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Abstract of the Dissertation 

Rotational Pumping Transport in Magnetized, 

Non-Neutral Plasmas 

by 

Steven Mark Crooks 

Doctor of Philosophy in Physics 

University of California, San Diego, 1995 

Professor Thomas M. O'Neil, Chairman 

Rotational pumping causes cross-field transport in non-neutral plasmas when 

. the end confinement potentials are non-axisymmetric. Because the Debye length is 

small the asymmetries are screene·d out within the plasma, but cause the end shape of 

the plasma to distort. The basic idea can be understood by considering a single flux 

tube of plasma. As the flux undergoes E x B drift rotation about the center of the 

column, the length of the tube oscillates about some mean value, and this produces 

a corresponding oscillation in 1J1· In turn, the collisional relaxation of T11 toward 

TL produces a slow dissipation of electrostatic energy into heat and a consequent 

radial expansion of the plasma. Formally, the transport is calculated by solving the 

drift-kinetic Boltzmann equation in the limit where the axial bounce frequency of a 

thermal particle is large compared to its E x B drift rotation frequency and in the 

limit where bounce-rotation resonances are the dominate effect. 

The transport is applied to three problems. When the asymmetry is produced 

by displacing the plasma column off-axis, that is by creating an m = 1 diocotron 
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mode, conservation of total canonical angular momentum is used to relate rotational 

pumping transport to a damping rate. The predicted damping rate is in good agree

ment with the experimental observations of Cluggish and Driscoll. Next, the theory 

is generalized to include time-dependent confinement potentials. When the poten

tials take the form of an asymmetry that rotates more rapidly than the plasma, the 

particle flux is directed radially inward and the plasma is compressed. Finally, trans

port for a non-neutral plasma confined in a toroidal magnetic field is calculated. In 

this geometry, the transport can be understood by considering a toroidal flux tube of 

plasma that undergoes a poloidal E x B drift. As the flux tube drifts, its length os

cillates. Since the toroidal action I = (211" J- 1 f di mv11 is a good adiabatic invariant, 

711 oscillates. Also, the magnetic field is non-uniform in this geometry, and conser

vation of the adiabatic invariant µ = mvl. 2 /2B implies that Tl. oscillates. These 

oscillations have different magnitudes and the collisional relaxation of 711 toward Tl. 

produces a slow dissipation of electrostatic energy into heat and a corresponding 

cross-field transport of the plasma. 

xv 



Chapter 1 

General Introduction 

This thesis discusses a new transport theory for non-neutral plasmas. By 

analogy with magnetic pumping the transport mechanism is called rotational pump

ing. The theory is applied to three problems of current interest: in Chapter 2 the 

theory is used to explain the observed damping of the m = 1 diocotron mode[l ], in 

Chapter 3 inward transport due to a rotating asymmetry is described and in Chapter 

4 rotational pumping transport is calculated for a plasma confined in toroidal geom

etry. These chapters are presented as free standing papers. This chapter contains 

an overview of rotational pumping transport and its applications. 

1.1 Overview of Rotational Pumping Transport 

In typical experiments the plasma is confined in a Penning trap as shown in 

Figure 1.1. A conducting cylinder is divided axially into three sections, the two end 

sections being held at a negative (positive) potential relative to the central section. 

There is a uniform magnetic field directed along the axis of the cylinder. The electron 

(ion) plasma resides in the central section with axial confinement provided by the end 

sections and radial confinement by the magnetic field. The Larmor radius is typically 

small so the cross-field motion may be described by E X B drift dynamics[2, 3]. 

The most important concepts necessary for understanding transport in these 

1 
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plasmas are angular momentum and torque. The canonical angular momentum of a 

single particle is 

e 
po= mvor + -Ao(r)r 

c 
( 1.1) 

where vo is the() component of the particle's velocity, r is the radial position of the 

particle, and e carries a sign. For a uniform magnetic field the () component of the 

vector potential is Ao(r) = Br/2. In guiding center theory, the mechanical part 

of the angular momentum is negligible compared to the angular momentum in the 

field[4] and Eq. (1.1) may be rewritten as 

eB 2 Po= -r. 
2c 

(1.2) 

Torques acting on an individual particle cause its angular momentum and radial 

position to change. 

The total canonical angular momentum of the plasma is 

~ eB 2 eB 2 Po= L.., -rj = -N(r ). 
i=t 2c 2c 

( 1.3) 

where (r2
) is the mean square radius of the plasma. Internal torques cause a rear-

rangement of the plasma which conserves Po and (r2 ). External torques cause radial 

particle transport which does not conserve angular momentum and results in a net 

expansion of the plasma column. At high neutral pressures the dominant exter-

nal torque arises from neutrals which act as stationary scattering centers in the lab 

frame[5- 7]. At lower neutral pressures the dominant torque is believed to be due to 

azimuthal asymmetries in the confining fields[5, 7]. In this thesis the transport due 

to asymmetries in the end confinement potentials is calculated. 

Within the plasma, the end confinement potentials fall of exponentially on 

the scale of a Debye length[S]. When the Debye length is small the non-axisymmetric 

end confinement potentials have the effect of changing the shape of the plasma. This 

is an important starting point in the theoretical development. The shape of the 
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plasma is assumed to be known and is expressed in terms of the length of the plasma 

parallel to the magnetic field 

L = L0 (r) + 8L(r, IJ) (1.4) 

as shown in Fig. 1.2. Here ( r, IJ) is a cylindrical coordinate system centered on an 

axis through the center of charge. The length may be estimated by considering the 

shape of the vacuum equipotential contours [9] or may be calculated numerically 

with a 3-D equilibrium Poisson solver [1]. 

Since the Debye length is small the plasma particles are assumed to reflect 

specularly off each end of the plasma. When a particle reflects off a non-axisymmetric 

surface it experiences a force in the iJ direction which causes its canonical angular 

momentum pg = ;~ r 2 and radial position to change. This is the fundamental process 

underlying rotational pumping transport. The transport is calculated in two limits: 

when the bounce frequency for a thermal particle is much larger than the E x B 

drift rotation frequency, adiabatic transport dominates; when these two frequencies 

become comparable, bounce rotation resonances increase the particle flux. 

1.1.1 Adiabatic Transport 

In the adiabatic limit a transport flux due to the end asymmetries can be 

derived by considering a single flux tube of plasma as shown in Figs. 1.3 and 1.4. 

The flux tube has length L(r,IJ) as given by Eq. (1.4), cross section area 8A, and 

contains 8N particles. The dominant cross field motion of the flux tube is the E X B 

drift VD= (c/ B)z x V'<l>. We assume that the azimuthal asymmetries are small and 

so to lowest order the electric potential is of the form cl>= <l>(r). The flux tube drifts 

in a circular orbit about the center of the column with the frequency 

(1.5) 
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Setting B = wnt in Eq. (1.4) then implies that the length of the flux tube varies tem

porally as L(r,t) = Lo(r) + 8L(r,wnt). The cyclic axial compression and expansion 

produces a cyclic variation in the parallel temperature, and this is coupled collision

ally to the perpendicular temperature. The full temperature evolution is governed 

by the equations 

d1[1 2 dL ( ) 
dt=-1[1Ldt+2v,,11 TL-Tri (1.6) 

and 

(1.7) 

where v,, 11 is the collisional equipartition rate. We have used the fact that 8N 

is constant in deriving these equations. The first term on the right hand side of 

Eq. (1.6) describes the compressional heating (or expansion cooling) of the parallel 

degrees of freedom, and the second term describes the collisional coupling to the 

perpendicular degrees of freedom. The perpendicular degrees of freedom are not 
\ 

directly affected by the change in length, so the R..H.S. of Eq. (1. 7) contains only 

the collisional coupling term. The factor of two difference in the collisional coupling 

term for Eq. (1.7) relative to Eq. (1.6) simply reflects the fact that there are 2 

perpendicular degrees of freedom and 1 parallel. 

A two time scale analysis of Eqs. (1.6) and (1.7) based on the smallness of 

8L/ L and on the frequency ordering wn ;}> v ,, 11 yields the result 

d(1[1) 
dt 

d(T L) 
dt 

8v,, 11 (i~) (8L2) + 2v,, 11 ((TL) - (1[1)), 
0 

= -v,,11 ((TL) - (1[1)), 

(1.8) 

(1.9) 

where ( ·) indicates an average over the fast time scale, that is over one rotation 

period. In addition to the energy conserving terms, the first term on the right 

hand side of Eq. (1.8) represents a secular increase in T11. Physically, this term arises 

because collisions cause a small phase shift in the parallel temperature fluctuations so 
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that the parallel temperature and pressure are slightly larger in the compression stage 

than in the expansion stage. More work is done on the plasma during compression 

than is done by the plasma during expansion. The result is that the plasma in the 

flux tube is heated. This effect is similar to magnetic pumping,[10] and by analogy, 

we refer to it as rotational pumping. 

Since the confinement potentials are time independent, the total energy in 

the plasma is conserved, and the increase in thermal energy must be balanced by 

a corresponding decrease in the electrostatic energy. The particle flux is found by 

equating the increase in the thermal energy of the flux tube to local Joule heating. 

That is, 

(1.10) 

where fr is the radial particle flux and n is the density. The R.H.S. of this equation 

is the Joule heating per unit volume, and again we have used the fact that tiN = 

CONST. Equations (1.8)-(1.10) are solved for the flux and yield 

(1.11) 

where 

(1.12) 

It is striking that r r depends on magnetic field strength only through v L.11 • In the 

regime of weak magnetization (i.e., re>> b, where re= v/flc and b = e2/mv2
), this 

dependence is very weak, v,, 11 ex: In(rc/b). In the regime of strong magnetization (i.e., 

re << b) v,, 11 becomes exponentially small[ll, 12] and the theory predicts that the 

flux becomes exponentially small. This scaling is a unique signature of rotational 

pumping transport in the adiabatic limit. A formal solution of the Drift-Kinetic 

Boltzmann equation in the adiabatic limit yields the same result found with this 

simple flux tube model. 
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1.1.2 Resonant Particle Transport 

When the bounce frequency of a thermal particle is comparable to the E x B 

drift rotation frequency, bounce-rotation resonances greatly enhance the transport. 

The basic idea behind resonant particle transport is easy to understand. When a 

particle is reflected off the non-axisymmetric end potential it experiences a force 

in the fJ direction causing its angular momentum, p8 = ~~ r 2 , and radial position 

to change. The magnitude and sign of the radial step depend on the particle's 

azimuthal position at the point of reflection. A resonant particle reflects at the same 

() position for many bounces and consequently takes many radial steps in the same 

direction. For non-resonant particles the radial steps tend to cancel. A solution to 

the drift-kinetic Boltzmann equation in the "resonant-plateau" regime [13, 14] yields 

the result 

(1.13) 

where WB = !,
0 
/Tj;, is the bounce frequency for a thermal particle. Note that in 

this equation we have assumed that only one end of the plasma is non-axisymmetric. 

In chapter 2 both ends of the plasma are distorted and therefore in this equation 

The quantity in parenthesis replace v '· 
11 

in the adiabatic flux. One can see 

that when WB » WR the resonant particle flux is negligible. The unusual scaling of 

this quantity with magnetic field may be understood physically as follows. A particle 

is resonant when nwB = lwR, or expressed in terms of its velocity 

(1.14) 

The exponential factor in Eq. (1.13) is just the Maxwellian distribution function 

evaluated at the resonant velocity. Simply stated, the transport is proportional to 

the number of particles that participate. In addition there is a coefficient that scales 
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as wn6 ~ B-6
• One should expect a diffusion coefficient to scale as the square of 

a step size. Here a resonant particle takes an irreversible step when it undergoes 

a collision and becomes non-resonant. The number of bounces a particle makes 

before undergoing a collision scales as the bounce frequency divided by the collision 

frequency 

WB WR 1 
#Bounces rv - ~ - ~ -. 

v v B 
(1.15) 

In each reflection, a particle takes a small radial step which is proportional to the 

impulse required to reflect the particle and, since this is an E x B drift, inversely 

proportional to the magnetic field. The impulse is proportional to the particles 

momentum and therefore the radial step for each bounce scales as 

1 1 
(1.16) 

#B 
~ Bmvre, ~ B2. 

ounces 

The irreversible step that a particle takes after a collision is 

( 
b.r ) 1 b.r ~ #Bounces #B ~ B3 . 
ounces 

(1.17) 

The square of the step size and the diffusion coefficient scale as B-6 as is evident in 

Eq. (1.13). 

1.2 Them 1 Diocotron Mode 

The first application of rotational pumping transport is a calculation of the 

damping rate of them= 1 diocotron mode[l, 2, 15-17]. One can think of this mode 

as a rigid displacement of the plasma column away from the central axis of the trap. 

The image charges induced in the conducting wall cause the column as a whole to 

E x B drift about the central axis of the trap while the space charge field causes the 

column to rotate about an axis through its center of charge. 

In a frame that rotates with the mode the off-axis column is a stationary 

state (an equilibrium) except for the slow evolution on the transport timescale. The 
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connection between damping and transport follows from conservation of angular 

momentum. As shown in Figs. 1.5 and 1.6 D is defined as the displacement of the 
& 

center of charge and rj is measured from the center of charge (Rj = D + rj)· The 

canonical angular momentum from Eq. (1.3) can then be written as 

eB [ 2 1 ~ 2] Pe ~ -N D + N L..J ri , 
2c i=l 

(1.18) 

Note that the cross term, L:f:1 2rj · D, vanishes because D defines the center of 

charge. Since the apparatus is cylindrically symmetric, Pe is conserved. This implies 

a relation between plasma expansion and mode damping. Differentiating Eq. (1.18) 

with respect to time yields the relation 

(1.19) 

which can be written in terms of a particle flux as 

(1.20) 

The quantity in brackets is the damping rate, "I· Internal torques which conserve 

angular momentum in the frame centered on the plasma cancel out in this integral. 

Note that the plasma is also in a sheared field in the off-axis frame which causes its 

cross section to be slightly non-circular. These distortions are negligible when D is 

small. 

The displaced plasma column sees non-axisymmetric end potentials and these 

cause the end shape of the plasma to be non-axisymmetric. This asymmetry is 

illustrated in Fig. 1.6 and can be characterized by the length of the plasma parallel 

to the magnetic field as given by Eq. (1.4). A simple analytic theory[9] suggests that 

the asymmetric component of the plasma length may be approximated by fiL(r, 0) = 

K JL r sin 0, where K is a numerical constant of order 2.4. For a constant density, 

isothermal plasma in the the adiabatic regime, the integral expression in Eq. (1.20) 



9 

yields a damping rate 

2 >.v2rP2 1 
I= - 2

1': VL,JIL'fiRw 2 (1-rp2/Rw 2) (1.21) 

where >.v = Jr /47re2 n is the Debye length, rp is the radius of the plasma and Rw 

is the radius of the conducting cylinder. 

Fig. 1.7 contains a plot of Cluggish and Driscoll's experimentally measured 

damping rate vs. temperature[l] along with the predicted damping rate from Eq. 

(1.21) (the dashed curve). Cluggish and Driscoll have also numerically calculated the 

damping rate by using an equilibrium Poisson solver to determine the length of the 

plasma, and then numerically integrating the expression for the damping rate in Eq. 

(1.20) with the adiabatic particle flux from Eq. (1.11). This numerically calculated 

damping rate is indicated in the figures by /num (the solid curve). The damping 

rate decreases dramatically when the plasma becomes strongly magnetized (re< b) 

because vL,JI becomes exponentially small in this regime[ll,12]. In Fig. 1.8 the 

damping rate is plotted as a function of magnetic field strength in the regime of weak 

magnetization where vL,JI and I depend weakly on the strength of the magnetic field, 

v L, 
11

, / ex: ln(rc/b). The close agreement between theory and experiment is convincing 

evidence of rotational pumping transport. 

1.3 The "Rotating Wall" 

In Chapter 3 rotational pumping theory is applied to the "rotating wall" 

problem. This refers to a technique of using time-dependent confinement voltages to 

produce inward radial transport and compression of a non-neutral plasma[l8 - 22]. 

When the voltages are applied in such a way as to simulate an asymmetry that rotates 

faster than the plasma the resultant torques cause inward transport. In Chapter 3 

general thermodynamic arguments are used to show that the plasma is transported 

inward so long as the asymmetry rotates faster than the plasma. This result can also 
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be understood in terms of a simple heuristic argument. An asymmetry that rotates 

more slowly than the plasma exerts a drag on the plasma and causes F x B drifts 

that are directed radially outward. An asymmetry that rotates more rapidly than 

the plasma exerts a drag in the same direction that the plasma rotates and causes 

F x B drifts that are directed radially inward. 

Motivated by the good agreement between theory and experiment found 

for the damping of the m = 1 diocotron mode, we consider the case where time

dependent voltages are applied at one end of the plasma. An expression for the 

radial particle flux can be derived easily for the case that the potential on one of the 

confinement cylinders has the form 

<I>c = V:, + 8V cos[mll - wt]. (1.22) 

Here Vc is a constant voltage that provides confinement and the time dependent 

voltage is in the form of an asymmetry rotating at frequency w/m. The calculation 

is easiest if we work in a frame that rotates with the asymmetry. In this frame 

the confinement potentials are static and we can use the results of the rotational 

pumping calculation valid for static end asymmetries. 

In the adiabatic limit the flux is 

T (8L2
) 

fr= 4v~. 11 n(r) _eB<I>'/Br --rf:' (1.23) 

where <I>' is the potential in the frame that rotates with the asymmetry. The trans-

formation to the rotating frame gives a l/c v x B contribution to the electric field 

so that 

8<I>' 8<I> Br w --=--+--
8r 8r cm 

(1.24) 

where <I> is the potential in the lab frame and is related to the density through 

Poisson's equation. Using this expression the flux may be written as 

T (8L2
) 

r r = 4v ~. 11n( r) -eBr [ I l L2 , 
-,-WR-Wm o 

(1.25) 
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where we have used WR = c/ Br aq, I ar . For a pure electron plasma with w /m > WR 

the flux is negative, that is, the plasma is compressed. 

The inward particle flux implied by Eq. (1.25) has a simple physical inter

pretation in terms of conservation of energy. Rotational pumping causes the plasma 

to heat. Since energy is conserved in the frame that rotates with the asymmetry, 

the electrostatic energy must decrease as the plasma tern perature increases. If w is 

sufficiently large we see from Eq. (1.24) that the direction of the electric field is 

reversed in the rotating frame. To liberate electrostatic energy, the plasma shrinks 

rather than expands. A similar analysis can be used to calculate the flux due to 

resonant particles. 

In recent experiments pure ion plasmas have been observed to be stationary 

for a period of days[21]. In these experiments the plasma is under the influence of 

an applied torque due to a rotating field asymmetry and an ambient torque due 

to collisions with neutrals and stationary field asymmetries. For the plasma to be 

stationary, the torques must cancel. In addition the heating caused by the applied 

torque must be balanced by a cooling mechanism. In chapter 3 we show that a 

stable stationary plasma is possible when the background torque and cooling is due 

to neutrals. 

1.4 Transport in a Toroidally Confined Plasma 

In chapter 4 the transport theory is modified to describe a non-neutral 

plasma in a toroidal magnetic field geometry[23]. O'Neil and Smith[24] recently 

showed that such a plasma can be stable if the dynamical frequencies are ordered 

as !le » wy »WE. Here, !le is the cyclotron frequency, wy is the toroidal rotation 

frequency for a thermal particle ( wy replaces WB ), and WE is the E x B drift rota

tion frequency in the poloidal direction. We assume this ordering here (the adiabatic 
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limit), and takeµ = mvJ. 2 /2B and I = (2ir )-1 f di mv11 = (2ir J-1mv11L(p) to be good 

adiabatic invariants. Here, L(p) = 2ir p is the length of a flux tube and p is the major 

radius. The main difference between this calculation and the calculation in chapters 

2 and 3 is that the magnetic field is not uniform. The field strength is given by 

B = B0 p0 / p where Bo and p0 are constants. Thus, as a flux tube undergoes poloidal 

drift rotation (and p varies cyclically about some mean value), both the parallel and 

the perpendicular temperature fluctuate. The temperature evolution is described by 

(1.26) 

and 

(1.27) 

where v ,, 
11 

is the equipartition rate. 

In the small inverse aspect ratio limit, a two-time scale analysis is again used 

to calculate the heating rate. Conservation of energy then leads to the particle flux 

1 T (r) 2 

r, = 2v,,un(r) _e8iJ>/8r Po ' (1.28) 

where p0 is the major radius at the plasma center and r is the minor radius measured 

from the plasma center. The reader may wish to refer to Fig. 4.1 in chapter 4 

where these coordinates are illustrated. This simple calculation assumes that the 

intersections of the E x B drift surfaces with the rB-plane are circular. A kinetic 

treatment in poloidal action-angle variables yields a result which is valid for more 

general plasma profiles. This transport sets an upper limit on the confinement time 

of non-neutral plasmas confined in toroidal geometry. 
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Figure 1.1: The Confinement Geometry 
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Figure 1.2: The Length of the Plasma 
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Figure 1.3: Side view of flux tube. 
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Figure 1.4: End view of flux tube. 



17 

Figure 1.5: Coordinate system for the off-axis plasma (end view). 
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Chapter 2 

Rotational Pumping and 
Damping of the m=l Diocotron 
Mode 

2.1 Abstract 

An effect which we call rotational pumping (by analogy with magnetic pump-

ing) causes a slow damping of the m = 1 diocotron mode in non-neutral plas

mas. In a frame centered on the plasma and rotating at the diocotron mode fre

quency, the end confinement potentials are non-axisymmetric. As a flux tube of 

plasma undergoes E x B drift rotation about the center of the column, the length 

of the tube oscillates about some mean value, and this produces a corresponding 

oscillation in 111· In turn, the collisional relaxation of 711 toward Tl. produces a 

slow dissipation of electrostatic energy into heat and a consequent radial expan

sion (cross-field transport) of the plasma. Since the canonical angular momentum is 

conserved, the displacement of the column off-axis must decrease as the plasma 

expands. In the limit where the axial bounce frequency of an electron is large 

compared to its E x B drift rotation frequency theory predicts the damping rate 

/ = -2K-2v ~. 11 ( rp 2 / Rw 2 ){>i.v2 
/ £6)/(1 - rp 2 

/ Rw 2 ) where K is a numerical constant, >.v 

is the Debye length, Rw is the radius of the cylindrical conducting wall, rv is the 
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effective plasma radius, L0 is the mean length of the plasma, and v L, 11 is the equipar

tition rate. A novel aspect of this theory is that the magnetic field strength enters 

only through v ,, 
11

• As the field strength is increased, the damping rate is nearly in

dependent of the field strength until the regime of strong magnetization is reached 

(i.e., nc > v/b = (kT)312 I rm e2 
), and then the damping rate drops off dramatically. 

This signature has been observed in recent experiments. For completeness the theory 

is extended to the regime where the bounce frequency is comparable to the rotation 

frequency and bounce-rotation resonances are included. 

2.2 Introduction 

Recent experiments have involved the confinement of pure electron plasmas 

in Penning traps.[1- 4] A schematic diagram for such a trap is shown in Figure 2.1. 

A conducting cylinder is divided axially into three sections, the two end sections 

being held at a negative pot,,ntial relative to the central section. There is a uniform 

magnetic field, B, directed along the axis of the cylinder. The electron plasma resides 

in the central section, with axial confinement provided by the negatively biased end 

sections and radial confinement by the magnetic field. The Larmor radius is typically 

small, so the cross field motion may be described by E x B drift dynamics. [3, 5] 

The most commonly observed excitation of such a plasma is the diocotron 

mode of azimuthal wave number m = l.[3, 6 - 8] One can think of this mode as a 

rigid displacement of the plasma column away from the central axis of the trap. The 

image charges induced in the conducting wall cause the column as a whole to E x B 

drift about the central axis of the trap while the space charge field causes the column 

to rotate about an axis through its center of charge. The main reason that this mode 

plays such a prominent role in the dynamics of pure electron plasmas is that it is 

damped only weakly; in typical experiments it is observed to survive 105 periods. In 
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spite of this, Cluggish and Driscoll have been able to measure the damping rate and 

characterize its parameter dependence over a wide range.[9] In this paper we present 

a theory of the damping which agrees with the parameter dependence observed in 

the experiments. This theory is closely related to the work of Ryutov and Stupukov 

on transport in magnetic mirror traps.[10] 

Diocotron modes of azimuthal wave number m > 1 typically damp due to 

a wave-particle resonance.[11] The resonance is spatially localized at the resonant 

radius, r., defined by mwR(rs) = w, where WR is the single particle E x B rotation 

frequency and w is the mode frequency. For a monotonically decreasing density 

profile, the m = 1 diocotron mode is special because rs = Rw, the radius of the 

conducting wall. [11] There are no resonant particles because the density is zero at 

the wall and therefore a different mechanism is required to explain the observed 

damping of the m = 1 diocotron mode. 

Since the damping timescale is characteristic of collisional transport time-

scales, we look for an explanation which involves collisional transport. It is convenient 

to work in a frame that rotates with the mode so that the off-axis column is a 

stationary state (an equilibrium) except for the slow evolution on the transport 

timescale. The connection between damping and transport follows from conservation 

of angular momentum. In guiding center theory, the canonical angular momentum 

of the plasma is approximately[12] 

eB N 
Pec:=-2:,Rj, (2.1) 

2c i=t 

where Rj is the position of the jth particle measured from the trap axis (see Fig. 

· 2.2) and e carries a sign. If D is the displacement of the center of charge and rj is 

measured from the center of charge (Rj = D + rj) the canonical angular momentum 

can be writ ten as 

eB [ 2 ~ 2] Pe co= -N D + L- r; , 
2c i=l 

(2.2) 
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Note that the cross term, I:;f=1 2rj · D, vanishes because D defines the center of 

charge. Since the apparatus is cylindrically symmetric, Po is conserved. This implies 

a relation between plasma expansion and mode damping. Differentiating Equation 

(2.2) with respect to time yields the relation 

(2.3) 

Given a transport theory which describes the radial expansion of the plasma, Eq. 

(2.3) can be used to calculate the damping rate. 

The angular momentum calculated about an axis through the center of charge 

is not conserved. If it were, (r2
) would be constant in time and the mode would not 

damp. We therefore restrict our attention to transport processes which depend on the 

non-axisymmetric nature of the confining fields in a frame centered on the plasma. 

In particular, we consider the effect of the end confinement potentials. 

When the Debye length is small the plasma has a well defined edge. A 

displaced column sees non-axisymmetric end potentials and these cause the end 

shape of the plasma to be non-axisymmetric. This asymmetry can be characterized 

by the length of the plasma parallel to the magnetic field, 

L(r, 0) = L0 (r) + 8L(r, 0), (2.4) 

where (r, 0) is a cylindrical coordinate system centered on an axis through the center 

of charge (see Fig. 2.3). A simple analytic theory as well as numerical studies[l3] 

indicate that the asymmetric component is well represented by a uniform tilt at an 

angle proportional to D/ Rw, where Rw is the radius of the conducting cylinder and 

D is the displacement of the center of charge off axis. Therefore the asymmetric part 

may be written as 

8L(r,O) = 1< D rsinO, 
Rw 

where 1< is a numerical constant. 

(2.5) 
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A simple transport equation can be derived by considering a single flux tube 

of plasma as shown in Figs. 2.4 and 2.5. The flux tube has length L(r, B) as given 

by Eq. (2.4), cross section area 8A, and contains 8N particles. The dominant cross 

field motion of the flux tube is the Ex B drift VD= (c/B)z x V'<I>. Assuming that 

the plasma column has a circular cross section the electric potential is of the form 

<I>= <I>(r), and the flux tube drifts in a circular orbit about the center of the column 

with the frequency 
c a<I> 

WR=--. 
Br or 

(2.6) 

Setting B = wRt in Eq. (2.4) then implies that the length of the flux tube varies 

temporally as L(r,t) = L0 (r) + 8L(r,wRt). From Eq. (2.5) it then follows that the 

length of the flux tube undergoes a sinusoidal variation about the length L 0 (r). The 

cyclic axial compression and expansion produces a cyclic variation in the parallel 

temperature, and this is coupled collisionally to the perpendicular temperature. The 

full temperature evolution is governed by the equations 

(2.7) 

and 

(2.8) 

where v qis the collisional equipartition rate. We have used the fact that 8N is con

stant in deriving these equations. The first term on the right hand side of Eq. (2. 7) 

describes the compressional heating (or expansion cooling) of the parallel degrees of 

freedom, and the second term describes the collisional coupling to the perpendicular 

degrees of freedom. The perpendicular degrees of freedom are not directly affected 

by the change in length, so the R.H.S. of Eq. (2.8) contains only the collisional cou

pling term. The factor of two difference in the collisional coupling term for Eq. (2.8) 

relative to Eq. (2.7) simply reflects the fact that there are 2 perpendicular degrees 

of freedom and 1 parallel. 
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A two time scale analysis of Eqs. (2.7) and (2.8) based on the frequency 

ordering WR ~ v L, 11 yields the result 

d~i) = 8vL,ll (~~) (8L2
) + 2vL,ll ((Tj_) - (7[1)) 

d(~_l_) = -vL,11 ((TJ_)-('If1)) 

(2.9) 

(2.10) 

where (-) indicates an average over the fast time scale, that is over one rotation 

period. In addition to the energy conserving terms, the first term on the right 

hand side of Eq. (2.9) represents a secular increase in 7f1· Physically, this term arises 

because collisions cause a small phase shift in the parallel temperature fluctuations so 

that the parallel temperature and pressure are slightly larger in the compression stage 

than in the expansion stage. More work is done on the plasma during compression 

than is done by the plasma during expansion. The result is that the plasma in the 

flux tube is heated. This effect is similar to magnetic pumping,[14] and by analogy, 

we refer to it as rotational pumping. 

Since the confinement potentials are time independent, the total energy in 

the plasma is conserved, and the increase in thermal energy must be balanced by 

a corresponding decrease in the electrostatic energy. The particle flux is found by 

equating the increase in the thermal energy of the flux tube to local Joule heating. 

That is, 

(2.11) 

where r r is the radial particle flux and n is the density. The R.H.S. of this equation 

is the Joule heating per unit volume, and again we have used the fact that 8N = 

CONST. Equations (2.9)-(2.11) are solved for the flux and yield 

T (8L2
) 

fr= 4vL,11n(r) _e8<f>/8r L6 ' (2.12) 

where 

(2.13) 



29 

Finally, the damping rate is calculated by using conservation of angular momentum. 

After introducing the particle flux, Eq. (2.3) becomes 

dD 8 ( 2 ) 1 J 3 2D- = -- r = -- d r 2rI' . 
dt at N r 

(2.14) 

Using Eq. (2.12) and the assumed form of the asymmetry from Eq. (2.5), we find 

the result 

8 ( [ 1 J 3 ( T 1<
2 

3] . -;;-- D) = -- d r2vL, 11 n r) ~ 
2 2 r D. 

ui N -ea;: L 0 Rw 
(2.15) 

The quantity in brackets is /, the damping rate of the mode. In this equation 

it should be remembered that <ll is the potential in a frame rotating at the mode 

frequency wn. [6] It is related to the potential in the lab frame through 

(2.16) 

where the second term, BR2 /2c wn, arises from the motion of the plasma column 

through the magnetic field. The potential in the lab frame, <ll L, is composed of two 

parts: the space charge potential, <P0 , and the potential due to the image charges 

induced on the conducting wall, <ll I. Changing variables to a coordinate system 

centered on the plasma using R = D + r yields the result 

Br
2 

[ B l BD
2 

<ll =<Po - --wn + <l>1 - -r · Dwn - --wn. 
2c c 2c 

(2.17) 

The two terms in brackets cancel (this condition may be used to determine WD ) and 

the last term may be dropped as it is just an additive constant. This leaves 

Br2 

<ll = <Po - --wn. 
2c 

Of course, <ll0 is related to the density through Poisson's equation. 

(2.18) 

For simplicity, we consider an isothermal, constant density plasma of radius 

rp. The integral in Eq. (2.15) is then trivial and yields the result 

2 >.n2rp 2 1 
I= -21£ VL,11 L~Rw2 (1- rp2/Rw2) (2.19) 
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where >.D = Jr/ 4ire2n is the De bye length. It is striking that / depends on magnetic 

field strength only through v ,. 11 • In the regime of weak magnetization (i.e., re > > b, 

where re= v/f!c and b = e2 /mi.!2), this dependence is very weak, v,, 11 ex ln(rc/b). 

In the regime of strong magnetization (i.e., re << b) v,, 11 becomes exponentially 

small[15, 16] and our theory predicts that / becomes exponentially small. 

Fig. 2.6 contains a plot of Cluggish and Driscoll's experimentally measured 

damping rate vs. temperature[9] along with the predicted damping rate from Eq. 

(2.19) (the dashed curve). Here, K was taken to be 2.4 as given in reference [13]. 

Cluggish and Driscoll also numerically calculated the damping rate by using an 

equilibrium Poisson solver to determine the shape of the plasma more accurately, 

and then numerically integrating the expression for the damping rate in Eq. (2.15). 

This numerically calculated damping rate is indicated in the figures by /num (the 

solid curve). The dramatic decrease in the observed damping rate when r, becomes 

small compared to b is rather convincing evidence that our theory focuses on the 

relevant damping mechanism. In Fig. 2.7 the damping rate is plotted as a function of 

magnetic field strength in the regime of weak magnetization where v ,, 11 and / depend 

weakly on the strength of the magnetic field, v,, 11 ,/ ex ln(r,/b). Other parameter 

dependences in Eq. (2.19) have also been checked by Cluggish and Driscoll and 

very good agreement between theory and experiment was found[9]. Moreover, they 

verified two of the fundamental assumptions underlying the theory: the canonical 

angular momentum and the total energy are nearly constant during the plasma 

evolution. 

In Section 2.3 we present a more rigorous calculation of the transport by 

solving the drift-kinetic Boltzmann equation in the limit that WB > > WR , where 

WB is the single particle bounce frequency parallel to the magnetic field, and WR 

is the rotation frequency. In Section 2.4 we consider the effect of bounce-rotation 
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resonances and show that in some regimes resonant particles enhance the damping 

rate. 

2.3 Kinetic Treatment in the Adiabatic Limit 

In this section and in Section III we assume the following frequency ordering: 

(2.20) 

where !1c is the cyclotron frequency, w8 is the axial bounce frequency, WR is the 

rotation frequency, v is the collision frequency, and I is the damping rate. Since !1c 

is the largest frequency, we may describe the collisionless single particle dynamics 

with a guiding center Hamiltonian of the form[16] 

p2 
H = _z + µB + e<I>(pB) + e<I>,(O,po, z) 

2m 
(2.21) 

where PB = eB /2cr2 is the canonical angular momentum conjugate to {! and (r, 0) 

is a cylindrical coordinate system centered on axis through the center of charge. 

We break up the potential into two parts: <I>(pB) is the space charge potential in a 

frame rotating at the diocotron frequency and <I>,(O,pB, z) is the Debye-screened end 

potential. Since the Debye length is small we let 

e<I>,(O B z) = { O; lzl < 1(2L(O,po) 
'p ' oo· otherwise 

' 
(2.22) 

where L( 0, PB) is the length of the plasma parallel to the magnetic field as discussed 

in the introduction. The term µB = l/2mvi is the perpendicular kinetic energy of 

the particle. In the guiding center limit, µ = CONST., and since the magnetic 

field is assumed to be uniform, µB enters the Hamiltonian as an additive constant. 

We retain this term in the Hamiltonian because it is useful to write Maxwellian 

distribution functions as a function of H. 

In the experiments, it is typically the case that the bounce frequency, WB = 

27rlvzl/2L, is much larger than the rotation frequency, WR= 8/opB(e<I>), for the vast 
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majority of the particles. In this section we assume that this is true for all of the 

particles. (In Section III we allow for bounce-rotation resonances.) In the limit 

WB > > WR, the bounce action 

I= _!__ f Pzdz = _!__ f J2m (H - Bµ - e<J> - e<l>e), 
2ir 2ir 

(2.23) 

is a good adiabatic invariant. As noted by J.B. Taylor,[17] an equation of this form 

implicitly defines H in terms of I, (), and pe. Given the simple form of the end 

potential, this equation is easily inverted to give 

11"2 I2 
H(I, 0, Pe)= LZ(() ) + Bµ + e<J>(Pe) 2m ,pe 

(2.24) 

We represent the plasma with a distribution of guiding centers, 

f = f(I, .,P, pe,, 8, µ, t), ( 2.25) 

where .,Pis the angle conjugate to I and indicates the phase of a particle in its bounce 

motion (i.e. its position along the magnetic field). This distribution function evolves 

according to the drift-kinetic Boltzmann equation, 

of 8t + [!, H] = C(J), (2.26) 

where C(-) is the collision operator, and the Poisson-bracket is given by 

ofoH ofoH of oH 
[f, H] = o.,P 8J + 08 ope - ope ao· (2.27) 

In the adiabatic limit, WB = oH/ol is large and so of/o.,P must be small. 

Otherwise, of/ot would be large and the distribution would evolve rapidly along 

the magnetic field. Physically, this corresponds to the fact that any initially large 

.,P variations are rapidly phase mixed by the bounce motion. The small .,P variations 

are uninteresting from the standpoint of cross-field transport and may be eliminated 

by integrating Eq. (2.26) over .,P. The result is 

of+ of oH _ of oH = c(f) 
ot 08 ope ope oO 

(2.28) 
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where 

[2" 
f(I,po,O,µ,t) =lo d,Pf(l,1/J,po,O,µ,t). (2.29) 

Rewriting Eq. (2.28) as 

of+!!._ [oH 1] _ Y._ [oH 1] = C(f) 
at 80 opo opo 80 

(2.30) 

and integrating over I, µ, and 0 yields the transport equation 

(2.31) 

where 

J dO J -N(po)= 
2

1!" dldµf (2.32) 

The integral over the collision operator vanishes because collisions conserve the num-

ber of particles. 

To obtain a transport equation accurate to second order in oH/80 we must 

obtain J accurate to first order in f)H / 80. Thus we look for solution to Eq. (2.28) 

in the form 

f = fo(H,po) + 8f(I,po, 0, µ) (2.33) 

where 8f/fo ~ 8L/Lo and 

(2.34) 

Written in velocity variables, f0 is just a Maxwellian times the 0-averaged 2-D density. 

Taking Jo in this form makes use of the frequency ordering, v > > / · Collisions are 

assumed to occur more rapidly than transport, so the zeroth order distribution is a 

Maxwellian along the magnetic field. 

8f is obtained from Eq. (2.28) written to first order in 8L/L0 , 

o8f _ o8f ( 1f
2
1

2 
) 2 o8L [wR i ofo] - [- -] 

fit+ WR 80 + 2m£2 L 80 T + fo Opo fa= C fa+ 8f ' (2.35) 
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where 

_ oH oei!> 11"
2 I2 2 oL0 WR=-=-------Ope ope 2mL2 L ope 

is the total bounce averaged rotation frequency and 

1 olo 
lo ope 

(2.36) 

(2.37) 

In general, the solutions to Eq. (2.35) consist of a sum of a driven response and free 

oscillations of the form 

of= L oJ,ei1(e-wRt) (2.38) 
I 

Since the system has finite shear ( OWR/ ope # 0) these free oscillation terms become 

rapidly oscillating functions of Pe at large t and are rapidly damped by any diffusive 

transport processes. Since the driving terms vary on the slow transport timescale, 

the term 08]/ot may be dropped from Eq. (2.35), leaving 

_ o8J ( 11"
2!2) 2 o8L [wR 1 olo] - [- -] 

WR oO + 2mL2 L of) T +lo ope Jo= c Jo+ of ' (2.39) 

Given the the frequency ordering v «WR, this equation may be solved per-

turbatively in the effective collision frequency. Dropping the collision operator term 

and integrating yields 

oJ(O) = __ l ( 11"
2 
J2 ) 28L [WR + 2,_ ofo] Jo, 

WR 2mL2 L T fo ope (2.40) 

where the superscript indicates the ordering in collisions. The collisional response 

is obtained by inserting 8] into the collision operator on the R.H.S. of Eq. (2.39). 

This yields 

i_ (oJ''l) = ~c [lo (1 _ ~ (~) 28L [wR + 2,_ olo])]. of) WR WR 2mL2 L T lo ope (2.41) 

Substituting l =lo+ ol'0
) + ol'') into the transport equation [Eq.(2.30)] 

yields 
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aN(pe) =_!!__[!dB f dldµ 1!"212 (-2_ a8L) 8]<1>] 
at ape 211" 2mL2 L0 ao 

(2.42) 

where the collisionless terms have vanished in the integral over 0. Integrating by 

parts and substituting from Eq. (2.41) results in 

aN(pe) 
at 

(2.43) 

After changing variables of integration from (µ,I) to ( Vz, v 1.), this equation 

may be written as 

where 

and 

aN(pe) 
at 

1 afo 
lo ape 

_!!__ [J dlJ jdldµ (~mv;) 28L ~ 
ape 211" 2 Lo WR 

[
- ( 1 (1 2) 28L [WR 1 afo])]] xC lo 1 - -:- -mvz - - + ~-

WR 2 L T lo ape 
(2.44) 

ae<P _ (~mv2) 2_ aLo 
ape 2 z Lo ape ' 

(2.45) 

1 aN 3 1 ar (1 2) 1 ar (1 2) 1 2 aLo 
Nape - 2 Tape + 2mv T2 ape + 2mvz T L0 ape ' (2.46) 

Jo= N(pe)IM (2.4 7) 

with IM a Maxwellian distribution. An expression very similar to the second term 

on the R.H.S. of Eq. (2.45) was previously derived by Peurrung and Fajans.[18] 

The velocity integral in this equation is simplified by assuming that the Debye 

length is small. This is typically the case in the experiments and is consistent with 

our assumed form of the end potential. The ratio of the two terms in Eq. (2.45) 

scales as 
~mv; 2 aL0 T >.v 2 

ae<P/apeLoape ~ e<l\ ~ rp2 
(2.48) 
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where rv is the radius of the plasma. We therefore neglect the velocity dependent 

term in the rotation frequency and take 

(2.49) 

the usual E X B rotation frequency. Similarly, the ratio of the two terms inside the 

collision operator in Eq. (2.43) scales as 

1 1 8lo 
~-~-

(wR/T) fo Ope e<T> rv2 
(2.50) 

and therefore we will neglect the term, 1 /loo lo/ ape 

We take the collision operator in the general form 

(2.51) 

where d!I is the differential cross section and Vrei = v - v1. Using this form and the 

small Debye length approximation, we obtain 

8N(pe) 
at 8 l!d() (26L) 2 

N J 3 (1 2)1 3 -- - -- --N d V -mvz d V1d!IIVreil 
Ope 2K Lo wRT 2 

(2.52) 

[ ( 1 12 1 12) fl fl ( 1 2 1 2) f f l l X 2mv zl + 2mv z Ml M - 2mvzl + 2mvz Ml M 

To evaluate the velocity integral in this equation, it is instructive to consider 

the collisional relaxation of an anisotropic Maxwellian distribution 

( 
'"")-1/2 T -I [I 2 I 2] 

f ( ) _ 2K111 (27r .L) 2mvz 2mv.L 
A v - -- -- exp -- - -- . 

m . m 711 T.L 
(2.53) 

The change in the parallel temperature due to collisions is given by 

i (711) 
dt 2 

(2.54) 

and may be used as a definition of the equipartition rate, v,,
11

• Consider the case 

T.L = T and 711 = (1 - a)T. Substituting this into Eq. (2.53) and taking the limit 
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a --+ 0, one can easily show 

(2.55) 

This is precisely the integral that appears in the transport equation. Eq. (2.52) can 

now be written in the simple form 

fJN(po) = _ __i_ [4v,,11 (6~2) (_!___) N]. 
at ape L0 -wn 

(2.56) 

Changing variables from (po, B) to (r, B) yields the result 

fJN(r) 1 fJ [ (6L
2

) ( T ) ] 
at = --;: or r 4v '· 11-zr -eaif> I or N . (2.57) 

The quantity in brackets is the radial particle flux and is identical to the flux given 

by Eq. (2.14) in the introduction. 

2.4 Resonant Particle Transport 

In the previous section, we derived a transport equation in the adiabatic 

limit by assuming that ws » wn for every particle in the system. This approach 

neglects the effect of particles that satisfy the resonance condition, lwn = 2nws, 

where n and I are small integers. When the bounce frequency for a thermal particle, 

ws = I,
0 
Jr/ M , is comparable to the rotation frequency and collisions are suffi

ciently weak, resonant particle transport dominates. In this regime, the damping 

rate of the m = 1 diocotron mode is larger and scales differently than the damping 

rate given in Eq. (2.19). A similar effect occurs for transport in tandem mirrors in 

the "resonant-plateau" regime.[19, 20] 

The basic idea behind resonant particle transport is easy to understand. 

When a particle is reflected off the non-axisymmetric end potential it experiences a 

force in the iJ direction causing its angular momentum, po = ~~ r 2
, and radial position 

--- ______________________________ _J 
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to change. The magnitude and direction of the radial step depends on the particle's 

azimuthal position at the point of reflection. In addition, fast particles take larger 

steps because a larger force is required to reflect them. Consider a particle satisfying 

the lowest order resonance condition WR= 2wB. Such a particle reflects off each end 

of the plasma at the same IJ position for many bounces and consequently takes many 

radial steps in the same direction. For non-resonant particles the radial steps tend 

to cancel. 

When collisions are sufficiently weak resonant particle transport is always 

present. The size of the transport is determined by the relative number of resonant 

particles and by the contribution from each resonant particle. In the adiabatic limit 

low order bounce-rotation resonances are at low velocities. Although there are a large 

number of resonant particles, the contribution from each particle is small because 

the radial steps are small and infrequent. In this regime resonant particle transport 

is negligible. In the opposite limit where WR» w8 and the resonance is located at a 

large velocity, the contribution from each particle is large but there are few particles 

on the tail of the Maxwellian which interact resonantly. V./e will see from the formal 

treatment that resonant particle transport is important when wB ::::: WR· 

Our starting point is again the drift-kinetic Boltzmann equation, 

8f at + [f, H] = C(f), (2.58) 

where 
p2 

H = 
2

:C, + µB + e<l>(po) + e<l>e(IJ,po,z). (2.59) 

The calculation is simplified by considering a system that consists of only one half 

of the plasma, that is, we take 

e<l>e(IJ,po,z) = ' { 
O· 
oo· 

' 

0 < z < l/2L(O,po) 
otherwise 

(2.60) 
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Since the particles specularly reflect off a plane at z = 0 without changing(), po , z 

or lvzl, the transport equation will be the same for this system as for the full length 

system. 

Writing the Poisson bracket in Eq. (2.58) as 

[f, HJ=!!__ (10H) -~ (10H) + !!__ (10H) -~ (10H) (2.61) 
oz opz opz oz oO opo opo oO 

and integrating over all variables except po gives the result 

(2.62) 

where 

N(po) = j ~: j d2vl j dvz j dzf. (2.63) 

Solutions to Eq. (2.58) are assumed to take the form 

f = fo(H,po, t) + 8f(p,, z,po, (), t), (2.64) 

where 8 f /Jo ~ 8L/ Lo and 

f, _ N(po) e¢/T -H/T 
0 

- (1/2L0 ) (27rT/m) 312 e e 
(2.65) 

In velocity variables, this is a Maxwellian distribution. As in Section II we neglect 

terms higher order in .\v 2 /rp2 by assuming L 0 , T, and N are constant in p8 • 

To first order in 8L/ L0 , the drift-kinetic Boltzmann equation is 

o( s J) ---rJt + [8f, Ho] - C(Jo + 8J) =-[Jo, HJ, (2.66) 

where H0 is the Hamiltonian with 8L = 0. The first two terms on the left hand side 

can be thought of as a derivative along the unperturbed orbit, 

0~[) + [8f,Ho] = d~:l (8f) (2.67) 

We approximate the collision operator by 

C(Jo + 8J) = -v8f (2.68) 



40 

where v is an effective collision frequency. Clearly, this oversimplifies the transport 

problem in the adiabatic limit because there is no reason to expect v = v ~. 
11

• For 

resonant particle transport, however, we will let v--> 0 at the end of the calculation 

and the effective collision frequency drops out. We do not expect this transport to 

depend sensitively on the detailed nature of the collision operator. 

Evaluating the R.H.S. of Eq. (2.66) and using Eqs. (2.67) and (2.68) gives 

d(O) (of) Of = WR I' 8( e<f>e) 
dt + v r ' 0 80 · 

The solution to this equation is 

(2.69) 

(2. 70) 

where the prime indicates evaluation along the unperturbed orbit. To this order 

in oL Jo is constant along the unperturbed orbit and may be factored out of the 

integral so that 

(2. 71) 

Consider Eq. (2.62), the transport equation. Since 8H/80 = 0 everywhere except at 

the end of the plasma, we need to find of only at the end of the plasma where the 

particles are reflected. Therefore, it is convenient to write Eq. (2.71) as 

of(t) =WR f, f'o dt'e-v(t-t')8(e<f>e) +WR f, f' dt'e-v(t-t')8(e<f>e). 
T 0 lo 801 T 0 

},0 801 
(2. 72) 

where t0 indicates the time just before the reflection. The first term consists of a 

sum of many reflections and the second term is due to a single partial reflection. 

Vve delay evaluation of the second term until of is inserted into the transport 

equation. We evaluate the first term by calculating the effect of a single reflection 

and then summing over many reflections. The axial impulse exerted by the end 

potential on a particle during reflection is 

- 2IP~I = -1 dt' 8e~e. 
turn az (2. 73) 
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Since the end potential is only a function of the quantity (z - ~L(li,pe)), this 

may be rewritten as 

I 01 2 r ,8e<I>e 
- 2 Pz = 8L / 811 lturn di 811' . (2.74) 

Since -8( e<I>) / 811 = pe , the change in pe due to the reflection is 

[ ,8e<I>e 01 a8L 
6.pe = - lturn dt 8111 = + IPz 811 . (2. 75) 

This equation has a simple physical interpretation. The force which reflects a particle 

is normal to the surface at the end of the plasma. Due to the asymmetry, there is a· 

small component of this force in the iJ direction which exerts a torque on the particle 

causing pe to change. A larger force is needed to reflect fast particles and therefore 

these particles take larger steps in Pe . 

The first term in Eq. (2. 72) can now be written as 

(2.76) 

where the index j is summed over past reflections. The time at the jth reflection is 

given simply by 

and along unperturbed orbits 

Lo . 
t1 = t - lv~IJ' 

{I'= {i - WR(i - t') 

After substituting in a Fourier series for 8L, Eq. (2. 76) becomes 

N 
8f, = -;R folP~I L il8L1(pe)e;ie L e-j(;tWR+v)Loflv~I. 

l j=1 

(2.77) 

(2. 78) 

(2. 79) 

This contribution to 8 f arises from a series of discrete "kicks" acting on fo. Note 

that those kicks which occurred in the distant past (large j) are collisionally damped. 

The sum over j can be evaluated exactly so that 

-w . (e-(ilWR+v)Lo/lv~IN _ 1) 
8J, = TR folP~l 2( il8L1(pe)e'l0 e-(ilWR+v)Loflv~I _ 1 · (2.80) 
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The exponential in the numerator can be dropped because 

Lo v 
v-N ~ vt ~ - » 1. 

lv~I I 
(2.81) 

Using the mathematical identity 

1 1 00 1 
eiz - i = --2 - i L i 2 , 

n=-oo - 7rn 
(2.82) 

the full fluctuation distribution is written as 

(2.83) 

Inserting J =Jo+ 8f into Eq. (2.62) gives 

8N(po) =}!__[id() id2 id id bf8e<Pe] 
8t 8po 27f VJ. Vz z 8() ' (2.84) 

where fo has vanished in the integral over(). Since we have calculated 8 f as a function 

of time, it is useful to transform this integral into an integral over unperturbed orbits. 

First note that the integrand is nonzero only at the end of the plasma and so the 

transformation need only be valid for the short turning time. If a particle has phase 

space coordinates (0°,po 0
, z0 ,p~) at time t0 at some position just before the end of 

the plasma, the unperturbed orbits valid during the turn are 

0 = eo 
' 

PB 0 Po , 

Pz Pz(p~, z0
, t), 

z = z(p~, z0
, t). 

We change variables in the integral using 

d 
1
8(z,pz)I 0 18z8pz 8pz8zl 0 

Z dpz = B(t,p~) di dpz = Bi Bp~ - Bi Bp~ di dpz. 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

(2.89) 
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The equations of motion are derived from the unperturbed Hamiltonian, H0 , and 

therefore this may be written as 

d d -18Ho8Pz 8Ho az Id d 0 z Pz - a a a + a a,,/J t p,. 
Pz Pz Z l'z 

(2.90) 

The quantity in absolute value bars is just 8Ho/ 8p~ and therefore 

1
8Hol 0 I "I 0 dz dpz = ap~ di dpz = Vz di dpz. (2.91) 

The transport equation can now be written in the form 

8N(pe) =_!!__{!dB Jd2 lo"" d 0 0 l't d ''f'aH} 
a a V.L VzVz tu aB , t Pe 271" o to ' 

(2.92) 

where the primes indicate evaluation along the unperturbed orbit and t f is the time 

just after the turn. 

Using bf from Eq. (2.83) this becomes 

8N(pe) 
at 

_!!__ {J dB j d2v {"" dv"v" f't dt'8ei!>e [wn j,' f't dt"8ei!>e 
8pe 271" .i Jo z z J, 0 8B1 T 0 J, 0 8B 11 

WR r' o "'\""' ·zcL ( ) i/O (1 + T JoPz 7 z v l Pe e 2 

+i ~ (lwn - iv)~o/v~ - 27rn)]} (2·93) 
To this order, fa is constant along the orbit and may be pulled out of the integrals. 

In velocity variables, f 0 (t = t0 ) is given by 

where fM is a Maxwellian. 

and 

The time integrals can be expressed in terms of D.pe as 

1'1d 1 8e<I>e A t -- = -upe 
to 8B1 

f't d ,8ei!>e f't d ,,8ei!>e = ~D. 2 

lt
0 

t 801 J,
0 

t 8B11 2 Pe 

(2.94) 

(2.95) 

(2.96) 
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Using !::..p8 from Eq. (2.75), Eq. (2.90) becomes 

8N(pe) 
8t 

{) {! d(J J 2 {
00 

O 2 O 3 ( ) WR 
= 8pe 2ir d VJ. Jo dvzm (vzl fMN Pe T 

x LilfiL1e;18 Lil'fiLl'eit'BL . i 
0 

} . (2.97) 
1 /' n (lwR - w)Lo/vz - 2irn 

After integrating over v 1. and (} and dropping the imaginary part of the integral, this 

becomes 

where we have introduced WB = irlvzl/ Lo. 

First consider the n = 0 term in the sum. This may be thought of as the 

transport due to a resonance located at Vz = oo and corresponds physically to 

transport in the adiabatic limit. Evaluating the integral over Vz for this term yields 

8Nadiabatic _ _ _!!_ { (fiL2) (_'!_) } 
{) - {) 3v L2 N(pe) . 

t Pe 0 -wR 
(2.99) 

Identifying v with 4/3v,, 
11

, we have the same result obtained in Section II. If we had 

kept v as an operator, we would have recovered v '· 11 • 

Now consider the terms in the sum for n > 0. Since we are working in the 

small v limit we approximate 

(I ) 
'.:e irfi(lwR - 2nwB ). 

WR-2nwB 2 + v2 

v 
(2.100) 

The factor of 2 appears because particles are reflected at both ends of the plasma. 

Particles with WB = wR, for example may step radially outward at one end of the 

plasma, but will step inward at the other end. 

Using the approximation of Eq. (2.97) the transport equation becomes 

8N(pe) = _ _!!_ { 4 (2-FJ2L (lwR)
6 l8Ltl 2 

exp [ 
8t 8pe 64 l,n ( n<.J"B ) 5 Lfi 

(lwR)
2 

]) T } 
8(nw-B) 2 -WR N(pe) ' 

(2.101) 
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where WB = 7r~/ L 0 is the mean bounce frequency in the plasma. The size of 

the resonant particle transport is determined by two competing effects. Consider the 

case where the resonance is located at large Vz· The resonant particles take large 

radial steps as the end potential must exert a large force in order to reflect them. 

Furthermore, these fast moving particles are reflected very frequently. While these 

effects tend to increase the transport, the location of the resonance on the tail of the 

Maxwelllian insures that there are relatively few resonant particles. Similarly, when 

the resonance is located at small v,, the contribution from each particle is small, but 

there are many particles which interact resonantly. 

For moderate temperature plasmas the n = 1 term in Eq. (2.98) is largest. 

To determine which terms in the sum over l are largest we estimate the size of the 

Fourier components fiLz. The end shape of the plasma is axisymmetric about the 

central axis of the trap and by considering the shape of the vacuum equipotential 

contours we expect the radius of curvature of the end shape to be proportional to 

Rw the radius of the conducting wall. If we model the end of the plasma as the 

intersection of a cylinder and a hemisphere of radius Rw we find that the length of 

the plasma parallel to the magnetic field is 

L(r,O) =Lo -JRw2 -(D2 + 2DrcosB + r 2 ) (2.102) 

where D is the displacement of the center of charge off axis and ( r, B) is a cylindrical 

coordinate system centered on an axis through the center of charge. Taylor expanding 

this expressi'on in the limit Dr « Rw 2 we find that 

(
Dr )Ill 

SL ex Rw Rw 2 (2.103) 

Note that this agrees with the scaling given by Eq. (2.5) for a flat end (I= ±1). In 

the experiments D / Rw and r / Rw are typically very small and therefore the terms in 

Eq. (2.98) with l =J ±1 are negligible despite the coefficient~ 16
. Keeping only the 
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n = 1 and l = ±1 terms and changing variables from (po, Ii) to (r, Ii) the transport 

equation can be written as 

This result may be understood physically by considering the orbit of a sin

gle resonant particle. In one reflection the particle takes a radial step as given by 

Eq.(2.75) (recall po= ~~r2 ). The particle takes approximately WB/v of these steps 

before being converted to a non-resonant particle so that the fundamental step size 
-, 

governing the transport is 

(2.105) 

One can estimate the size of the diffusion coefficient as the average of the step size 

squared times the rate at which particles take steps, that is, 

D = v((t.r) 2)o 

The radial particle flux is given by 

r = -D (B!o) t.v, 
Br H 

(2.106) 

(2.107) 

where the distribution function and the diffusion coefficient are to be evaluated at the 

resonant velocity. 6.v is the width of the resonance in velocity space and (along with 

the distribution function) indicates the relative number of particles which participate 

in the resonant interaction. For the case n = 1, l = ±1, the resonance condition is 

2WB ±WR+ iv= 0 (2.108) 

so the width of the resonance may be estimated to be 

Lo Lo 
6.v = -6.wB = -v. 

7r 2,,. 
(2.109) 
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After some algebra the estimate for the flux can be written as 

(2.110) 

Except for a numerical coefficient this expression agrees with the flux given in Eq. 

(2.101). 

To find the damping rate of the m = 1 diocotron mode, we would again use 

conservation of angular momentum (Eq. 2.14). The ratio of the resonant particle 

damping rate to the adiabatic damping rate is given by 

(2.111) 

When this ratio becomes larger than 1, we expect that resonant particle damping 

will dominate. In typical experiments, WB » WR and therefore tesonance effects 

are negligible. Even when 1' /1" > 1, we must be sure that the frequency ordering 

v «: w8 strictly holds. Even moderate collisionality will destroy the resonance effect. 

In the limit v > w8 a fluid-like treatment is more appropriate. 

This chapter, in part, is a reprint of the material as it appears in Physics 

of Plasmas 2, 355 (1995). The dissertation author was the primary investigator 

and author and the co-author listed in that publication directed and supervised the 

research which forms the basis for this chapter. 
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Figure 2.1: The confinement geometry. 
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Figure 2.2: Coordinate system for the off-axis plasma (end view). 
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Figure 2.3: Length of the off-axis plasma. 
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Figure 2.4: Side view of flux tube. 
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Figure 2.5: End view of flux tube. 
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Figure 2.6: Damping rate of the m = 1 diocotron mode vs. temperature. Experi
mental measurements and numerical calculations (/'num) by Cluggish and Driscoll[9] 



54 

10- 1 

,,......._ 
.... 
I 
() 
Q) 
f/l .__... 

10-2 
r-

10 

l'num 
0 0 

...... . .... 

20 

0 0 

.... . ... 

30 40 50 60 7080 

B (kG) 

Figure 2. 7: Damping rate of them = 1 diocotron mode vs. magnetic field strength. 
Experimental measurements and numerical calculations ( /num) by Cluggish and 
Driscoll[9] 
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Chapter 3 

Rotational Pumping and the 
"Rotating Wall" 

3.1 Abstract 

In the guiding center limit, the canonical angular momentum of a non-neutral 

plasma is proportional to its mean square radius. While static asymmetries in Pen

ning traps exert a drag on the plasma and cause it to expand radially, a rapidly 

rotating asymmetry is shown to exert a torque in the same direction that the plasma 

rotates and cause it to be compressed. The torque and the inward particle flux are 

calculated for case that the rotating asymmetry is located at the end of the plasma. 

In realistic experiments the plasma is also influenced by a background torque causing 

the plasma to expand. Stationary states are possible when these torques balance and 

a cooling mechanism exists to dissipate the heating that is produced by the applied 

time-dependent asymmetry. The stability of stationary states of pure ion plasmas 

is investigated for the case that the background torque and cooling is due to cold 

neutrals. 

3.2 Introduction 

In experiments with non-neutral plasmas confined in Penning traps, time

dependent voltages applied to a sectored ring have been observed to cause inward 

56 
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radial transport and plasma compression[! - 5]. The typical confinement geometry 

for these experiments is shown schematically in Figure 3.1. A conducting cylinder is 

divided axially into rings, one of which is also divided azimuthally. Axial confinement 

is provided by negatively biased end rings (positive for an ion plasma) and radial 

confinement by a uniform magnetic field directed along the axis of the cylinder. 

Voltages applied to the azimuthally sectored ring cause radial particle transport. 

The most important concepts necessary for understanding transport in these 

plasmas are angular momentum and torque. In the guiding center limit the total 

canonical angular momentum of the plasma is approximately given by 

Pe= eB f.rJ = eB N(r2) 
2c i=I 2c 

(3.1) 

where r; is the position of the jth particle as measured from the axis of the trap 

and e carries a sign. In the absence of external torques, Pe is a conserved quantity 

and (r2
), the mean square radius of the plasma, is constant. External torques cause 

radial particle transport. At high neutral pressures the dominant torque arises from 

neutrals which act as stationary scattering centers in the lab frame[6 - 8]. At lower 

neutral pressures the dominant torque is believed to be due to time independent 

azimuthal asymmetries in the confining fields[6, 8]. Both of these effects oppose the 

direction of plasma rotation and cause the plasma to expand. In experiments with 

pure ion plasmas laser beams have been used to exert a torque in the same direction 

that the plasma rotates and cause inward transport of the plasma[lO]. In this paper 

we consider the torque and transport arising from time-dependent voltages applied to 

an azimuthally sectored ring. \Ve show that this technique may be used to compress 

a non-neutral plasma. If the compression rate is larger than the transport due to 

field errors or neutrals, one can confine a non-neutral plasma for an arbitrary length 

of time. This may be of practical importance in experiments with pure electron and 

pure positron plasmas where lasers can not be used to exert a torque. 
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Of particular interest is the special case where the voltages vary sinusoidally, 

but are phased so that the electrostatic asymmetry appears to rotate, i.e., 

<T>c = <T>o + o<T> cos[mll - wt] (3.2) 

We call this a "rotating wall". An Asymmetry that rotates more slowly than the 

plasma exerts a drag on the plasma and causes F x B drifts that are directed radially 

outward. An asymmetry that rotates more rapidly than the plasma exerts a drag in 

the same direction that the plasma rotates and causes F x B drifts that are directed 

radially inward. 

This result also follows from more formal thermodynamic arguments. For 

a sufficiently weak rotating asymmetry, the plasma remains near the thermal equi

librium state which is specified by the instantaneous values of the energy E, the 

canonical angular momentum Po , and the particle number N. The entropy of the 

plasma is a function of these variables. In a time interval dt the torques cause dif

ferential changes in E and Po ; N is constant. Using the thermodynamic relations 

T = (8E/8S)N,Po and WR = (8E/8Po)s,N [11], we find that the entropy changes 

according to 

TdS = dE - wRdPo, (3.3) 

where WR is the E x B drift rotation frequency of the plasma. 

In this expression, E is the energy of the plasma in the lab frame. In a frame 

that rotates with the asymmetry, the energy is given by [11] 

E'=E-':'!...Po. 
m 

(3.4) 

In this frame the confinement potentials are time independent , and therefore E' is 

constant during the evolution. It follows that dE = (w/m)dPo . Eq. (3.3) may then 

be expressed as 

dPe = TdS . 
w/m -WR 

(3.5) 
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Since dS must be positive (second law of thermodynamics), the sign of dP0 

is determined solely by the sign of w/m-wR. For an electron plasma, Po is negative 

and WR is positive. When w/m >WR the angular momentum of the electron plasma 

increases towards zero and the mean square radius of the plasma decreases. For a 

positron plasma or an ion plasma, Po is positive and WR is negative. To compress 

a positron plasma one would set w/m <WR (more negative) forcing Po and (r2 ) to 

decrease as the entropy increases. As the plasma is compressed its rotation frequency 

approaches the frequency of the rotating wall. Eventually the plasma relaxes to 

thermal equilibrium in the frame that rotates with the asymmetry and dS-+ 0. 

The preceeding results apply to any transport which is driven by a pure 

rotating asymmetry. In the remainder of this paper we consider transport driven 

by time dependent voltages positioned at one end of the plasma (See Fig. 3.2). We 

choose this geometry for two reasons. In experiments with pure electron plasmas it 

is often the case that the bounce frequency for a thermal electron is much larger than 

its E x B drift rotation frequency. In this limit, the plasma responds adiabatically. 

If the voltages are placed along the side of the plasma as in Fig. 3.1, the potential is 

screened out on the scale of a Debye length and the transport only occurs at the edge 

of the plasma. When the sectored ring is placed at one end of the plasma, all of the 

electrons interact with the asymmetry as they are reflected and the entire plasma 

participates in the transport. The other reason we choose this geometry is that 

the transport due to static end asymmetries is well understood theoretically. This 

transport is called rotational pumping [12]. The theory has been used successfully 

to explain the transport associated with damping of the m = 1 diocotron mode[13]. 

Motivated by the good agreement between theory and experiment found in this case, 

we generalize the theory to include time-dependent asymmetries. 

In section 3.4. we outline a calculation of the particle flux based on a solution 
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of the drift-kinetic Boltzmann equation. The calculations are somewhat tedious 

and are not included in their entirety. See reference [12] for the details of similar 

calculations. In section 3.5 we consider an ion plasma which is influenced by a 

background torque due to neutrals as well as an applied torque and look at the 

possibility of a achieving a stable stationary plasma. In section 3.4 we estimate the 

transport due to aliasing and show that in practical experiments these effects can 

often be neglected. 

3.3 Calculation of the Flux 

In this section we outline formal solutions to the drift-kinetic Boltzmann 

equation. These calculations are closely related to those found in reference [12] 

which are valid for the case of static asymmetries in the end confinement potentials. 

When the end confinement potentials take the form of a pure rotating asymmetry, 

the static results are recovered in a frame that. rot.ates with the asymmetry. 

In this analysis, we assume the following frequency ordering: 

(3.6) 

where !1c is the cyclotron frequency, ws is the axial bounce frequency, wn is the 

rotation frequency, w is the frequency of the applied asymmetry, v is the collision 

frequency, and r is the transport timescale. Since !1c is the largest frequency, we may 

describe the collisionless single particle dynamics with a guiding center Hamiltonian 

of the form[15] 
p2 

H = 2~ + µB + eiJ>(pe) + eiJ>,(11,pe, z, t), (3.7) 

where Pe= eB/2cr2 is the canonical angular momentum conjugate to Ii. We break 

up the potential into two parts: iJl(pe) is the space charge potential and iJ>e(li,pe, z, t) 
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is the Debye-screened end potential. Since the Debye length is small we let 

e<l>,((} 
0 

z t) = { O; Zmin(O,.po,t) < z < Zmax(Po) 
'p ' ' oo; otherwise 

(3.8) 

where Zmin and Zmax are the axial positions at which the particles are reflected. In this 

expression we assume that <I>, oscillates at a frequency w which is small compared 

to the frequency of plasma modes. The term µB = 1/2mv1 in the expression for 

H is the perpendicular kinetic energy of the particle. In the guiding center limit, 

µ = CONST., and since the magnetic field is assumed to be uniform, µB enters 

the Hamiltonian as an additive constant. We retain this term in the Hamiltonian 

because it is useful to write Maxwellian distribution functions as a function of H. 

3.3.1 The Adiabatic Limit 

For the case that the bounce frequency ws = 2Klvzl/2L is large compared to 

w and WR the bounce action 

I=..!_ f Pzdz = ..!_ f J2m (H - Bµ - e<I> - e<I>,), 
21f 21f 

(3.9) 

is a good adiabatic invariant. As noted by J.B. Taylor,[15] an equation of this form 

implicitly defines H in terms of I, 0, po, and t. Given the simple form of the end 

potential, this equation is easily inverted to give 

1f2 J2. 
H(I, O,po, t) = 2 L2 ((} t) + Bµ + e<I>(Po), 

m ,po, 
(3.10) 

where L(O, po, t) = Zmax - Zmin· 

We represent the plasma with a distribution of guiding centers, 

f = f(I,1/J,po,,O,µ,t), (3.11) 

where ,Pis the angle conjugate to I and indicates the phase of a particle in its bounce 

motion (i.e. its position along the magnetic field). This distribution function evolves 
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according to the drift-kinetic Boltzmann equation, 

af at+ [f, H] = C(f), (3.12) 

where C( ·) is the collision operator, and the Poisson-bracket is given by 

afaH afaH afaH 
[f, HJ = a,p al + ao ape - ape ao · (3.13) 

In the adiabatic limit, WB = aH I al is large and so a f I a,p must be small. 

Otherwise, a f I at would be large and the distribution would evolve rapidly along 

the magnetic field. Physically, this corresponds to the fact that any initially large 

1f; variations are rapidly phase mixed by the bounce motion. The small 7/J variations 

are uninteresting from the standpoint of cross-field transport and may be eliminated 

by integrating Eq. (3.12) over ,P. The result is 

where 

aJ + aJ aH _ aJ aH _ c(l) 
at ao ape ape ao - ' 

[h 
f(I,pe,O,µ,t) =lo d,PJ(I,1/;,pe,O,µ,t). 

Rewriting Eq. (3.14) as 

(3.14) 

(3.15) 

(3.16) 

and integrating over 1, µ, 0, and the short time interval 27r /w, yields the transport 

equation 

an(pe) _ _!}_ [J d() 1t+h/w !::!_ j aH -i 
at - ape 27r , dt 27r dl dµ ao f ' (3.17) 

where 

J d() 1'+2~/w W J -n(pe) = 27r , dt 
2

7r dldµf. (3.18) 

The integral over the collision operator vanishes because collisions conserve the num-

her of particles. 

'------------------------------------------ --
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To obtain a transport equation accurate to second order in 8H / 8() we must 

obtain J accurate to first order in 8H/8(). We look for solution to Eq. (3.14) of the 

form 

- - -(o) -(1) 
f = fo(H,pe) + fif (I,pe,O,t,µ) + fif (I,pe,O,t,µ), (3.19) 

where 

(3.20) 

is a Maxwellian, 8 indicates terms first order in 8H I ao and the superscripts indicate 

an ordering in collisions. In solving perturbatively in collisions we are assuming the 

frequency ordering lwR - wl » v. 

and 

Inserting the Fourier series 

°" fij-(0) ei(IB-wt) 
~ l,w ' 
l,±w 

= °" fij-(1) ei(IB-wt) 
~ l,w ' 
l,±w 

fiL = 2::: fiL1,wei(IB-wt) 
1,±w 

into the Boltzmann equation we find the fluctuations 

and 

-(1) -i (- 1 ( rr
2 
I2 ) 2 -) 

fif1,w = lwR _ w C Jo - T 2mL2 LfiL1,wfo · 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

Plugging these results back into the transport equation and performing the 

indicated integrations gives 

(3.26) 

where v "· 
11 

is the equipartition rate defined by 
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v,,11 

(3.27) 

For details of a similar calculation see reference [12]. Changing variables from (po, 0) 

to ( r, 0) yields 

8n(r) = -~~r [4v,,11 ~n(r) 2::: e;!6L1,wl2 ] 
8t r 8r L0 l,±w --c-( lwR - w) 

(3.28) 

The quantity in brackets is the radial particle flux. 

Consider the limit of a pure rotating asymmetry. Here we take 

L(O,po, t) =Lo+ l6LI cos (mO - wt) (3.29) 

and the only nonvanishing Fourier components are 

(3.30) 

Plugging this into Eq. (3.28) and recognizing that (6L2
) = 1/2 l6Ll 2 yields the radial 

particle flux 

r T m(6L2
) 

,=4v,,un(r)_eBc[ ] L2 ' 
-c- niwR-w 0 

(3.31) 

Since the E x B drift rotation frequency of the plasma in a frame that rotates with 

the asymmetry is WR - w /m, this transport flux is identical to the adiabatic flux 

derived in reference [12]. 

The transport has a simple physical interpretation. Rotational pumping 

causes the plasma to heat. Since energy is conserved in the frame that rotates 

with the asymmetry, the electrostatic energy in the frame that rotates with the 

asymmetry must decrease as the plasma temperature increases. The transformation 

to the rotating frame gives a 1/ c v x B contribution to the electric field so that 

{)if>' [)if> Br w 
--=--+--

8r 8r c m 
(3.32) 
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where <I> is the potential in the lab frame and is related to the density through 

Poisson's equation. If w is sufficiently large, the direction of the electric field is 

reversed in the rotating frame. To change electrostatic energy into heat, the plasma 

must be transported radially inward rather than outward. 

When lwR - w /ml becomes small the electric field in the rotating frame 

becomes weak and large radial transport accompanies the heating. It is important 

to note, however, that the rotational pumping calculation is only valid when the 

azimuthal E x B drift is larger than the drifts associated with reflections off the 

end potentials. These drifts are proportional to the temperature of the plasma and 

therefore the electrostatic potential in the frame that rotates with the asymmetry 

must be larger than the kinetic energy, i.e., 

e [ t1> _ ~ B;2 ;; ] 
---'---T---"- ~ 1. (3.33) 

In terms of rotation frequencies this condition can be expressed as 

lwn-w/ml 
(3.34) 

where we have used T/(e<I>) ~ >.v 2/rp 2 and have taken the Ex B drift rotation 

frequency for a constant density plasma. 

Our solution to the drift-kinetic Boltzmann equation assumes that the drifts 

associated with reflections are a small perturbation on the E x B drift orbits. When 

the condition given in Eq. (3.34) fails, the E x B drift becomes a small perturbation 

on orbits determined by the end shape of the plasma and our transport calculation 

is no longer valid. Fortunately, the Debye length is typically much smaller than the 

radius of the plasma so this regime is rather narrow. 

Another limitation is that lwn-w/ml is assumed to be much larger than vL, 11 • 

When lwR - w/ml < vL,
11 

two new effects must be considered. The heating of the 

plasma depends on a phase shift between the parallel and perpendicular temperature 
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fluctuations. In the regime of strong collisionality (11.q ~ lwR - w/ml ) , 1J1 and Tl. 

remain equal to one another and the rotational pumping process is reversible. As the 

net heating rate decreases the transport decreases. A more subtle transport process 

probably dominates in this regime. In the adiabatic limit, the drift orbits of the 

particles are determined by the constraints of constant energy and constant bounce 

action. For large lwR - w/ml the drift orbits are nearly circular. This is assumed in 

the rotational pumping calculation. When lwR-w/ml is small the drift orbits change 

dramatically and the particles follow "banana orbits". This regime was discussed by 

Ryutov and Stupakov in their work on transport in tandem mirrors[14]. 

3.3.2 Resonant Particle Transport 

In the previous section we neglected the effect of particles satisfying the 

resonance condition lwR - w - nwa = 0 where I and n are integers. When a particle 

is reflected off the non-axisymmetric end potential it experiences a force in the fJ 

direction causing its angular momentum, po = ~~ r2
, and radial position to change. 

Particles that satisfy the resonance condition take radial steps in the same direction 

for many bounces. In the adiabatic limit the contribution from these particles is 

negligible, but when wa is comparable to lwR - w the resonant particle transport 

may be the dominate effect. 

In this section we solve the drift-kinetic Boltzmann equation, 

8J at+ [f, H] = C(J), (3.35) 

where the Hamiltonian is taken to be a function of z and Pz as given by Eq. (3.7). 

Writing the Poisson bracket as 

(3.36) 
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and integrating over all variables except Pe yields the result 

an(Po) = _.!!._ [f ao ['+2-rr/w a .':::!....f d2 fa fa 1aH] 
at OPo 211" }, t 211" Vj_ Vz z 80 , (3.37) 

where 

n(Po) = f ~~ J,'+
2

-rr/w at ~ f a2v1- f av, f azj. (3.38) 

In the adiabatic limit we solved for f perturbatively in both 8H/80 and in 

the effective collision frequency, v. Here we cannot solve perturbatively in v because 

we are looking for an effect which is independent of the collision frequency. Instead, 

we approximate the collision operator by 

C(fo + 8/) = -v8f, (3.39) 

and let v --+ 0 at the end of the calculation. The effective collision frequency then 

drops out. This corresponds to transport in the "resonant-plateau" regime[l6, 17]. 

The calculation is rather lengthy and is nearly identical to that found in 

reference [12]. Essentially one just replaces lwR with lwR - w. The final result for 

the resonant particle transport equation is 

8n(r) 
at 

~-8 r [4 (~F/2 L (lwR - w)
6 

l[8L1,wl
2 

exp [--'-(lw_R_-_w"'"-)
2
]) 

r Or 2 l,n,±w (nw8) 5 L'f, 2(nw-B)2 

x n(r) -~(l~R _ w)] (3.40) 

where WB = 1rjT/m/L0 is the mean bounce frequency in the plasma. As might be 

expected from the thermodynamic arguments, terms in the sum with w/l >WR give 

rise to an inward particle flux while terms with w/l >WR give rise to an outward 

particle flux. 

In the "rotating wall" limit (Eqs. (3.29) and (3.30)). the flux is 

fr = 4 (~F/2 L (mwR - w)
6 

exp [--'-(m--=wR"---w-'-)
2
]) 

2 n (nwB) 5 2(nwB)2 
T m(8L2

) 

xn(r) eBr( ) L2 
--c- ffiWR-W 0 

(3.41) 

I 
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In a frame that rotates with the asymmetry, the static rotational pumping transport 

f!ux[12] is again recovered. Note, however, that the coefficient of w8 in this expression 

differs by a factor of 2 from that found in reference [12]. The reason for this is that 

we have taken the asymmetry to be located at one end of the plasma only, so the 

radial steps occur with frequency WB • For the diocotron damping calculation in [12] 

the particles take steps at both ends of the plasma with frequency 2w8 . 

The quantity in parenthesis in Eq. (3.41) replaces v,,
11 

in the adiabatic trans

port calculated in the previous section. Written this way, one can easily see that in 

the adiabatic limit, WB » WR, w the resonant particle transport is negligible. It is 

interesting to note, however, that even when WR '.::e w8 the adiabatic transport will 

still dominate provided that the plasma rotation frequency is close to the frequency 

of the rotating wall, i.e., [lwR - w[/w-B « 1. The important quantity is the E x B 

drift rotation frequency in a frame that rotates with the asymmetry. When this is 

small the resonance is located at a relatively small velocity and the resonant particles 

take small and infrequent steps. 

3.4 Stationary States 

In this section we consider an ion plasma which is subjected to an applied 

torque due to a rotating wall and an ambient torque due to collisions with neutrals. 

We look for a stationary plasma state where the net torque is zero and where the 

heating due to the applied torque is balanced by collisional cooling on the neutrals. 

This section is motivated by recent experiments in which pure ion plasmas have been 

maintained in a stationary state for a period of days[l]. 

The external torques are assumed to be weak so the plasma remains near 

thermal equilibrium. That is, the transport time scales associated with the external 

torques individually are assumed to be long in comparison to the time for coulomb 
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interactions (internal torques) to bring the plasma into a state of thermal equilibrium. 

In the limit where the Debye length is small, the thermal equilibrium density profile 

may be approximated by a constant density out to the plasma radius, rp . Of course, 

the temperature is also uniform in thermal equilibrium. 

The angular momentum evolves according to 

Po =Twait+ TN (3.42) 

where T wall is the torque due to the applied rotating asymmetry and TN is the am

bient torque due to neutrals. The internal torques act to keep the plasma near 

thermal equilibrium, but they cannot change the total angular momentum. For an 

ion plasma Po is positive and therefore negative torques cause inward radial transport 

and positive torques cause outward radial transport. 

To calculate the temperature evolution of the plasma, we first consider the 

heating caused by the rotating wall. In a frame that rotates with the asymmetry the 

energy is given by 

I W E = E--Po 
m 

(3.43) 

where E is the energy in the lab frame and w/m is the rotation frequency of the 

asymmetry (phase velocity). In the frame that rotates with the asymmetry, the 

perturbation is time independent and therefore E' = 0. This allows one to write the 

rate of change of the energy in the lab frame due to the rotating wall as 

. w 
E =-Twait· 

m 
(3.44) 

In equilibrium we expect w < WR < 0 and Twall < 0 so the rotating wall acts to 

increase the energy. 

Collisions with a background of cold neutrals cause the plasma energy to 

decrease. We denote this as 

(3.45) 
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where N is the total number of particles in the plasma. Here /, is the cooling rate 

and is of order (mn/m;) v where vis the ion neutral collision frequency, mn is the 

mass of the neutrals, and m; is the mass of the ions (we assume that mn/m; < 1). 

Summing the right hand sides of Eqs. (3.44) and (3.45) yields 

(3.46) 

To relate E to T we express the total energy as the sum of the thermal energy 

and the electrostatic energy. For a long plasma (L/Rw » 1) with const;,,nt density 

the energy is given by 

E =~NT+ (Ne)
2 

[~ - In (!.L)J 
2 L 4 Rw ' 

(3.4 7) 

where rp is the radius of the plasma and Rw is the radius of the conducting cylinder. 

Differentiating this equation with respect to time yields 

(3.48) 

The total torque acting on the plasma is related to rp by 

(3.49) 

and the E x B drift rotation frequency of the plasma is given by 

(3.50) 

From these two equations one can show that 

(3.51) 

and therefore 

(3.52) 
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Combining this equation with Eq. (3.46) then yields an expression for the tempera-

ture evolution in the plasma due to the applied torque and the neutral cooling 

(3.53) 

The first term in this equation represents a transformation of electrostatic energy 

into heat, the second term represents heating from the applied torque and the last 

term represents neutral cooling. In equilibrium the torques balance and the first term 

is zero. The equilibrium temperature in the plasma is then determined by a balance 

between the neutral cooling and the heating from the applied torque. It is interesting 

to note that since Twall =-TN in equilibrium, the temperature may be found without 

specifying the transport due to the rotating wall (i.e. T = -2WTN/(3N1cm) ). 

To find an equilibrium and analyze it for stability it is convenient to convert 

Eqs. (3.42) and (3.53) into equations for uf8 and WR. The bounce frequency for a 

thermal particle is defined by 

and therefore 

WB = ~ rr, 
LY~ 

The total angular momentum of the plasma is 

and the E X B drift rotation frequency is 

Eliminating r P2 from these two equations yields 

( eN) 2 1 
Pe-----

- 2£ WR' 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 
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from which one finds 

Po= (eN)
2 

WR. 
2L WR2 

Eqs. (3.42) and (3.53) can then be expressed as 

where 

Equilibria are determined by the coupled equations 

0, 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.64) 

(3.65) 

Linear stability may be analyzed in the usual way by Taylor expanding the right 

hand sides of Eqs. (3.60) and (3.61) about the equilibrium as 

(3.66) 

(3.67) 

where the derivatives are understood to be evaluated at the equilibrium values of WR 

and wB. The stability condition for this linear system is 

( 
8F 8G) -+- ± 
8wR 8wB (

aF 8G) 2 

(aF 8G 8F 8G) -+- -4 --+-- <0. 
8wR 8wB 8wR 8wB 8wB 8wR 

(3.68) 

When this condition fails the equilibrium is unstable. Often, the question of stability 

may be answered if the signs of the derivatives of F and G are known, even if their 



73 

magnitudes are unknown. For example, if aF/awR and aa;aw8 are both positive 

then the equilibrium is clearly unstable. Similarly if 

(3.69) 

then the equilibrium is also unstable. 

In order to evaluate the derivatives of F and G, one needs to find expressions 

for the torques in terms of WR and w8 . Since the angular momentum of the plasma 

IS 

(3.70) 

an external torque may be expressed as 

· eB J 3 2 an eB J 3 2 1 a r=Pe=- drr-=- drr(---(rfr)), 
2c at 2c r ar (3.71) 

where r r is the transport flux associated with the external torque. Integrating by 

parts yields the result 

eB irp r=-(27rL) drr2f., 
c 0 

(3.72) 

where L is the length of the plasma. Given a transport flux, Eq. (3. 72) provides a 

means of calculating the torque. Note that all internal torques cancel in this integral. 

The radial particle flux due to collisions with neutrals is [6) 

I a eE 
rneutra s = -( vr2 n) + vr2 -n 

r ar L L T ' (3.73) 

where vis the ion-neutral collision frequency and rL is the Larmor radius. Since the 

Debye length is small compared to the radius of the plasma, the diffusive term in 

this equation is negligible and Eq. (3.72) gives a neutral torque of 

(eN) 2 v 
TN= -L-!1,' 

where !1, is the cyclotron frequency. 

(3.74) 
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When one takes derivatives of the torques with respect to WR it is the radius 

of the plasma, or equivalently the plasma density, which is allowed to vary. The 

magnetic field is not a dynamical variable. Therefore, 

(3.75) 

To calculate BTN/Bws, we choose a simple hard sphere model for the ion-neutral 

collisions so that 

and thus 

BTN TN Twall 
Bws = w8 = - ws 

(3. 76) 

(3. 77) 

In this expression we have explicitly used the fact that the derivatives are to be 

evaluated at an equilibrium where Twall = -TN. 

This result allows one to write the derivatives of F and G in terms of Twall 

only: 

BF ( 2£ ) 2 BT wall (3. 78) 
BwR N2 2 WR -B--, e WR 
BF ( 2L ) 2 _ B ( T wall) (3. 79) Bw-B N2 2 WR WB~ -_- ' e WB WB 
BG -(-1 ~) (WR-w/m) BTwall (3.80) 
BwR 3N m;L2 w8 BwR ' 
BG ( 1 ~2 ) (WR-w/m)w~(Twall)-. (3.81) - ---
Bws 3N m;L2 _ BB _ - /c WB WB WB 

In the last two equations we have also used the fact that /c ex: Ws which follows from 

Eq. (3.76). In equilibriumwR-w/m > 0 because the "wall" must be rotating faster 

than the plasma (for an ion plasma WR < 0). 

If one can show that 

_ B (Twall) O ws-- -- > 
Bws ws ' 

(3.82) 

J 
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then the stability is determined by the sign of 8Twau/8wR. If 

8Twall O --< 
8wR 

(3.83) 

then 

8F 
0, (3.84) 

8wR 
< 

8F 
0, (3.85) awB > 

aa 
0, (3.86) 

8wR 
> 

aa 
0. (3.87) awB < 

One can see that Eq. (3.68) is then satisfied and the equilibrium is stable. Similarly 

if 

(3.88) 

then 

8F 
0, 

8wR 
> (3.89) 

8F 
0, awB > (3.90) 

aa 
0, 

8wR 
< (3.91) 

aa 
0, awB < (3.92) 

and the equilibrium is unstable. 

First consider the torque due to resonant particle transport. We expect this 

to be the dominant effect when lwR - w/ml ~ WB· Substituting the particle flux 

form Eq. (3.41) into Eq. (3.72) yields 

(L) 2 _ 2 
00 (mwR - w)5 ( (mwR - w)2) 

Twall =-Nm; ; WB €~ (nwB)5 exp - 2(nwB)2 (3.93) 

where N is the total number of particles in the plasma and 

€ = yl8; m fr" dr r (8L2) 
r/ Jo L 2 

(3.94) 
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is a measure of the strength of the rotating wall. On general grounds one should 

expect E to be proportional to the square of the applied voltage. 

The evaluation of the derivatives of Twall can be simplified somewhat if one 

expresses the torque as 

(3.95) 

where 

f(x) = - ~ u~r exp[-~ (~)2] (3.96) 

and 

x= 
mwn-w 

(3.97) 

One then finds that 

_ fJ (Twall) [ (L) 2

] _ ( fJj) WB 8wa WB = Nm; 7r EWB f(x) - x fJx (3.98) 

and that 

fJTwall =[Nm; (!:_) 2

] wa2E ( n: fJj + ~~j(x)) (3.99) 
fJwR 7r WB fJx E fJwR 

In Fig. 3.3 we plot f(x), fJf /fJx and the f - xfJf /fJx. When f - xfJJ /fJx > 0 

the quantity in Eq. (3.98) is positive and the stability of the equilibrium may be 

determined from the sign of 8rwall/fJwR. In Fig. 3.3 it is clear that fJf /fJx < 0 when 

f - xfJf /fJx > 0. Although the functional dependence of E on WR may be quite 

complicated, we can determine the sign of fJE/ fJwR with a simple physical argument. 

As rp increases, the plasma moves closer to the applied rotating asymmetry and 

we expect E, the effective strength of the rotating asymmetry, to increase. That is, 

fJE/fJrP > 0. Since WR~ -rp - 2 we expect 

fJE fJrp fJE 
--=-->0 
fJwR fJwR 8rp 

(3.100) 

and the quantity C 1ffJE/fJwR < 0. Therefore, in the region where f- xfJf/fJx > 0, 

8rwall/8wR < 0 and the equilibrium is stable. In recent experiment[!] a stable ion 

J 
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plasma has been observed with x co: 2 which is consistent with the analysis presented 

here. When f - xo f /ox < 0 the stability analysis is more complicated. In the 

region where of/ ox > 0, for example, one would need to determine the magnitude 

Now consider the case where lwn - w/ml/ws is small. In this limit, the 

resonant particle transport is negligible (as can be seen from the behavior of f( x) 

for small x) and the adiabatic transport flux is the dominant effect. Substituting the 

adiabatic flux form Eq. (3.31) into Eq. (3. 72) yields 

[{! . (L) 2 
] _ 2 Vi,11 Twall = - -N - mi EWB . 

7r 7r ffiWR -w 
(3.101) 

In the limit where the plasma is weakly magnetized, 

(3.102) 

Therefore, 
1 WR 

Twall CX: E _ , (3.103) 
wsmwn -w 

and it is easy to show that 

_ 0 (Twall) O ws-- -- > . 
OWE WB 

(3.104) 

Once again, the sign of OTwau/own is sufficient to determine stability. 

In the regime where the adiabatic transport is large, the behavior of Twall is 

dominated by the small quantity (wn -w/m)/wn and one may treat E as a constant. 

For fixed ws the torque can be expressed as 

Twall '.:::::'. -K./y, (3.105) 

where y = (wn - w/m)/lwnl and K is a positive constant. Note that for small y 

OT wall 1 OT 
--~----

OWR - lwnl oy. (3.106) 
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In Fig. 3.4 we plot Twall vs. y. For positive values of y (where an equilibrium is 

possible) 8Twa11/8y > 0 and the equilibrium is unstable. 

In Fig. 3.4 the torque diverges as IYI --+ 0. As argued in section 3.3.l the 

assumptions underlying our transport theory break down when IYI < >.v 2 /r/. On 

physical grounds, one should expect the torque curve to turn over and go to zero as 

IY I --+ 0. This behavior is illustrated in Fig. 3.5 where the dashed curve indicates 

the expected behavior of the torque. 

Along the dashed curve, 8T wall/ Bwn < 0 and one would expect the equilib-

rium to be stable. In this regime, one must also assume that the torque satisfies the 

condition 

_ a (Twall) O WB-- -- > . 
awB wf3 

(3.107) 

To formally derive the transport flux in this region one.could solve the drift-kinetic 

Boltzmann equation in the limit were the electrostatic energy in the frame that 

rotates with the asymmetry is small in comparison to the temperature. Provided 

that lwn - w/ml > vL.ll one could still solve perturbatively in the effective collision 

frequency and one would expect to find a transport flux which is proportional to v. 

Since v ~ r-3!2 ~ w-B-3 we expect the magnitude of the torque to decrease as WB 

mcreases. Therefore, the assumption given in Eq. (3.107) seems to be a reasonable 

one. 

3.5 Aliasing 

In this section we consider the confinement geometry shown in Fig. 3.2 

and .estimate the transport due to aliasing. One of the end confinement cylinders 

is divided azimuthally into N sectors. The voltage on each sector oscillates with 

frequency w, but the phases are set independently. The voltage on the confinement 



cylinder may be expressed as 

il>c(I:!, t) = Vc + 5V cos[qlj - wt], 211" ( . ) n 211" . -1-l <u<-1 
N ' N 
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(3.108) 

Here Vc is a constant confinement voltage and qlj is the phase of the voltage on the 

jth section. 

Simulating a rotating wall amounts to a careful choice of the phases, qlj. The 

azimuthal position in the center of the jth sector is 

(3.109) 

In order to simulate a rotating wall as given in Eq. (3.5) one would set qlj = ml:!j so 

that 

Using 

1t+2"/w W l2rr dO 
,)V, = dt - e±iwt -e-ilBil> (0 t) l,±w 2 2 c ' 

t 7r a 7r 

the Fourier components are found to be 

.lV, _ .lV _ { 2~1 5V sin(mN )N; 
l,+w - -l,-w - O· 

' 

l = m-pN 
otherwise 

(3.110) 

(3.111) 

(3.112) 

where p is an integer. The largest term is the p = 0 term which corresponds to a 

traveling wave. In the limit N -> oo this is the only component that survives and is 

equal to 

(3.113) 

This is the rotating wall limit. 

The most important aliased component that contributes to outward radial 

particle transport is the p = 1 component. Taking only terms for p = 0 and p = 1 

we write the potential on the confinement cylinder as 

5V 
il>c(I:!, t) = Vc + 5V cos( ml:! -wt)- N _ m cos((N - m)I:! +wt). (3.114) 
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Expressed in this way one can easily see the aliased component traveling in the 

opposite direction. 

To accurately find the length fluctuations that result from the confinement 

potentials in this equation, one can follow the procedure of Cluggish and Driscoll 

and use a three dimensional Poisson solver[13]. Here we estimate how the length 

fluctuations scale by assuming that 8L is proportional to the potential fluctuations 

evaluated at the end of the plasma. This idea was used by Peurrung and Fajans [18] 

to estimate the shape of a displaced plasma column. 

Solving Laplaces equation with the boundary conditions of Eq. (3.88) we 

find that the potential at the end of the plasma is approximately given by A solution 

to Laplace's equation with the boundary conditions given in Eq. (3.114) is given by 

cW> ex Jm(Xm,1r/ Rw) exp[-xm,16.z/ Rw] cos(mB - wt) -

JN-m(X(N-mpr/ Rw) exp[-X(N-mpl'.z/ Rw] 

x cos((N - m)B +wt) (3.115) 

where L'.z is the distance from the end of the plasma to the confinement cylinder 

and x1,1 is the first zero of the Bessel function J1. The length fluctuations may then 

be estimated as 

8L( IJ, t) '.::e 8L cos( mB - wt) +DLA cos((N - m )0 +wt) (3.116) 

where 

(3.117) 

One might have expected the aliased component to be small by a factor of 1 /(N - m ). 

In fact, the aliased component is exponentially small. This is simply due to the fact 

that the aliased components have a large azimuthal mode number and these do not 

penetrate very far into a cylinder. The potential is smoothed with distance and 
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the low azimuthal mode numbers dominate. Since the transport scales as l8L2 1, the 

outward radial transport due to aliasing is typically exponentially small. Of course, 

this conclusion assumes that N > 2m so that the aliased component of the potential 

does have a larger azimuthal mode number. 
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V1 (t) 

V2(t) 

V3(t) B 

V4(t) 

Figure 3.1: The confinement geometry. 
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\/1 (t) 

\/2(t) 

13 \/:3(t) .. 
\/4(t) 

Figure 3.2: The confinement geometry with time-dependent voltages positioned at 
one end of the plasma 
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Figure 3.3: f(x), DJ /Bx and f(x) - x8f /Bx where x = (mwR - w)/wB 

-------- ·----------
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Figure 3.4: The adiabatic torque plotted as a function y = (wn -w/m)/lwnl 
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Figure 3.5: The adiabatic torque plotted as a function y = (wR - w/m)/JwRJ and 
the expected behavior of the torque for small values of JyJ (the dashed curve). 
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Chapter 4 

Transport in a Toroidally 
Confined Pure Electron Plasma 

4.1 Abstract 

O'Neil and Smith have argued that a pure electron plasma can be confined 

stably in a toroidal magnetic field configuration. This paper shows that the toroidal 

curvature of the magnetic field of necessity causes slow cross-field transport. The 

. transport mechanism is similar to magnetic pumping and may be understood by con

sidering a single flux tube of plasma. As the flux tube of plasma undergoes poloidal 

E x B drift rotation about the center of the plasma, the length of the flux tube and 

the magnetic field within the flux tube oscillate, and this produces corresponding 

oscillations in 711 and TJ_. The collisional relaxation of 711 toward Tl produces a slow 

dissi pa ti on of electrostatic energy into heat and a consequent expansion (cross-field 

transport) of the plasma. In the limit where the cross-section of the plasma is nearly 

circular the radial particle flux is given by rr = ~v~. 11 T(r/p0 )2n/(-e8i'f.>/8r), where 

v ~. 11 is the collisional equipartition rate, p0 is the major radius at the center of the 

plasma, and r is the minor radius measured from the center of the plasma. The 

transport flux is first calculated using this simple physical picture and then is calcu

lated by solving the drift-kinetic Boltzmann equation. This latter calculation is not 

limited to a plasma with a circular cross section. 

88 



89 

4.2 Introduction 

Pure electron plasmas confined by a toroidal magnetic field have been studied 

both experimentally and theoretically since the 1960's[l - 3] and have received re

newed attention in recent years[4, 5]. The equilibria of pure electron plasmas confined 

by a toroidal magnetic field were studied by Dougherty and Levy[2]. The equilibria 

exist due to the strong space charge electric fields that arise because the plasma is 

nonneutral. These fields cause particle drift orbits to be closed. One can think of 

the poloidal E x B drifts as providing the rotational transform. 

Recently, O'Neil and Smith [5] argued that a pure electron plasma can be 

confined stably in such a configuration when the frequencies are ordered so that 

the cross-field motion may be described by toroidal-averaged drift dynamics. They 

found equilibria for which the energy is a maximum relative to neighboring states. 

The system point evolves on a contour of constant energy in the space of accessible 

states, and when the energy is a maximum, the contour shrinks to a point and no 

further change in the state is possible. 

In this paper we obtain a collisional transport equation for a pure electron 

plasma that is confined in this geometry. We assume the same frequency ordering 

that was used to analyze stability [5] 

( 4.1) 

where l1c is the cyclotron frequency, wy = v/ pis the toroidal frequency for a thermal 

particle, WE ~ wP 2 /l1c is the characteristic E x B drift frequency in the poloidal 

direction, v is the collision frequency, and T is the transport timescale. The length 

scale ordering is 

Po» r »An ( 4.2) 

where po is the major radius at the center of the plasma, r is the minor radius 
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measured from the center of the plasma, and AD is the Debye length. We also 

assume that r 2ws2 
/ c2 

<{'. 1 so that the diamagnetic corrections to the magnetic field 

are negligible. These conditions are well satisfied in typical experiments. 

There are two ways to understand the transport. One can focus on a flux tube 

and note that the length of the tube and the magnetic field strength in the tube vary 

as the tube undergoes poloidal E x B drift rotation. The constancy of the adiabatic 

invariants µ = mVJ. 2 /2B and I = (2ir )-1 f di mv11 then imply a cyclic variation in 711 

and TJ.. The variations are unequal, and collisional relaxation between 711 and TJ. 

produces a slow heating of the plasma. This heating comes about at the expense of 

electrostatic energy, so the plasma must expand in minor radius. In section 4.3, we 

use this viewpoint to calculate the radial flux for the simple case where the plasma 

has circular cross section. 

Alternatively, one can focus directly on the drift orbits as determined by the 

particle energy H and the adiabatic invariants µ and I. When a particle undergoes 

velocity scattering in a collision, these quantities change value and the drift orbit 

changes, allowing the particle to step in radius. In section 4.4, the drift kinetic 

Boltzmann equation is used to calculate th flux. This calculation does not require 

the plasma cross section to be circular but reduces to the result of section 4.3 when 

a circular cross section is specified. 

4.3 Heating and Transport 

A schematic diagram for a toroidal trap is shown in Figure 4.1. The con

finement region is bounded by a toroidal conductor and the magnetic field is purely 

toroidal. Here (p, El, z) is a cylindrical coordinate where p is the major radius, El is 

the toroidal angle, and the z-axis is the axis of symmetry of the torus. 

In this section we assume for simplicity that the toroidal conductor and the 
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plasma both have a circular cross section. This assumption is not necessary and 

will be relaxed in section 4.4. For the case of a circular cross section it is useful 

to introduce a polar coordinate system (r, B) which is centered on the plasma and 

is locally oriented perpendicular to the magnetic field. Here B is the poloidal angle 

and r is the minor radius measured from the center of the plasma, The (p, 0, z) 

coordinate system and the (r, B) coordinate system are related through the relations 

p po+rcosB 

z = r sin B, 

where p0 is the major radius at the center of the plasma. 

( 4.3) 

( 4.4) 

We derive an expression for the radial particle flux by considering a single flux 

tube of plasma as shown in Fig. 4.2. The flux tube has length L(r, B) = 2rrp(r, B), 

cross sectional area oA, and contains oN particles, where oN is a constant. Using 

Ampere's law, the toroidal magnetic field can be expressed as B = GB0 p0 / p where 

Bo and po are constants. Thus, the field strength in the flux tube is B0 p0 / p(r, B), 

where p(r,B) is given by Eq. (4.1). The dominant motion of the flux tube is the 

Ex B drift. Under the assumption of a small inverse aspect ratio ( r/ p0 « 1) the 

electric field is nearly radial and the flux tube drifts in a circular orbit with frequency 

c 8<I>(r) 
WE=---. 

Br Br 
(4.5) 

As the flux tube drifts toward the inside of the torus its length decreases and the 

magnetic field inside the flux tube increases. Setting B = wEt and using r /Po « 1 

yields 

L(t) = 2rrp0 + 2rrr cos wEt 

r 
= B0 -B0 -coswEt. 

Po 
B(t) ( 4.6) 

Since the magnetic moment, µ = mv'i_/2B, is a constant, the perpendicu-

lar velocity of each particle increases as the magnetic field increases. Of course, 
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the average magnetic moment is also constant and is related to the perpendicular 

temperature by 
1 oN lmv2 1 

CONST.= -2:: 2 .Li= -T.L. 
fiN i=I B B 

(4.7) 

Differentiating this equation with respect to time yields an equation for the perpen-

dicular temperature evolution 

fJT.L = ~ fJB T 
fJt B fJt .L. ( 4.8) 

Similarly, the average of the square of the individual toroidal actions is a constant 

and is related to the parallel temperature by 

1 6N 2 
CONST.= I: L(Lmv;) 2 = -L2 711· 

vN i=I m 

Differentiating this expression with respect to time yields 

fJTi1 _ 2 fJL,,... 
- ---1111 fJt - L fJt . 

( 4.9) 

(4.10) 

The parallel and perpendicular temperatures also couple collisionally so that 

the full temperature evolution is more accurately described by 

( 4.11) 

and 

(4.12) 

where v .L, II is the equipartition rate. The factor of two difference in the collisional 

coupling term for Eq. (4.12) relative to Eq. (4.11) simply reflects the fact that there 

are two perpendicular degrees of freedom and one parallel. 

A two time scale analysis of these equations based on the smallness of r / p0 

and on the frequency ordering WE » v yields the result 

d [tC711) + (T.L)] 
dt 

( 4.13) 
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where (-) indicates an average over the fast time scale, that is, over a poloidal E x B 

drift time. The heating of the plasma arises because the parallel and perpendicular 

temperature fluctuations are unequal. Collisions cause a small phase shift in the 

fluctuations and to second order in r /po there is a net heating in the plasma. This 

effect is very similar to rotational pumping calculated in [4]. The difference here is 

that the perpendicular temperature also fluctuates because the magnetic field is not 

constant. To lowest order in v, 7J1 and Tl. fluctuate in phase and therefore this has 

the effect of reducing the heating rate. 

Since the confinement potentials are time independent, the total energy in 

the plasma is conserved and the increase in thermal energy must be balanced by 

a corresponding decrease in the electrostatic energy. The particle flux is found by 

equating the increase in thermal energy to local Joule heating 

( 4.14) 

where r r is the radial particle flux and n is the density. The right hand side of this 

equation is the Joule heating per unit volume. Equations (4.13) and (4.14) are solved 

for the flux and yield 

1 T ( r )
2 

fr= 2v,,11n(r) -e8i'J>/8r Po (4.15) 

Note that the flux depends on magnetic field strength only through v,, 11 . This 

rather surprising result is due to an accidental cancellation. The net heating in each 

poloidal rotation is proportional to the phase shift in the temperature fluctuations 

which scales as v,, 11 /wE. The heating rate is equal to the heating per poloidal rotation 

times the poloidal rotation frequency. Therefore, WE drops out of the calculation. In 

the regime of weak magnetization (i.e., re >> b, where re= v/fle and b = e2 /mv2
), 

the dependence on the magnetic field strength is very weak, v,, 11 ex ln(re/b). In the 

regime of strong magnetization (i.e., re<< b) v,, 11 becomes exponentially small[5,6] 

and our theory pred.icts that r r becomes exponentially small. 
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4.4 Kinetic Treatment 

One can also understand this transport process in terms of single particle 

drift orbits. The frequency ordering l1c ~ wy ~ WE insures that the cyclotron 

action µ = mv'i/2B and the toroidal action 

Pe= _!_jdPe = _!_fmv11 di 
271" 271" 

( 4.16) 

are good adiabatic invariants. Since the confinement potentials are time independent, 

the energy is also conserved. The closed single particle drift orbits are determined by 

these three constants. As illustrated in Fig. 4.3, when a particle undergoes a collision 

its parallel and perpendicular velocity change and it begins to move on a new drift 

surface. This event constitutes the fundamental step underlying the transport. 

The guiding center Hamiltonian in toroidal geometry is given by [7] 

P~ µBo Po 
H = 2 2 ( ) + ( ) + eil>(z,p(pz)) 

mp Pz P Pz 
( 4.17) 

where z and Pz are canonically conjugate, Pz = (eBopo/c) ln(po/ p), and po and Bo 

are constants. The first term gives the curvature drift, the second the gradient IBI 

drift and the third term the E x B drift. In a pure electron plasma the E x B drift 

is the dominant drift. Equivalently, one may say that the the poloidal drift surfaces 

differ only slightly from the equipotential surfaces. 

It is useful to introduce a canonical transformation 

z z(p,µ,,P), 

Pz Pz(p,µ, 1/J) (4.18) 

which is chosen such that 

i!>(z,p(pz)) = il>(p,µ). ( 4.19) 
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The new momentum, p,p, is nearly constant during the evolution except for 

small curvature and gradient IBI drifts. The new Hamiltonian is given by 

P~ µB0 R 
H = 2 2( ol•) + ( ol•) + e<I>(z,p(pz)). 

mp P,p, '// p P,p, '// 
( 4.20) 

The gradient IBI and curvature drifts normal to the p,p = CONST surfaces are 

proportional to aH I a,p. 

We represent the plasma with a distribution of guiding centers 

f = f(pe,0,p,p,,P,µ,t). (4.21) 

This distribution evolves according to the drift-kinetic Boltzmann equation 

8f 
at+ [f, H] = C(f), ( 4.22) 

where C(-) is the collision operator and the Poisson bracket is given by 

( 4.23) 

In the limit wr ~ ws, 8H/8p0 is large and so 8f /80 must be small. Phys-

ically this corresponds to the fact that any initially large 0 variations are rapidly 

mixed by the toroidal streaming along the magnetic field. The small 0 variations 

are uninteresting from the standpoint of cross-field transport and may be eliminated 

by integrating Eq. ( 4.22) over 0, that is averaging over the toroidal motion. The 

result is 

af + af aH _ af aH = c(f) 
at a,p ap,p ap,p a,p 

(4.24) 

where 

rh 
f(pe,p,p,,P,µ,t) =lo d0f(Pe,0,p,p,,P,µ,t). ( 4.25) 

Rewriting Eq. ( 4.23) as 

( 4.26) 



96 

and integrating over Pe , µ , and 1/J yields a transport equation 

fJN(p.p) = _!!___ [! d,P J d _ d fJHJ-] 
fJt ap.p 21!" Pe µ fJ,P ( 4.27) 

where 

J d,P J -N(p.p) = 
2

1r dpedµf. ( 4.28) 

The integral over the collision operator vanishes because collisions conserve the num-

her of particles. 

To obtain a transport equation accurate to second order in the small quantity, 

fJH/fJ,P , we must obtain J accurate to first order in fJH/fJ,P. Thus we look for a 

solution to Eq. (4.23) in the form 

J = fo(H,p.p) +of(pe,p.p,,P,µ) (4.29) 

where of/Jo~ (1/H) (fJH/fJ,P) and 

( 4.30) 

\Vritten in velocity variables, Jo is just a maxwellian times a density distribution 

which coincides with the equipotential contours. 

o J is obtained from Eq. ( 4.23) written to first order in fJH / fJ,P, 

fJo J 1 fJp [2 P~ µBoR] WE 1 _ C( 1 'f-) WE-+-- --+-- -;o- ;o+u 
fJ,P p fJ,P 2mp2 · p T 

( 4.31) 

where WE = fJe<I> / fJp,µ is the poloidal E x B drift frequency. Here we have neglected 

terms of order 1/N fJN/fJp.p relative to wE/T because they are smaller by a factor 

AD2/r2. 

Given the frequency ordering v « WE, this equation may be solved per

turbatively in the effective collision frequency. Dropping the collision operator and 

integrating yields 

of(o) = - op [2 p~ + µBoR] !_Jo 
p 2mp2 p T 

( 4.32) 
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where the superscript indicates the ordering in collisions and Op is the ,P-dependent 

part of p(p,p, ,P ). To find the collisional response we insert ol(o) into the collision 

operator on the right hand side of Eq. ( 4.30) and obtain 

_!!_of 1l = -1 c [lo (1 - op [2 P~ + µBoR] 2-)] . 
a,p WE p 2mp2 p T 

( 4.33) 

Substituting lo + o f 0
l + o f 1

l into the transport equation yields 

aN(p,p) = _!!_ [! d,P J dpedµ [2 P~ + µBoR] (-"!._ ap) of1J]. 
at ap,p 271" 2mp2 p p a,p 

( 4.34) 

The collisionless terms vanish in the integral over ,P. Integrating by parts and sub-

stituting from Eq. ( 4.32) yields the result 

aN(p,p) 
at 

= _!!_ {! d,P J dpedµ [2 P~ + µB0 R] (op) 
ap,p 27r 2mp2 p p 

x-1 C [lo (1- op [2 p~ + µBoR] 2-)]}. 
WE p 2mp2 p T 

(4.35) 

After changing variables of integration from (Pe,µ) to (vii> v .L) this may be 

written as 

aN(p,p) 
at 

a {! d,P J 2 
[ 

2 1 2
] (op) = ap,p 271" dv11d v.L mv 11 + 2mv.L p 

1 [-( op[ 2 1 2]1)]} x WE C Jo 1 - p mv 11 + 2mv.L T . 

where lo= N(p,p)JM and JM is a maxwellian. 

We take the collision operator in the general form 

( 4.36) 

( 4.37) 

where du is the differential cross section and Vre1 = v -v1 • Using this form we obtain 

aN(p,p) 
at 

( 4.38) 
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Energy is conserved in the binary collisions. That is, 

( 4.39) 

This fact may be used to simplify Eq. ( 4.37) to the form 

To evaluate the velocity integral in this equation, it is instructive to consider 

the collisional relaxation of an anisotropic maxwellian distribution 

( 4.41) 

The change in the parallel temperature due to collisions is given by 

( 4.42) 

and may be used as a definition of the equipartition rate, vL,fl· Consider the case 

Tl.= T and 711 = (1- a)T. Substituting this into Eq. (4.41) and taking the limit 

a --> 0, one can easily show 

( 4.43) 

This is precisely the integral that appears in Eq. (4.39). The transport equation can 

now be written in the relatively simple form 

8N(p,µ) _ _ __i_ { ((8p) 2

) (_!'___) N( )} 
8t - 8p,µ V L, II p ,p -WE p,µ . ( 4.44) 



99 

This equation describes transport in poloidal action-angle variables. To make 

contact with section 4.3, we consider the simple case where the plasma cross section 

is circular. In this case, '!jJ = 0, p,µ =Pe= (eB/2c)r2
, and 

( )

2 . 
~ ~r2 ~ 

( - ),µ = j-- cos2 
(} = -. 

p 27f p2 2p2 
( 4.45) 

The transport equation then becomes 

aN(r) 1 a {1 T (r) 2

} 
at =--:;_arr 2v~. 11 -ea<J>/ar Po . ( 4.46) 

The quantity in brackets is the same radial particle flux that was found in section 

4.3. 
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Figure 4.1: Toroidal confinement geometry. 
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Figure 4.2: A flux tube of plasma 
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· Particle Orbit 

Drift Surfaces 

Figure 4.3: An Illustration of how collisions allow a particle to change drift surfaces. 
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