with phase velocity near the thermal
velocity. These waves were predicted in 1991 by Holloway and
Dorning30 for the case of an infinite homogeneous neutral plasma. By
solving for the roots of the electrostatic dielectric function in the pres-
ence of an infinitesimal plateau at v/ ¼ x=k, it has been shown that
undamped plasma oscillations can be obtained with wavenumber and
real part of the wave frequency lying on the so-called thumb curve.30

In the original theory, the ions do not participate in the wave motion
but simply provide a uniform neutralizing background charge, so a
close analogue of such waves exist in non-neutral plasmas. Indeed, for
EAWs, Landau damping31 is inhibited by the presence of a flat region
(plateau) in the particle velocity distribution at the wave phase speed,
produced by the trapping of particles32 in the wave potential well.

Previous PIC33 and Eulerian simulations18,34,35 have successfully
excited EAWs. Moreover, experimental results16,17 confirmed the exis-
tence of the EAW branch and also suggested that the excitation of
undamped electrostatic waves can be obtained even off of the usual
thumb curve.30 This latter evidence has been further confirmed by the
theoretical and numerical results.18 In both numerical simulations and
laboratory experiments, the plateau needed to turn off Landau damp-
ing for the excitation of the EAWs is generated through an external
driving electric field applied on the plasma initially at equilibrium.

However, in the previous simulations of EAWs and TGWs, the
launched wave was selected by wave number matching. The driving
electric field was sinusoidal with an axial wave number chosen to
match that of the wave to be launched.18 In some simulations,36,37 a
radial wave number, again chosen to match that of the launched wave,
was included in an ad hoc manner in the mode equation. The launch-
ing was most effective when the frequency of the driver was chosen to

be near that of the wave to be launched, but the particular triggered
wave was selected by wave-number matching. Because of the sinusoi-
dal profile of the driving electric field, the driver was spatially orthogo-
nal to all of the modes except the launched one. In contrast, for the
simulations discussed here and for the experiments, the excited fluctu-
ations are selected by frequency matching. The driver field is localized
in space and is not characterized by any axial or radial mode numbers
of a wave to be launched. The spatial structure of the launched waves
is determined by the plasma itself, rather than by the spatial structure
of the launching field.

We refer to the frequency selection process as adiabatic frequency
selection. The oscillating driving potential applied to the wall electrode
is typically of the form VðtÞ ¼ VDhðtÞ sin ðxDtÞ, where xD is the
driver frequency, VD is the driver amplitude, and h(t) is a factor that
smoothly turns on and off the oscillating drive potential. Typically,
h(t) rises smoothly from zero to the unit value on a timescale Dt and
then, after some time, smoothly returns to zero, again on the timescale
Dt. For a mode characterized by frequency x, being jx� xDjDt > 1,
we will see that the mode amplitude adiabatically follows h(t) as it
increases, but also adiabatically follows h(t) back down as it returns to
zero; that is, the wave does not launch and ring after the drive potential
is turned off. In contrast, when jx� xDjDt � 1, h(t) is not slowly
varying compared to the frequency difference, and the mode does
launch, ringing after the drive potential is turned off. This type of drive
potential selects modes that differ in frequency from the drive fre-
quency by order 1=Dt.

For the case of a linear TGW, the launching process can be
described analytically and demonstrated the adiabatic frequency selec-
tion process. The analytic results are used to benchmark the numerical
results for launching of a small-amplitude TGW. The same cannot be
done for EAWs, since the launching process for these waves involves
nonlinear processes.

The Eulerian simulation here presented solves the coupled drift
kinetic equation and Poisson’s equation for the simple case where the
plasma remains azimuthally symmetric. In our model, we assume a
top-hat profile in the radial direction for the equilibrium plasma den-
sity. This approximation neglects the sheath at the plasma radius,
where the density decreases exponentially to zero. However, our model
is able to capture essential features of a finite length bounded plasma,
while maintaining the numerical advantages of periodic boundary
conditions on a long column. In particular, the plasma column is
assumed to have flat ends where the particles undergo specular reflec-
tion. On the other hand, in real experiments, plasma ends are rounded
and the reflection occurs on the scale length of a few Debye lengths.
However, our assumption of specular reflection from flat ends is rea-
sonable when the axial wavelength is long compared to the scale length
of the rounding and of the Debye length.

When a mode is excited in a real plasma, the mode potential
extends somewhat beyond the end into the vacuum, and both the
value of the potential and the value of the normal component of the
mode displacement current must be continuous across the plasma
end. The displacement current in the plasma is the product of the
plasma dielectric times the normal component of the mode electric
field, but in the vacuum beyond the end, the displacement current is
simply the normal component of the mode electric field. Thus, when
the mode frequency is small compared to the plasma frequency and,
hence, the magnitude of the plasma dielectric is much larger than

FIG. 1. A schematic representation of a Penning–Malmberg apparatus.
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unity j1� x2
p=x

2j � 1, the matching across the plasma ends requires
the normal component of the mode electric field in the plasma to be
near zero. If one end of the flat-ended model plasma column is at
z¼ 0 and the other end is at z ¼ Lp, where Lp is the plasma length, we
require that the axial component of the mode electric field vanish at
both z¼ 0 and at z ¼ Lp.

To conveniently model specular reflection of particles at the plasma
ends, we create a mirror plasma and potential in the domain z ¼ Lp to
z ¼ 2Lp by reflection of the real plasma and potential about the end
z ¼ Lp. This is shown in Fig. 2. The domain of the model plasma then
extends from z¼ 0 to z ¼ 2Lp, with periodic boundary conditions
imposed on the potential at z¼ 0 and z ¼ 2Lp. The plasma potential is
even under axial reflection about both z¼ 0 and z ¼ Lp. In this way, the
simulation models specular reflection at the flat ends of the plasma.

Nevertheless, this model does not capture all aspects of mode
reflection in a real plasma. We often think of a standing wave on a
string as being composed of two traveling waves propagating in oppo-
site directions and reflecting into one another at the ends of the string.
This picture also describes standing modes on a finite length plasma
column, providing that the plasma density extends uniformly out to
the wall.38,39 In this case, the radial dependence of the mode potential
in the plasma and in the vacuum beyond the plasma end are the same,
and a given traveling wave reflects only into itself. More generally,
when the plasma density does not extend uniformly out to the wall,
the radial dependence of the wave potential in the plasma and in the
vacuum are not the same, and, as a result, a given traveling wave
reflects into many different waves.38,39 The mode vacuum potential
drives the other modes at the frequency of the incident mode, so the
reflection-produced mode mixing is important only when there are
nearly degenerate low-order modes in the frequency range of the
launcher, and our simple model neglects the reflection mixing.

Another way to understand this approximation is to first
observe that there is no reflection mixing for true eigenmodes of the
finite length plasma; that is what is meant by an eigenmode. The
trouble is that a standing wave on a long column characterized by
single axial and radial wave numbers is not a true eigenmode of the
finite length plasma. Reflection mixing couples in small admixtures
of other modes and produces a small correction to the frequency.
Our simple model neglects these small corrections. In defense of the
simple model, we note that it has done a good job in predicting the
frequencies and damping rates of plasma modes in many

experiments with finite length non-neutral plasmas in
Penning–Malmberg traps.18,19,33,34,36,37,40

The paper is organized as follows. Sections II–IV provide analytic
backup for the simulations in Sec. VI. Section II discusses linear dis-
persion theory for TGWs in our model plasma, finding a simple trans-
lation between the TGW dispersion for say the axial and radial mode
(n, m) and dispersion theory for plasma modes an infinite homoge-
neous plasma. Section III discusses the usual method of launching
waves in simulations, that is, wave evolution from an initial perturba-
tion in the plasma. The initial density perturbation is projected onto
the set of eigenmodes for the TGWs, and the orthogonality of the
eigenmodes insures that a given mode evolves only from its own pro-
jection of the initial density perturbation. The mode selection is
through the spatial eigenmode structure. Section IV discusses the
launching of TGWs from an oscillating potential applied to a wall elec-
trodes and demonstrates the adiabatic frequency selection of modes.
In Sec. V, we describe the numerical method employed for launching
waves in an azimuthally symmetric non-neutral plasma column.
Then, in Sec. VI we present the results of Eulerian simulations for the
excitation of TG and EA fluctuations. Finally, a summary and the con-
clusions are given in Sec. VII.

II. LINEAR DISPERSION THEORY FOR TGWs

We consider a cylindrical pure ion plasma column of uniform
density n0 as shown in Fig. 1. Let ðr; h; zÞ be a cylindrical coordinate
system with the z-axis coincident with the axis of the plasma column
and the plane z¼ 0 coincident with one end of the plasma. The plasma
is assumed to have flat ends and to be of length Lp and radius Rp. The
plasma resides in a conducting cylinder of radius Rw, where
Rp < Rw � Lp. We consider a plasma consisting of singly ionized
positive ions40,41 of charge e and mass m. The radial confinement is
provided by a uniform axial magnetic field B0 and the axial confine-
ment by positive end potentials. The magnetic field is sufficiently
strong that the cyclotron frequency Xc ¼ eB0=mc is large compared to
the plasma frequency xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=m

p
, which also implies that the

cyclotron radius rc ¼ vth=Xc is small compared to the Debye length
kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=4pn0e2

p
, where vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
is the thermal speed and

T the plasma temperature. For the collection of charges to qualify as a
plasma, the Debye length must be small compared to the plasma
dimensions, so the overall spatial ordering is given by the inequalities
rc � kD � Rp < Rw � Lp. We will consider modes with frequencies
that are small compared to the plasma frequency, but large compared
to the collision frequency �, so the overall frequency ordering is
� � x� xp � Xc.

This ordering allows a simplified description of the particle
dynamics. At the end of the plasma, the confinement potential rises
sharply on the scale of the Debye length, so the ordering kD � Lp
together with the limitation of mode wave lengths to be of order Lp
allows particle reflection at the column ends to be approximately spec-
ular. Also, the ion dynamics is well approximated by the drift kinetic
equation, which for the case where the mode has no azimuthal depen-
dence reduces to the simple form

@F
@t
þ v

@F
@z
� e
m
@/
@z

@F
@v
¼ 0; (1)

where F ¼ Fðr; z; v; tÞ is the particle distribution function and /
¼ /ðr; z; tÞ the electric potential. We will find it convenient to write FFIG. 2. Representation of the (r, z) numerical domain for the Eulerian simulations.
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in the form F ¼ n0ðrÞf ðr; v; z; tÞ, where the unperturbed density,
n0ðrÞ, has the constant value n0 for r < Rp and the value zero for
Rp < r < Rw; that is, the density has a top-hat profile. Such a choice
does not model the sheath at Rp,

42 which is the region where the den-
sity drops exponentially to zero and whose dimension is only a few
Debye lengths. Since the radial variable r enters Eq. (1) only parametri-
cally, the factor n0ðrÞ can be canceled out of all terms, and F replaced
by f. Equation (1) must be solved in parallel with Poisson’s equation

1
r
@

@r
r
@/
@r
þ @

2/
@z2
¼ �4pen0ðrÞ

ð
dv f : (2)

Within linear theory, the particle distribution function and potential
are written in the forms f ¼ f0ðvÞ þ df ðr; v; z; tÞ and / ¼ /0ðrÞ
þ d/ðr; z; tÞ, where f0ðvÞ is such that

Ð
dvf0ðvÞ ¼ 1, while

df ðr; v; z; tÞ and d/ðr; z; tÞ are first-order perturbations satisfying
@

@t
þ v

@

@z

� �
df ¼ e

m
@d/
@z

@f0
@v

; (3)

1
r
@

@r
r
@

@r
þ @2

@z2

� �
d/ ¼ �4pen0ðrÞ

ð
dv df : (4)

Since particles bounce back and forth between the ends of the plasma
column, it is necessary that f0ð�vÞ ¼ f0ðvÞ. We will take f0ðvÞ to have
the form

f0ðvÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pv2th

p exp
�v2
2v2th

" #
; (5)

which clearly satisfies this property.
Following the simple theory model described in Sec. I, we extend

the plasma to a length 2Lp, as shown in Fig. 2, impose periodic bound-
ary conditions with periodicity 2Lp, and require that @d/=@z be zero
at z¼ 0 and z ¼ Lp. This simple model mimics the specular reflection
of particles at the ends of the real plasma. The perturbations can be
written in the separable form

df ðr; z; v; tÞ ’ df̂ kðr; v; pÞ cos ðkzÞept ; (6)

d/ðr; z; tÞ ’ d/̂kðr; pÞ cos ðkzÞept ; (7)

where both the periodicity and the requirement that @d/=@z vanish at
the plasma ends are satisfied when k ¼ kn � 2pn=2Lp ¼ pn=Lp, and

n is an integer. Note that in Eqs. (6) and (7), by writing the time
dependence as ept, we have anticipated the use of the Laplace trans-
form in the discussion of wave launching. We will find solutions
p ¼ pn;m ¼ ixn;m þ cn;m for modes labeled by the axial and radial
indices (n, m), where xn;m is the mode frequency and cn;m the damp-
ing rate. Substituting Eqs. (6) and (7) into Eq. (3) yields the solution

df̂ knðr; v; pÞ ¼
e
m
iknd/̂knðr; pÞ

@f0ðvÞ
@v

2ðiknv þ pÞ þ
� e
m
iknd/̂knðr; pÞ

@f0ðvÞ
@v

2ð�iknv þ pÞ ;

(8)

where the function cos ðknzÞ has been written out in terms of complex
exponentials to facilitate the solution. Substituting this expression into
the right-hand side of Eq. (4) and using the relation f0ð�vÞ ¼ f0ðvÞ to
rewrite the second velocity integral yields the equation for the mode
potential d/̂knðr; pÞ,

1
r
@

@r
r
@

@r
� k2n þ

n0ðrÞ
n0

K2ðkn; pÞ
� �

d/̂knðr; pÞ ¼ 0; (9)

where the quantity K2 is given by the expression

K2ðkn; pÞ ¼ x2
p

ð
L
dv

@f0ðvÞ
@v

p=ikn þ v
; (10)

and the L on the integral sign indicates that the Landau contour is to
be followed.31 In the absence of wave launching electrodes, the mode
potential d/̂knðr; pÞ must vanish on the conducting cylindrical wall at
r ¼ Rw. Ultimately, we will consider a case where there is an electri-
cally isolated launching electrode, that is, a section of the wall where
the oscillating potential is nonzero. However, as discussed below, that
will be handled by a separate, launching potential. Here, we specify
that the mode potential vanish everywhere on the conducting wall.
Also, its radial derivative must vanish at r¼ 0, while both the mode
potential and its radial derivative must be continuous across the den-
sity discontinuity at r ¼ Rp.

Defining a transverse wave number through the relation where
k2? ¼ K2 � k2n, the expressions

d/̂knðr; pÞ / wn;mðrÞ ¼
J0ðk?rÞ; 0 < r � Rp;

J0ðk?RpÞ
I0ðknrÞK0ðknRwÞ � I0ðknRwÞK0ðknrÞ

I0ðknRpÞK0ðknRwÞ � I0ðknRwÞK0ðknRpÞ
; Rp < r < Rw

8><
>: (11)

satisfy the equations and all of the boundary conditions except conti-
nuity of @d/=@r at r ¼ Rp. Implementing the last boundary condition
yields the requirement

k?J1ðk?RpÞ
J0ðk?RpÞ

þ
kn I1ðknRpÞK0ðknRwÞþ I0ðknRwÞK1ðknRpÞ
� �
I0ðknRpÞK0ðknRwÞ� I0ðknRwÞK0ðknRpÞ

¼0: (12)

For a given value of k ¼ kn ¼ pn=Lp, Eq. (12) determines a sequence
of values k? ¼ k?n;m, where n andm are, respectively, the longitudinal

and radial quantum numbers for the eigenmode wn;mðrÞ. Writing the
mode equation in the form

1
r
@

@r
r
@

@r
� k2n þ

n0ðrÞ
n0
ðk2?n;m þ k2nÞ

� �
wn;mðrÞ ¼ 0; (13)

multiplying by wn;m0 ðrÞ, subtracting the resulting equation withm and
m0 interchanged, and integrating over rdr shows that the radial
eigenmodes wn;mðrÞ andwn;m0 ðrÞ satisfy the orthogonality property
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ðk2?n;m � k2?n;m0Þ
ðRw

0
dr r

n0ðrÞ
n0

wn;mðrÞwn;m0 ðrÞ ¼ 0: (14)

Thus, we may write the relationðRw

0
dr r

n0ðrÞ
n0

wn;mðrÞwn;m0 ðrÞ ¼ dm;m0
ðRw

0
dr r

n0ðrÞ
n0

wn;mðrÞwn;m0 ðrÞ;

(15)

where dm;m0 is a Kronecker delta. Finally, we note that the full spatial
eigenmodes

Wn;mðr; zÞ ¼ cos ðknzÞwn;mðrÞ (16)

satisfy the orthogonality conditionð2Lp
0

dz
ðRw

0
dr r

n0ðrÞ
n0

Wn;mðr; zÞWn0;m0 ðr; zÞ

¼ dn;n0dm;m0Lp

ðRw

0
dr r

n0ðrÞ
n0

wn;mðrÞwn;m0 ðrÞ: (17)

The eigenfunctions cos ðknzÞ are complete on the interval ð0; 2LpÞ for
the set of functions with zero derivative at z ¼ 0; Lp and z ¼ 2Lp, and
the set of functions wn;mðrÞ are completed on the radial domain of the
plasma, r¼ 0 to r ¼ Rp, since the set is eigenfunction of a
Sturm–Liouville equation.38,43 The frequency corresponding to the (n,
m) eigenmode is determined by the dispersion relation

0 ¼ k2?n;m þ k2n � K2ðkn; pÞ ¼ k2nDn;mðkn; pÞ; (18)

where

Dn;mðkn; pÞ ¼ 1þ
k2?n;m
k2n
�

x2
p

k2n

ð
L
dv

@f0ðvÞ
@v

v þ p=ikn
(19)

is the effective plasma dielectric for the eigenmode. The dispersion
relation in Eq. (19) can be rewritten as

1�
x2

pðn;mÞ
k2n

ð
L
dv

@f0ðvÞ
@v

v þ p=ikn
¼ 0; (20)

where x2
pðn;mÞ ¼ ðk2nx2

pÞ=ðk2n þ k2?n;mÞ can be thought of as the
effective plasma frequency for the mode (n, m). This form of the dis-
persion relation is just the same as that for a Langmuir wave in an infi-
nite homogeneous plasma, except that x2

pðn;mÞ has replaced x2
p. For

example, for the case of a cold plasma (i.e., v2th � kBT=m ¼ 0) where
the velocity integral reduces to the ratio ð�k2n=p2Þ and the plasma
dielectric to ½1þ x2

pðn;mÞ=p2�, the dielectric vanishes for pn;m
¼ ixpðn;mÞ, that corresponds to the mode frequency xn;m

� xpðn;mÞ and damping rate cn;m ¼ 0.
For a warm plasma with a Maxwellian equilibrium distribution

function, the thermal velocity vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
enters the velocity inte-

gral, but is often replaced in formulas by the Debye length
kD ¼ vth=xp. Since the translation pursued here requires all plasma
frequencies to be replaced by the effective plasma frequency xpðn;mÞ,
the Debye length must be replaced by the effective Debye length
kDðn;mÞ � vth=xpðn;mÞ ¼ kDxp=xpðn;mÞ for the mode (n,m).

For the case where the wave phase speed is large compared to the
thermal velocity and the Landau damping is weak, the translated
Landau results31 are the following:

xn;m ’ xpðn;mÞ 1þ 3
2
k2nk

2
Dðn;mÞ

� �
; (21)

cn;m ’
p
2

x3
n;m

knjknj
@f0
@v

				xn;m
kn

’ �
ffiffiffi
p
8

r
xpðn;mÞ
jk3nk3Dðn;mÞj

exp
�1

2k2nk
2
Dðn;mÞ

� 3
2

� �
: (22)

We remark that, although this last form for the damping rate in Eq.
(22) is often quoted, it is less accurate for moderate damping than the
previous form,44 since it uses the Bohm–Gross approximation to eval-
uate the wave phase velocity in the exponential, and this approxima-
tion is not accurate enough when the phase velocity is large enough to
handle moderate damping. For more accurate results, the plasma dis-
persion relation

1þ 1

k2nk
2
Dðn;mÞ

þ f

k2nk
2
Dðn;mÞ

ZðfÞ ¼ 0 (23)

should be solved numerically. Here, f � ip=ð
ffiffiffi
2
p

xpðn;mÞknkDðn;mÞÞ
is the scaled complex frequency, and ZðfÞ ¼

Ð
Ldxe

�x2=ðx � fÞ is the
plasma dispersion function.45

The ratio xpðn;mÞ=xp determines the transformation between
the solutions for an infinite homogeneous plasma and the (n, m)
mode in the bounded plasma, and the allowed values for this ratio
depend only on the dimensions Lp, Rp and Rw, and not on the equilib-
rium velocity distribution. The frequency xn;m is an increasing func-
tion of n and a decreasing function ofm. For a warm plasma, the ratio
of the phase velocity to the thermal velocity decreases as m increases,
so the Landau damping increases.

In Sec. I, we described a caveat to our simple model concerning
the reflection mixing of nearly degenerate modes in a real plasma. In
determining the importance of this effect, one must first remember
that the real plasma is invariant under axial reflection about the
plasma mid-plane z ¼ Lp=2, so axially the real modes have either odd
parity or even parity. Therefore, mixing can occur only between modes
of even n, or separately between modes of odd n. As shown in the
Appendix, an estimate of reflection mixing based on Anderson et al.39

indicates that the (n, m) has a small admixture of a nearly degenerate
mode ðn0;m0Þ given approximately by the amplitude ratio

An0;m0

An;m
� RwRp

L2p n
0pð1þ 3m0Þ

xp

jxn;m � xn0 ;m0 j
: (24)

This general expression provides the admixture of the ðn0;m0Þ mode
with the main (n,m) mode. For a sufficiently cold plasma, there always
are higher order m0 modes with close enough degeneracy to a low-
order mode that there is substantial mixing. However, for a warm
plasma, Landau damping of the higher m0 modes spoils the degener-
acy. Note also that, for a warm plasma, the frequency difference in the
denominator of Eq. (24) includes both real and imaginary parts.

III. INITIAL VALUE PROBLEM FOR TRIVELPIECE–GOULD
WAVES

In most simulations, waves evolve from an initial perturbation,
and the particular wave or waves excited are specified by the spatial
structure of the initial perturbation. We here consider a simple density
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perturbation dnðr; zÞ, such that df ðr; z; v; t ¼ 0Þ ¼ dnðr; zÞf0ðvÞ, and
write dnðr; zÞ as a superposition of eigenmodes

dnðr; zÞ ¼
X
n;m

dnn;m
n0

Wn;mðr; zÞ; (25)

where

dnn;m ¼

ð2Lp
0

dz
ðRw

0
dr r n0ðrÞWn;mðr; zÞdnðr; zÞ

Lp

ðRw

0
dr r

n0ðrÞ
n0

w2
n;mðrÞ

: (26)

Note that the n0ðrÞ dependence on df is not needed, since it is properly
taken into account by writing Fðr; z; v; tÞ ¼ n0ðrÞf ðr; v; z; tÞ as intro-
duced in Sec. II.

This initial perturbation gives rise to a potential of the form

d/ðr; z; tÞ ¼
X
n;m

An;mðtÞWn;mðr; zÞ: (27)

A simple relation between dnn;m and An;mðt ¼ 0Þ can be determined
simply by substituting Eqs. (25) and (27) into Poisson’s equation eval-
uated at time t¼ 0. After some algebra, it can be easily shown that

dnn;m
n0
¼ k2nk

2
Dðn;mÞ

e
kBT

An;mð0Þ: (28)

By Laplace-transforming the linearized Vlasov equation in Eq.
(3) and by using the definition of df, Eqs. (25) and (27), we obtain the
coefficient

df̂ n;mðv; pÞ ¼
e
m
iknÂn;mðpÞ

@f0ðvÞ
@v

2ðiknv þ pÞ þ
�e
m

iknÂn;mðpÞ
@f0ðvÞ
@v

2ð�iknv þ pÞ

þ f0ðvÞ
2

dnn;m
n0
	 1

pþ iknv
þ 1
p� iknv

� �
; (29)

which is defined through the relation

df̂ ðr; z; v; pÞ ¼
X
n;m

df̂ n;mðv; pÞWn;mðr; zÞ: (30)

The last two terms in Eq. (29) arise from the Laplace transform
of the time derivative @df =@t. Substituting into the Laplace-
transformed Eq. (4), using the relations f0ð�vÞ ¼ f0ðvÞ and using the
orthogonality of the eigenmodes yield the solution

k2nDn;mðkn; pÞÂn;mðpÞ ¼ 4pednn;m

ð
L
dv

f0ðvÞ
pþ iknv

; (31)

where again the L on the velocity integral indicates that the velocity
integral is to be taken along the Landau contour. The velocity integral
on the right hand of this equation is related to plasma dielectric
function

k2nDn;mðkn; pÞ � k2n � k2?n;m �
1

k2D
¼ �p

k2D

ð
L
dv

f0ðvÞ
pþ iknv

: (32)

Thus, the inverse transform for the mode amplitude is given by
the expression

An;mðtÞ¼
ðeþi1

e�i1

dp
2pi

ept
4pednn;m

ð
L
dv

f0ðvÞ
pþ iknv

k2nDn;mðkn;pÞ

¼�4pednn;m
ðeþi1

e�i1

dp
2pi

ept 1�
k2nþk2?n;mþ

1

k2D
k2nDn;mðkn;pÞ

0
B@

1
CAk2D

p
: (33)

There is a pole at p¼ 0, but Eq. (32) implies that the coefficient of that
pole vanishes at p¼ 0.

For each (n, m), we retain the two Landau poles, which are the
least damped of the remaining poles yielding the time-asymptotic
result

An;mðtÞ ’ 4pednn;m 1þ
k2?n;m
k2n
þ 1

k2Dk
2
n

 !

k2nk
2
D

2ðk2n þ k2?n;mÞ
cos ðxn;mtÞecn;mt ;

(34)

where pn;m ¼ 6ixn;m þ cn;m are the Landau poles, we have assumed
that jcn;mj � xn;m, and we have noted that ð@Dn;m=@pn;mÞpn;m
’ 2x2

p=x
2
n;m ’ 2½ðk2n þ k2?n;mÞ=k2n� for xn;m � xp.

Result (34) is exact for the case of a cold plasma, where

k2nDn;mðk; 0Þ ¼ ðk2n þ k2?n;mÞ 1þ x2
pðn;mÞ=p2


 �
: (35)

For a warm plasma, Eq. (34) is only time asymptotically valid, but a
more exact solution, also valid for early time, can be obtained by
numerically integrating the contour integral in Eq. (32) along the verti-
cal line where <ðpÞ ¼ e > 0. The dielectric must be evaluated using
the plasma dispersion function in Eq. (20), but for the Landau contour
in the velocity integral is just an integral along the real v-axis. Of
course, all of the parameters that enter the integral must have specific
numerical values.

The most important thing about Eq. (34) is that An;mðtÞ is pro-
portional to dnn;m; namely, a single mode can be launched simply by
choosing the spatial dependence of the initial density perturbation to
match that of the mode to be launched.

IV. LINEAR THEORY OF WAVE LAUNCHING WITH
WALL ELECTRODES

In this section, we develop a linear theory of wave launching for
TGWs. In wave launching experiments, an oscillating potential V(t) is
applied to an electrically isolated section of the conducting wall.
Suppose that in the real plasma the launching electrode extends from
z ¼ Lp � Dz=2 to z ¼ Lp; then, in the mirror plasma we must impose
a mirror electrode that extends also from z ¼ Lp to z ¼ Lp þ Dz=2.
Therefore, in the extended domain of the model, z¼ 0 to z ¼ 2Lp, a
single continuous electrode extends from z ¼ Lp � Dz=2 to
z ¼ Lp þ Dz=2, as shown in Fig. 2. The potential applied to the wall
changes the boundary condition on the wall to the requirement
that d/ðRw; z; tÞ ¼ VðtÞ for Lp � Dz=2 < z < Lp þ Dz=2 and
/ðRw; z; tÞ ¼ 0 elsewhere.

Let d/ðvÞðr; z; tÞ be the vacuum potential response to the applied
voltage in the absence of a plasma. This potential satisfies Laplace’s
equation
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1
r
@

@r
r
@

@r
þ @2

@z2

� �
d/ðvÞðr; z; tÞ ¼ 0; (36)

which subject to the above boundary condition on the wall together
with the conditions that @d/ðvÞ=@r vanish at r¼ 0 and d/ðvÞðr; z; tÞ is
periodic of period 2Lp. The general solution can be written in the form

d/ðvÞðr; z; tÞ ¼
X
n

VnðtÞ cos ðknzÞ
I0ðknrÞ
I0ðknRwÞ

þ
X
n

UnðtÞ sin ðknzÞ
I0ðknrÞ
I0ðknRwÞ

; (37)

where

VnðtÞ¼
VðtÞ

ðLpþDz=2

Lp�Dz=2
dz cosðknzÞ

Lp
¼VðtÞð�1Þn2 sinðknDz=2Þ

np
; (38)

UnðtÞ ¼
VðtÞ

ðLpþDz=2

Lp�Dz=2
dz sin ðknzÞ

Lp
¼ 0: (39)

Note that the boundary condition @/vðr; z; tÞ=@z ¼ 0 at z¼ 0 and
z ¼ Lp is satisfied automatically because the electrode is symmetric
about z ¼ Lp.

When the plasma is present, the potential can be decomposed as
d/ðr; z; tÞ ¼ d/ðvÞðr; z; tÞ þ d/ðpÞðr; z; tÞ, where the plasma poten-
tial d/ðpÞðr; z; tÞ satisfies Poisson’s equation and vanishes on the con-
ducting wall. The combination of d/ðpÞðr; z; tÞ þ d/ðvÞðr; z; tÞ then
satisfies Poisson’s equation and the nonzero boundary condition on
the wall. Because d/ðpÞðr; z; tÞ satisfies the same boundary conditions
as in Secs. I–III, we continue to expand in the superposition of the
same eigenmodes

d/ðpÞðr; z; tÞ ¼
X
n;m

AðpÞn;mðtÞWn;mðr; zÞ: (40)

Substituting the expansions

d/ðr; z; tÞ ¼
X
n;m

AðpÞn;mðtÞWn;mðr; zÞ þ
X
n

VnðtÞ cos ðknzÞ
I0ðknrÞ
I0ðknRwÞ

(41)

into Eq. (3) and Laplace transforming in time yield the following
expression for the coefficient df̂ n;mðv; pÞ:

df̂ n;mðv; pÞ ¼
e
m
iknÂ

ðpÞ
n;mðpÞ

@f0ðvÞ
@v

2ðiknv þ pÞ þ
�e
m

iknÂ
ðpÞ
n;mðpÞ

@f0ðvÞ
@v

2ð�iknv þ pÞ

þ
e
m
iknV̂ nðpÞ

@f0ðvÞ
@v

2ðiknv þ pÞ

ðRw

0
dr r

n0ðrÞ
n0

I0ðknrÞ
I0ðknRwÞ

wn;mðrÞðRw

0
dr r

n0ðrÞ
n0

w2
n;mðrÞ

þ
�e
m

iknV̂ nðpÞ
@f0ðvÞ
@v

2ð�iknv þ pÞ

ðRw

0
dr r

n0ðrÞ
n0

I0ðknrÞ
I0ðknRwÞ

wn;mðrÞðRw

0
dr r

n0ðrÞ
n0

w2
n;mðrÞ

:

(42)

Here, there is no term such as the last bracket in Eq. (29), because
the initial perturbations are all zero. Taking the Laplace transform of
Eq. (4), substituting Eq. (42), using the relation f0ð�vÞ ¼ f0ðvÞ, the
form for V̂ nðpÞ derived from Eq. (38), and using the orthogonality of
the eigenfunctions yields the expression

k2nDn;mðkn; pÞÂ
ðpÞ
n;m ¼ Cn;mV̂ ðpÞK2ðkn; pÞ; (43)

being

Cn;m ¼
ð�1Þn2 sin ðknDz=2Þ

np

ðRw

0
dr r

n0ðrÞ
n0

wn;mðrÞ
I0ðknrÞ
I0ðknRwÞðRw

0
dr r

n0ðrÞ
n0

w2
n;mðrÞ

; (44)

whose solution is

Â
ðpÞ
n;mðpÞ ¼ Cn;mV̂ ðpÞ

K2ðkn; pÞ
k2nDn;mðkn; pÞ

: (45)

Note that the quantity VðtÞCn;m is simply the projection of
d/ðvÞðr; z; tÞ onto the plasma eigenmodeWn;mðr; zÞ, sinceð2Lp

0
dz
ðRw

0
dr r

n0ðrÞ
n0

Wn;mðr; zÞd/ðvÞðr; z; tÞð2Lp
0

dz
ðRw

0
dr r

n0ðrÞ
n0

Wn;mðr; zÞWn;mðr; zÞ
¼ VðtÞCn;m: (46)

We are interested in the projection of the full potential,
d/ðr; z; tÞ ¼ d/ðvÞðr; z; tÞ þ d/ðpÞðr; z; tÞ, onto the (n, m) mode, the
Laplace transform of which is given by the expression

Ân;mðpÞ ¼ V̂ ðpÞCn;m þ Â
ðpÞ
n;mðpÞ

¼ Cn;mV̂ ðpÞ
k2n þ k2?n;m

k2n

1
Dn;mðkn; pÞ

 !
; (47)

where use has been made of Eq. (18) to write K2ðkn; pÞ in terms of
k2nDm;m. Since the p dependence of Ân;mðpÞ is given by the product of
two factors that depend on p, namely, V̂ ðpÞ and 1=Dn;mðkn; pÞ, the
inverse transform can be evaluated by using the Faltung theorem46

An;mðtÞ ¼ Cn;m

ðt
0
dsVðsÞgn;mðt � sÞ; (48)

where

gn;m ¼
k2n þ k2?n;m

k2n

ðeþi1

e�i1

dp
2pi

ept
1

Dn;mðkn; pÞ
’ �xn;m sin ðxn;mtÞecn;mt : (49)

Here, pn;m ¼ 6ixn;m þ cn;m are the Landau poles, it has been
assumed that jcn;mj � xn;m and we have noted that @Dn;m=@pn;m
’ �2x2

p=x
3
n;m ’ �2=xn;mðk2n þ k2?n;mÞ=k2n for xn;m � xp. Again,

the last term is exact for a cold plasma, but only time asymptotic for a
warm plasma. More accurate results for the last term can be obtained
by numerically integrating the contour integral in Eq. (49).
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The launching potential V(t) is typically of the form

VðtÞ ¼ VDhðtÞ sin ðxDtÞ; (50)

where xD is the driver frequency, VD is the driver amplitude, and h(t)
is a function that turns on and off the driver adiabatically, thus avoid-
ing an abrupt turn on and off of the driver field.47,48 An example that
is analytically tractable is the function

hðtÞ ¼ 1
2

tanh
t � t1
Dt

� �
� tanh

t � t2
Dt

� �� �
; (51)

which is plotted in Fig. 3 for the values t1 ¼ 10 000x�1p ; t2
¼ 30 000x�1p ; Dt ¼ 1300x�1p . Let us evaluate the integral in Eq. (48)
for the case of a cold plasma, where solution (49) is exact and
cn;m ¼ 0. We say that a wave is launched if it rings well after the drive
voltage is turned off, and we will see that this is the case only when
ðjxD � xn;mjDtÞ� 1. Substituting Eqs. (49)–(51) into Eq. (48) yields
the integral

An;mðtÞ ¼ �xn;mCn;mVD

ðt
0
ds hðsÞ sin ðxDsÞ sin xn;mðt � sÞ

� �
¼ �xn;mCn;mVD

ðt
0
ds hðsÞ 1

2
cos ðxD þ xn;mÞs� xn;mt
� ��

� cos ðxD � xn;mÞsþ xn;mt
� �

g: (52)

For a time well after the voltage drive has become exponentially
small, the upper limit of the integral can be extended to plus infinity.
Likewise, when t1 is large enough that the drive is exponentially small
at t¼ 0, the lower limit on the integral can be extended to minus infin-
ity. When jxD þ xn;mjDt > 1, the first cosine function in the last
bracket can be neglected compared to the second, and the integral
reduces to the form

An;mðtÞ ’ < xn;mCn;mVD

ðþ1
�1

ds hðsÞ 1
2
e iðxD�xn;mÞsþixn;mt½ �

( )

¼ < Aafter
n;m eðixn;mtÞ

h i
; (53)

where

Aafter
n;m ¼ xn;mCn;mVD

pDt

sinh
pDtðxD � xn;mÞ

2

i
2

1� e iðxD�xn;mÞðt2�t1Þ½ �
� �

(54)

is the complex mode amplitude long after the drive voltage has
become exponentially small.

When the quantity ðpDtjxD � xn;mjÞ=2 is substantially larger
than unity, the complex amplitude is exponentially small; that is, the
mode does not ring after the drive voltage has become exponentially
small. We will see below that the mode grows adiabatically as h(t) rises
but then falls adiabatically when h(t) decreases. Only modes for which
ðpDtjxD � xn;mjÞ=2 is order unity or smaller can be successfully
launched. This is what we mean by adiabatic frequency selection.
Another way to understand this result is to recall from Eq. (47) that
the Laplace transformed mode amplitude is given by the expression

Ân;mðpÞ ¼ Cn;mV̂ ðpÞ
k2n þ k2?n;m

k2n

1
Dn;mðkn; pÞ

 !
; (55)

so the residue at the Landau pole is proportional to V̂ ðp ¼ ixn;mÞ. For
the launching potential discussed here, V̂ ðixn;mÞ is proportional to
1=sinhðpDtðxD � xn;mÞ=2Þ, so the residue at the Landau pole is
exponentially small if ðpDtðxD � xn;mÞ=2Þ is substantially larger
than unity. Qualitatively, for adiabatic launching the frequency spec-
trum of V̂ n;m is so narrowly peaked that the Landau pole is outside the
frequency width of the driver.

Finally, we note that in the case where ðpDtðxD � xn;mÞ=2Þ and
jxD � xn;mjðt2 � t1Þ are both small compared to unity, Eq. (54)
reduces to Aafter

n;m ¼ xn;mðt2 � t1ÞCn;mVD. This is the case of resonant
drive, so the amplitude grows secularly for the time t2 � t1. When the
quantity ðpDtðxD � xn;mÞ=2Þ is small compared to unity but the
quantity jxD � xn;mjðt2 � t1Þ is not, the factor 1� e½iðxD�xn;mÞðt2�t1Þ�

in the expression for Aafter
n;m accounts for the fact that the drive increases

the amplitude of the mode for a while and then gets out of phase with
the mode and begins to decrease the amplitude.

To benchmark simulations, the theoretical prediction for An;mðtÞ
in Eq. (52) can be used to derive an expression for d/ to be compared
to the numerical signals from simulations. Of course, in real experi-
ments, we do not have the luxury of measuring the projection of the
potential onto a particular mode, that is, measuring An;mðtÞ. Rather,
electrically isolated wall sections are used to detect the presence of a
mode, and the particular mode is inferred by comparing theoretical
and measured frequency. On the other hand, with the simulations we
can make a much more detailed comparison. Hence, we prefer to not
emulate the experimental detection system.

V. NUMERICAL MODEL

For the simulations, we scale time with x�1p , length with kD and
potential with kBT=e defining the scaled variables

t0 ¼ txp; z0 ¼ z
kD
; r0 ¼ r

kD
; /0 ¼ e/

kBT
: (56)

On can think of this scaling as choosing the unit of time as x�1p , the
unit of length as kD and the unit of potential as kBT=e, and these three
choices determine all of the other units. Therefore, the unit of velocity
is kDxp ¼ vth, and the scaled thermal velocity is v0th ¼ 1.

FIG. 3. Time dependence of h(t), for the parameters t1 ¼ 10 000; t2 ¼ 30 000;
Dt ¼ 1300.
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In order to make close contact to the laboratory experiments
described by Anderegg et al.,16,17 we consider a non-neutral plasma
column of single-ionized magnesium of density of about
2
 107cm�3, charge e, and mass m ¼ Amp, with A¼ 24 the magne-
sium mass number. The physical dimensions of the trap are
Lp ¼ 9 cm;Rp ¼ 0:45 cm, and Rw ¼ 2:86 cm, and the scaled ones
vary with kD that is determined by the plasma temperature and den-
sity. In this paper, we choose kBT ¼ 0:01 eV (kBT ¼ 0:5 eV) when
simulating a cold (warm) plasma. A schematic representation of the
experimental setup is shown in Fig. 4. In these experiments, an exter-
nal driving fluctuating potential /exc is usually applied to one elec-
trode, whose length is d1 ¼ 5:84 cm, to launch waves in the plasma
column. The electrode is located at one longitudinal end of the exter-
nal conducting cylinder at a radial distance Rw from the main axis of
the plasma column. Then, the plasma response Eout is collected at the
opposite longitudinal end. In between two electrodes, other two cylin-
drical sectors of length d2 ¼ 2:92 cm are located, as shown in Fig. 4.

In terms of scaled variables, the drift kinetic and Poisson’s equa-
tions take the form

@f 0

@t0
þ v0

@f 0

@z0
� @/

0

@z0
@f 0

@v0
¼ 0; (57)

1
r0
@

@r0
r0
@

@r0
þ @2

@z02

� �
/0 ¼ �n0ðrÞ

n0

ð
dv0 f 0; (58)

where f 0 ¼ vthf .
The spatial domain for the simulations is Ds ¼ ½0; 2L0p� 
 ½0;R0w�

and the velocity domain is ½�6; 6�, where we recall that v0th ¼ 1.
Outside the velocity domain, the distribution function is set equal to
zero, while periodic boundary conditions are implemented in physical
space. We remark that doubling the plasma column and implementing
periodic boundary conditions allow for mimicking particle and wave
reflections at the physical ends of the columns, that is, at z¼ 0 and z
¼ Lp, as well as imposing that the wave electric field is zero there, thus
being appropriate for matching on to the vacuum field beyond the end
of the column.38 Hereafter, we assume that all variables are normal-
ized. For the sake of simplicity, we avoid to report the prime 0 on the
variables.

The algorithm employed for the numerical solution of the kinetic
equation, Eq. (57), is based on the well-known time splitting method
first proposed in 1976 by Cheng and Knorr.49 Time splitting consists
in separating the evolution of the particle distribution function in
phase space into subsequent translations, first in physical space and

then in velocity space. This allows to reduce the phase-space integra-
tion of the kinetic equation to the integration of two equivalent hyper-
bolic advection equations in physical space and velocity space,
respectively. A finite-difference fourth-order upwind scheme, correct
up to third order in the mesh size in both physical and velocity space,
is employed to evaluate spatial and velocity derivatives of the distribu-
tion function (see Refs. 2–4, 50, and 51 for more details on the numeri-
cal algorithm).

For the numerical integration of the Poisson equation, Eq. (58),
we employ a standard spectral method based on the fast Fourier trans-
form routine in the z direction, where periodic boundary conditions
are implemented. Then, we use fourth-order (correct up to third
order) finite-difference schemes for both first and second derivatives
of the electrostatic potential in the r direction. Boundary conditions in
r, as specified in Sec. II, are the following:

@/
@r

				
r¼0
¼ 0; /ðRw; z; tÞ ¼ /excðz; tÞ: (59)

In this situation, integrating Eq. (58) requires the solution of a linear,
pentadiagonal system of equations, whose solution can be easily
obtained by means of a standard linear algebra routine. The external
driving potential /exc is modeled as

/excðz; tÞ ¼
VðtÞ; Lp � Dz=2 < z < Lp þ Dz=2;

0 elsewhere;

(
(60)

where Dz ¼ 2Lp=2� 2d2, as shown in Fig. 4, while V(t) is determined
by Eq. (50) with h(t) given by Eq. (51). The values of the parameters
t1, t2, and s will be specified in the following.

Typical number of gridpoints employed to discretize the numeri-
cal domain are Nz ¼ 128 gridpoints in the periodic z direction, Nr

¼ 256 gridpoints in the radial direction, and Nv ¼ 1201 in the velocity
direction. The time step is always set in such a way that the
Courant–Friedrichs–Lewy (CFL) condition for the numerical stability
of the algorithm is satisfied.52

Since the total length of the numerical box along the z direction
is twice the length of the plasma column, our analysis will be restricted
to the left half of the total numerical box. Then, we solved numerically
Eqs. (57) and (58) with the correct radial boundary conditions and
periodic boundary condition in z, to reproduce the excitation of
TGWs and EAWs, as in a real experiment with non-neutral plasmas.

VI. NUMERICAL SIMULATIONS

In this section, we first discuss accurate tests of the numerical
code performed by simulating (i) the excitation of linear TG modes as
an initial value problem and (ii) the process of launching TG waves in
the trap through an external driver; in both cases, we compare the
results obtained through the simulations to the theoretical predictions
discussed in Secs. I–IV. Then, we present and discuss the numerical
results of the excitation of TGWs and EAWs through an external driv-
ing potential in conditions of the experiments by Anderegg et al.16,17

To make contact with the theory, numerical simulations in Secs. VIA
and VIB have been run in the case of a cold plasma, whose equilib-
rium temperature is kBT ¼ 0:01 eV, while equilibrium temperature
has been increased to kBT ¼ 0:5 eV in the simulations discussed in
Sec. VIC, where a plasma in conditions close to real experiments has
been modeled.FIG. 4. A sketch of the experimental setup of Anderegg et al.16,17
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A. Excitation of TG waves from an initial perturbation

In these simulations, the initial equilibrium is perturbed at t¼ 0
through the disturbance in Eq. (25), in which we restrict the sum to a
single eigenmode with specific values of n,m, and the amplitude of the
mode is dnn;m ¼ 10�6. The numerical results for the z-component of
the electric field Ez are compared with theoretical predictions: in par-
ticular, from the theory in Sec. III, we derive the theoretical prediction
for the electric field perturbations as Ez ¼ �@d/=@z, where d/ is
given by Eq. (27). Specifically, we evaluate the Fourier transform along
the periodic direction z of Ezðr ¼ 0; z; tÞ (taken at the radial position
r¼ 0 and scaled bymvthxp=e), obtaining the amplitude Ez;kðr ¼ 0; tÞ,
and the Fourier transform both in z and t of the same signal obtaining
the amplitude Ez;kðr ¼ 0;xÞ.

In Fig. 5, we show jEz;kðr ¼ 0;xÞj from the simulation as a func-
tion of x (top row) and the time evolution of the logarithm of
jEz;kðr ¼ 0; tÞj (bottom row); left column in the figure refers to a sim-
ulation in which the mode (1, 2) has been excited at t¼ 0, while the
right column to a simulation in which the mode (1, 3) has been
launched as initial perturbation. The red vertical lines in the plots in
the top row represent the theoretical predictions for wave frequency in
Eq. (21) for mode (1, 2) and (1, 3), respectively, while the red-dashed
lines in the plots in the bottom row represent the theoretical predic-
tions for the time evolution of the logarithm of jEzðr ¼ 0; z; tÞj,
obtained from the theory as explained above, for modes (1, 2) and (1,
3), respectively. We notice in the top plots in this figure that only the
expected frequency is excited. As it is clear from the plots in Fig. 5, an
excellent agreement between numerical results and theoretical predic-
tions is found.

In Fig. 6, we show xn;m as a function of kn for twelve different
initial value problem simulations, in which we considered as initial
perturbations single eigenmodes with n¼ 1, 2, 3 and m ¼ 0; 1; 2; 3:
the dots here represent the values of the real part of the mode

frequency from the simulations, evaluated by Fourier analyzing
Ezðr ¼ 0; z; tÞ, while the dashed lines represent the theoretical curves
in Eq. (21). Results for modes with m¼ 0 are indicated in blue, for
modes with m¼ 1 in red, for modes with m¼ 2 in orange and with
m¼ 3 in green. Also here, a good agreement between numerical and
theoretical results can be appreciated.

As an additional check on the numerical simulations, we con-
trolled the value of the electric field at each end of the plasma column
in time: this value remains always smaller than the maximum value of

FIG. 5. Dependence of jEz;kðr ¼ 0;xÞj on x (top row) and time evolution of log jEz;kðr ¼ 0; tÞj (bottom row) for initial value problem simulations in which mode (1, 2) (left)
and mode (1,3) (right) are excited at t¼ 0. The red-dashed lines in the top and in the bottom plots represent the theoretical predictions derived in Sec. III.

FIG. 6. xn;m as a function of kn for initial value problem simulations, in which
eigenmodes with n¼ 1, 2, 3 and m ¼ 0; 1; 2; 3 have been launched at t¼ 0; the
dots represent the values of the real part of the mode frequency from the simula-
tions, while the dashed lines represent the theoretical prediction in Eq. (21), for
modes with m¼ 0 (blue), m¼ 1 (red), m¼ 2 (orange) and with m¼ 3 (green).
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the electric field by a factor of 10�9. Moreover, we also monitored the
conservation of mass, total energy, and entropy, getting percentage rel-
ative variations of 2
 10�3; 5
 10�3, and 3
 10�2, respectively.

B. Launching TG waves through an external driver

In this case, TG waves are launched in a cold plasma at equilib-
rium through the external driver in Eq. (60); the dependence of the
function h(t) is shown in Fig. 3 and we used the driver parameters
t1 ¼ 10 000; t2 ¼ 30 000; Dt ¼ 1300, and VD ¼ 0:005. The maxi-
mum time of these simulations is tmax ’ 50 000. Two different simula-
tions with a different driver frequency xD were performed: one close
to the theoretical frequency of the mode (1,1) (on resonance simula-
tion with xD ¼ 1:01x1;1) and the other significantly larger than x1;1

(off resonance simulation with xD ¼ 1:1x1;1). Also, for these simula-
tions, we compared numerical results and theoretical predictions by
focusing on the z-component of the electric field taken at the radial
position r¼ 0, Ezðr ¼ 0; z; tÞ; the theoretical prediction is obtained by
evaluating An;m from Eq. (52) and using it to calculate d/ and, conse-
quently, Ez ¼ �@d/=@z.

The comparison of theoretical prediction and numerical results
for the amplitude Ez;kðr ¼ 0; tÞ is shown in Fig. 7, where the left
(right) column refers to the on (off) resonance simulation; in the top
row, we plot the theoretical prediction, while the numerical signals are
shown in the bottom row. It is worth noting that, in the on resonance
simulation, the electric signal survives long after the driver is turned
off (at t ’ 35 000, as shown in Fig. 3) ringing at a nearly constant
amplitude, while no plasma response is recovered after the driver is
turned off in the case of the off resonance simulation. Again, Fig. 7
shows a very nice agreement between numerical results and analytical
predictions.

C. Simulating real laboratory experiments

In order to excite TG and EA fluctuations in physical conditions
close to the ones discussed by Anderegg et al.,16,17 we consider a
plasma of single-ionized magnesium with density n ’ 1:5
 107

cm�3 and temperature kBT ’ 0:5 eV. In these conditions, we have
plasma frequency fp ¼ xp=2p ¼ 165 kHz, Debye length kD ’ 0:136
cm, thermal speed vth ¼ kDxp ¼ 140 cm/ms, and plasma parameter
g ¼ 1=nk3D ¼ 2:7
 10�5. The wall radius and the plasma length and
radius are set as Rw ¼ 2:86 cm, Lp ¼ 9 cm, and Rp ¼ 0:45 cm. We
remind the reader that a sketch of the experimental ion trap is shown
in Fig. 4 and the numerical box in physical space for these simulations
is depicted in Fig. 2.

The relevant driver parameters for the TGWs and EAWs simula-
tions are listed in Table I and have been set to get successful excitation
of TGWs (EAWs) by driving the plasma for 15 (100) wave cycles, with
frequency fD ¼ 29:1 kHz (fD ¼ 11:3 kHz) and amplitude 8.5
(25mV).

In Fig. 8, we show how the fluctuating driving potential /exc
applied to an electrode of length Dz=2 located at r ¼ Rw (see Fig. 2)
can trigger the fluctuations in the plasma column. Each panel in this
figure reports the contour plot of /ðr; z; tÞ in the plane (r, z) at differ-
ent instants of time during the simulation, for the case of EAWs exci-
tation. The top-row panels report four instants of time corresponding

FIG. 7. Time evolution of log jEz;kðr ¼ 0; tÞj for simulations in which the plasma is driven through an external fluctuating potential with frequency xD ¼ 1:01x1;1 (left column,
on resonance simulation) and xD ¼ 1:1x1;1 (right column, off resonance simulation); top row in the figure shows the theoretical prediction derived in Sec. IV, while in the bot-
tom row the numerical results are reported.

TABLE I. Parameters of the numerical simulations of Sec. VI C.

RUN tmax t1 t2 Dt VD xD

TGW 27 000 3720 4680 57 0.017 0.177
EAW 84 100 16 000 24 000 1000 0.05 0.0687
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to the ramping-up phase of the driver amplitude: t ¼ 17 025; 17 050;
17 075; 17 100. Bottom-row panels are focused on the ramping-down
phase at times: t ¼ 22 900; 22 925; 22 950; 22 975. The vertical white-
dashed line in each plot represents the radius Rp of the plasma column.
The excitation of the EAWs by the external driver can be better appre-
ciated in the movies we uploaded as the supplementary material, con-
cerning the ramping up and down phases of the driver amplitude. As

it can be seen, the external field makes the potential in the plasma col-
umn oscillate resonantly and the oscillations survive even after the
driver has been turned off.

To make contact with experimental measurements, we focus on
the signal Eout, defined as the radial electric field Er ¼ �@/=@r calcu-
lated at the wall r ¼ Rw, and integrated over the longitudinal length
Dz=2 (see Fig. 2),

FIG. 8. Contour plots of /ðr ; z; tÞ, scaled to kBT=e, in the plane (r, z) at different instants of time during the simulation of EAWs excitation. The top row corresponds to the
ramping up phase of the driver amplitude (at the time instants t ¼ 17 025; 17 050; 17 075; 17 100, from left to right), while the bottom row is focused on the ramping down
phase (at the time instants t ¼ 22 900; 22 925; 22 950; 22 975, from left to right). The vertical white-dashed line in each plot represents the radius Rp of the plasma column.
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EoutðtÞ ¼
1

Dz=2

ðDz=2

0
dz ErðRw; z; tÞ: (61)

The signal Eout is an estimation of the signal measured in real experi-
ments. Indeed, the radial electric field induces a surface charge on the
wall electrode. This instantaneous charge on the electrode is propor-
tional to the integral of the radial electric field over the area of the elec-
trode, or—for an azimuthally symmetric mode—to the integral over
the axial length of the electrode, that is, Eq. (61). Since the mode fluc-
tuation is a temporally varying field, the surface charge on the elec-
trode varies in time; hence, the current to supply this charge runs from

ground to the electrode through, in general, a detecting and amplifying
apparatus characterized by a certain impedance that converts such a
current in the observed voltage. Such a voltage is hence the detected
wave signal, which is proportional to the wave amplitude at the loca-
tion of the electrode. Finally, note also that the diagnostic based on
Eq. (61) is not in conflict with the boundary conditions specified
by Eqs. (59) and (60) since a vanishing potential does not imply a
vanishing radial electric field.

The top row of Fig. 9 reports the time evolution of EoutðtÞ for TG
(left) and EA (right) fluctuations. In both plots, we notice that after the
driver is turned off (red dot-dashed vertical lines in the plots), nearly

FIG. 9. Top row: time evolution of the received signal Eout for TG (left) and EA (right) fluctuations; here, the vertical dot-dashed lines indicate the time at which the external
driver is turned off. Middle row: a zoom on few wave cycles of the signal Eout for TG (left) and EA (right) fluctuations, taken in a time interval where the external driver is off.
Bottom row: spectral energy of TG (left) and EA (right) fluctuations, as a function of x=xp; here, the vertical red-dashed line represents the driver frequency xD.
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stable oscillations are observed, even though the received EA signal
clearly shows a more erratic time behavior with respect to the TG sig-
nal. A very similar behavior has been reported for the excitation of TG
and EA fluctuations in laboratory experiments (see Figs. 4 and 5 of
Anderegg et al.17). The middle row of the same figure shows a zoom of
EoutðtÞ on few wave cycles for TGWs (left) and EAWs (right), in the
time interval where the driver potential has been already turned off.
Here, it can be easily appreciated that, while TG oscillations display a
sinusoidal form, the EA waveform departs from a regular sinusoid,
suggesting the external driver has triggered the excitation of several
wavenumbers. To highlight this point, in the bottom row of Fig. 9, we
report the spectral energy (i.e., the squared absolute value of the
Fourier transform of EoutðtÞ), evaluated in the time interval where the
driver is turned off, as a function of x for both TGWs (left) and
EAWs (right). In each panel, the black curve has been scaled to its
maximum and the vertical red-dashed line corresponds to the driver
frequency xD. In both plots, the black curve is peaked around the
driver frequency. For the TG fluctuations, the energy content of the
second (third) harmonics is four (six) orders of magnitude smaller
than that of the fundamental, thus implying the driving of quasi-
monochromatic fluctuations. The small-amplitude high-order har-
monics are likely due to the larger temperature and amplitude used in
these simulations at variance with the ones reported in Sec. VI B where
no high-order harmonics were recovered. For the case of EA fluctua-
tions, clearly the contribution of harmonics is non-negligible, resulting
in the waveform displayed in the middle-right panel of Fig. 9. The
erratic behavior observed for EAWs and related to their non-
monochromatic features reflects also the fact that the creation of the
velocity plateau in the case of the EAW excitation is a rather compli-
cated process, occurring in the core of the velocity distribution, where
much more particles are in resonance with the wave than in the case
of the TGW excitation, which instead occurs in the tail of the velocity
distribution. By looking at the spectral energy in different time win-
dows (not explicitly shown here), we notice that higher harmonics are
generated while the driver is still on, despite the driver frequency cor-
responds to that of the fundamental harmonic (red dot-dashed vertical
line in Fig. 9). This can be understood since the process is nonlinear
and the driver is maintained on for about 90 wave periods, computed
with the fundamental harmonic. There is hence enough time to gener-
ate secondary harmonics, while the driver is still on. These harmonics
are rather stable and persist without significant changes in the ana-
lyzed time windows. Future analysis, beyond the scope of the present
work, will focus on possible interactions between these harmonics.

As the numerical simulations allow to study both the spatial and
temporal variations of the electric potential, in Fig. 10 we report the
Fourier x� k spectrum of the numerical signal /ðr ¼ 0; z; tÞ inside
the plasma column (i.e., at r¼ 0), for the case of TG (top) and EA
(bottom) excitation, evaluated in a time interval when the external
driver has been turned off. In these two plots, for visualization pur-
poses, the spectra have been scaled in such a way the amplitude of the
more energetic peak (for both cases the one corresponding to the fun-
damental wavenumber) is equal to unity (in dimensionless units). In
both plots, the red dot-dashed lines represent kv/, where v/ ¼ xD=k1;
k1 ¼ p=Lp being the fundamental longitudinal wavenumber. As it is
clear from these spectra, for the case of TG waves the driving fluctuating
potential applied to the external confining cylinder has triggered quite
monochromatic fluctuations; on the other hand, for the case of the EA

waves, the resulting oscillations are composed of several wavenumbers,
excited along a straight line at the driver frequency (with the same phase
velocity). In both cases, however, the driver applied to the external cylin-
der (at r ¼ Rw) is able to excite fluctuations and to trigger the propaga-
tion of waves into the plasma column.

Finally, in Fig. 11, we display the z-v phase space distribution
function (evaluated at r¼ 0 and for 0 � z � Lp) of particles trapped
in the wave potential well, for the case of the EA excitation. The four
columns in this figure (from left to right) correspond to four different
time instants (t1 ¼ 84 025; t2 ¼ 84 050; t3 ¼ 84 075; t4 ¼ 84 100) in

FIG. 10. x–k Fourier spectrum of the numerical signals from TG (top) and EA (bot-
tom) simulations; in both plots the red dot-dashed lines represents the curve
x ¼ kv/ ¼ kxD=k1.
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the simulations, almost covering a wave cycle. In the top (bottom)
row, we show the trapping region at positive (negative) velocities,
around the phase speed of the driver. This feature is peculiar of these
nonlinear waves, which can exist only in the presence of trapped par-
ticles. We notice a main vortical structure and a secondary smaller
island, typical signature of particle trapping. These vortices move in
circle in phase space, this corresponding to a periodic motion along
the z direction, with specular reflection at each end of the plasma col-
umn. Indeed, at t ¼ t1, the main vortex is almost entirely in the nega-
tive velocities portion of phase space, traveling from the right to the
left. Then, at t ¼ t2, it appears in the positive part of the velocity
domain, traveling from the left to the right and, at t¼ t3 it is located in
the middle of the positive velocity domain. Once the vortex arrived at
the right end (t ¼ t4), it is reflected (changing sign of its mean speed)
and goes back to the negative velocity range.

VII. SUMMARY AND CONCLUSIONS

In this paper, a newly developed Eulerian code has been pre-
sented, which integrates the (azimuthally homogeneous) drift-kinetic
Poisson equations in 2D-1V phase space (two dimensions in physical
space and one dimension in velocity space) in cylindrical coordinates,
suited for the description of the kinetic dynamics of a non-neutral
plasma. The algorithm has been specifically designed to reproduce the
excitation of nearly acoustic plasma waves (Trivelpiece–Gould and
electron–acoustic waves) in a Penning–Malmberg apparatus, in typical
conditions of a real laboratory experiment.

Periodic boundary conditions are implemented in the longitudi-
nal direction z, and the total length of the numerical z-box is twice the
actual length of the plasma column; moreover, the wave electric field is
imposed to be null at each end of the plasma column. In these

conditions, we are able to model particle and wave reflection at each
axial end of the plasma column. The radial boundary conditions are
set in such a way we can model the wave launching process in the
fashion of a real experiment that is through an external fluctuating
potential applied to an electrode of finite axial length, located on the
external conducting cylinder, at a distance Rw from the main axis of
the confining trap. The equilibrium plasma density has a top-hat pro-
file with a sharp discontinuity at the plasma radius Rp where the den-
sity changes from n0 to 0. This approximation does not model the
plasma sheath, whose size is only a few Debye lengths, corresponding
to the exponential decrease in density. This choice is fully justified in
conditions where the Debye length is small compared to the radius of
the plasma column. Previous theoretical works on modes in a long col-
umn with a finite Debye length drop in density also indicate that
results are unchanged for modes with sufficiently low-order modes,
while some differences appear in higher-order modes for which the
radial wavelength becomes comparable to the Debye scale. Our simu-
lations of cold plasma (Secs. VIA and VIB) well satisfy the above con-
dition, since Rp � 28kD. On the other hand, simulations of warm
plasma (Sec. VIC) do not have such a large separation of scales since
Rp � 3kD. However, in both cases, we focus on low-order modes, thus
likely justifying the adoption of a sharp drop in the equilibrium plasma
density. We will extend our results to the case of a finite plasma den-
sity falloff in future work.

The code has been first tested by (i) launching linear
Trivelpiece–Gould waves in the plasma column as an initial value
problem, and (ii) exciting linear TG fluctuations through an external
driving potential applied to the radial wall of the conducting cylinder.
A detailed comparison with theoretical expectations suggests that the
algorithm is able to model correctly the excitation of both linear TG

FIG. 11. z–v phase space portrait of the trapped particle distribution function at r¼ 0 at four instants of time (after the external driver has been turned off), for the simulation of
the EAWs excitation. Vortical structures, typical signature of the presence of a trapped particle population, move in circle in phase space, being reflected (i.e., changing sign of
their mean speed) at each end of the plasma column, at z¼ 0 and z ¼ Lp.
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modes. Therefore, the excitation of TG and EA fluctuations has been
triggered through an external potential reproducing closely the phe-
nomenology of laboratory experiments performed at University of
California at San Diego.16,17 We remark that the Eulerian approach
adopted here guarantees a rather clean description of dynamics in lin-
ear and nonlinear cases. A PIC approach would have suffered from
the intrinsic thermal noise that could have caused a deprecation of the
signal unless massively increasing the number of particles per cell.6,8

Indeed, to make contact with linear TGWs predictions, the amplitude
of the fluctuations in the numerical simulations must be very low and
the noise level introduced in PIC simulations risks to completely mask
the signal. On the other hand, EAWs are associated with a peculiar
structure in velocity space that, again, requires a noiseless description
of the full phase space (see, e.g., Refs. 7 and 53–55).

Our numerical code is parallelized with the shared-memory
directives OpenMP. This parallelization is rather efficient and
allows us to perform a typical run for the excitation of TGWs (see
Table I) in about 18 h (speed-up of 15 with respect to the serial
execution) on the NEWTON HPC cluster at the University of
Calabria, equipped with 128GB of RAM memory and 20 comput-
ing cores per node, achieving a speed-up of about 15. Estimating
the efficiency of the parallelization, which we do not test against
different machines or by changing the number of cores, is beyond
the scope of this paper and will be addressed in the future. In
future work, we also plan to include in the algorithm the effect of
Coulomb collisions, by implementing the Dougherty nonlinear
collisional operator.56,57 We also intend to include the azimuthal
dependence, thus moving the numerical computation to a full 6D
phase-space geometry. Such a configuration would likely require
the adoption of a more advanced parallelization strategy based on
a hybrid MPI/OpenMP approach.

This Eulerian drift-kinetic Poisson code can be extremely useful
as a support for the interpretation of the experimental results obtained
in Penning–Malmberg machines, confining non-neutral plasmas, as it
allows for a relevant point-to-point comparison between numerical
results and laboratory measurements.

SUPPLEMENTARY MATERIAL

See the supplementary material for the detailed illustration of the
launching process due to the external forcing. “movie-up-LR.avi” and
“movie-down-LR.avi,” respectively, correspond to the ramping up and
down phases of the driver amplitude.
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APPENDIX: REFLECTION MIXING

For the geometric parameters assumed in the simulations and
the case of a cold plasma, Fig. 6 shows that the mode (3, 2) is nearly
degenerate with the mode ð1; 1). In this case, reflection mixing adds
a small component of the (3, 2) mode to the (1, 1) mode, and Eq.
(24) provides an estimate of the relative size of the admixture. The
purpose of this appendix is to explain the estimate in more detail
following the analysis of Anderson et al.39

The simple model developed in this paper starts by finding lin-
ear solutions to the coupled Vlasov–Poisson equations for an infi-
nitely long plasma column. For a generic solution characterized by
a single axial wave number k, Eq. (12) determines a series of values
k?n;mðkÞ, while the dispersion relation in Eq. (18) provides the com-
plex frequency x ¼ xðk;mÞ. For the simple model adopted here,
the eigenmodes for the finite length plasma column are then deter-
mined by implementing the periodic boundary condition kn
¼ ð2pnÞ=ð2LpÞ ¼ pn=Lp.

However, this simple boundary condition omits reflection
mixing. Because of this mixing, a true eigenmode for the finite
length column consists of a superposition of the simple model
eigenmodes with various values of k. For the true eigenmodes, k is
not a good quantum number, because the plasma equilibrium is not
invariant under translations in z. The frequency x is still a good
quantum number because the equilibrium is invariant under trans-
lations in time. Thus, for the true eigenfunctions, it is useful to turn
the dispersion relation x ¼ xðk;mÞ around and to think of
k ¼ kðx;mÞ.

Since the plasma equilibrium is invariant under reflection
about its midplane, the true eigenmodes must have either even par-
ity under such reflection or odd parity; that is, the true eigenmodes
contain either mixtures of simple model eigenmodes for even n, or
separately, for odd n. We will consider the case of odd parity, hav-
ing in mind the near degeneracy of the simple model modes (1, 1)
and (3, 2).

Assuming that only two odd modes participate significantly in the
mixing, the boundary condition at the plasma end takes the form
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AmðxÞkðx;mÞcot
kðx;mÞLp

2

� �
¼ O

Rw

L2p

 !
Am0 ðxÞ; (A1)

Am0 ðxÞkðx;m0Þcot
kðx;m0ÞLp

2

� �
¼ O

Rw

L2p

 !
AmðxÞ; (A2)

where the right-hand sides have been approximated by order of
magnitude estimates.39 The function cot½kðx;mÞLp=2� vanishes
when x is chosen so that kðx;mÞLp ¼ pn, where n is an odd inte-
ger, and the other cotangent vanishes when kðx;m0ÞLp ¼ pn0. We
have in mind here that ðn;mÞ ¼ ð1; 1Þ and ðn0;m0Þ ¼ ð3; 2Þ.

First, we consider the case where kðx;mÞLp is very nearly
equal to pn and the inequality

kðx;mÞcot kðx;mÞLp=2
� �

� OðRw=L
2
pÞ (A3)

is satisfied. Equation (A1) then implies the inequality
AmðxÞ � Am0 ðxÞ, so Amðxn;mÞ � An;m is dominant. By hypothesis
modes, (n, m) and ðn0;m0Þ are nearly degenerate, so the cotangent
function in Eq. (A2) also is approximately null; hence,

kðx;m0Þcot kðx;m0ÞLp
2

� �
� pn0

Lp

Lpdkn0

2
; (A4)

where

dkn0 ¼
ðxn;m � xn0 ;m0Þ

@xn0;m0

@kn0

’ ðxn;m � xn0;m0 Þk?n0m0
xp

: (A5)

By combining Eqs. (A2)–(A5), we finally get

An0;m0

An;m
¼ Rw

L2pn
0pk?n0 ;m0

xp

jxn;m � xn0 ;m0 j

� RwRp

L2pn
0pð1þ 3m0Þ

xp

jxn;m � xn0;m0 j
; (A6)

where in the last step we used the approximation k?n0 ;m0
� ð1þ 3m0Þ. This final form is equivalent to Eq. (24). Note that, for
the case of a cold plasma, the mode frequency xn;m is simply equal
to xpðn;mÞ, and the Landau damping rate is zero. Moreover, Fig. 6
suggests that x1;1 ¼ xpð1; 1Þ and x3;2 ¼ xpð3; 2Þ are relatively
close in value; indeed, ðx3;2 � x1;1Þ=xp � 10�2. For such a case,
the admixture level is rather small, being An0;m0=An;m � 10�2.
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