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ABSTRACT

We describe theory and experiments investigating nonlinear beat wave decay of diocotron modes on a nonneutral plasma column (or Kelvin
waves on a vortex). Specifically, a Kelvin/diocotron pump wave varying as Ap exp ½iðlph� xptÞ� decays into two waves: a Kelvin/diocotron
daughter wave with exponentially growing amplitude AdðtÞ, mode number ld < lp, and frequency xd; and an exponentially growing “beat
wave” with mode number lb and frequency xb. Nonlinear wave–wave coupling requires lb ¼ lp � ld and xb ¼ xp � xd . The new theory
simplifies and extends a previous weak-turbulence theory for the exponential growth rate of this instability, by instead using an eigenmode
expansion to describe the beat wave as a wavepacket of continuum (Case/van Kampen) modes. The new theory predicts the growth rate, the
nonlinear frequency shift (both proportional to A2

p), and the functional form of the beat wave, with amplitude proportional to ApA�
dðtÞ.

Experiments observe beat wave decay on electron plasma columns for a range of mode numbers up to lp ¼ 5 and ld¼ 4, with results in quan-
titative agreement with the theory, including the ld¼ 1 case for which measured growth rates are negligible, as expected theoretically.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0190218

I. INTRODUCTION

The phenomenon of self-organization, in which fluctuation
energy in a fluid flow is transferred from smaller to larger spatial scales,
plays an important role in a range of physical processes in both fluids
and plasmas. Examples include the generation of zonal flows,1 the
merger of like-sign vortices,2 and the formation of vortex crystals3 and
other coherent structures4 from turbulent states.

Another manifestation of self-organization is the spontaneous
symmetrization of a single isolated vortex,5–10 in which asymmetries
initially present on the vortex decay through inviscid processes. One
such process, spatial Landau damping of the asymmetry, is associated
with a critical layer that occurs at a resonance between the rotation
rate of the vortex and the phase velocity of the asymmetry (a “direct”
resonance).11,12 However, this direct resonance process does not occur
for vortices with edges that are sufficiently sharp so that the resonance
condition is satisfied at a radius outside the vortex. Nevertheless, axi-
symmetrization can still occur through a different inviscid process, in
which nonlinear couplings between asymmetries present in the vortex
transfer energy from larger wavenumber asymmetries to smaller wave-
numbers (sometimes referred to as down-scattering13) We will see that
this nonlinear axisymmetrization process is also driven by a resonance
at a critical layer, but the resonance is at a different radial location,

within the vortex. Theoretical and experimental investigations of this
nonlinear axisymmetrization process are this subject of this paper.

Previous experiments13–15 have observed this nonlinear axisym-
metrization in a pure electron plasma, which closely mimics the
dynamics of an ideal inviscid 2D fluid16 (i.e., a 2D Euler flow). In these
experiments, a nominally cylindrically symmetric vortex is perturbed
in a controlled fashion to induce a Kelvin “pump” wave on the surface
of the vortex (termed a diocotron mode in the plasma literature). The
pump wave is a traveling wave that has time and h dependence of the
form cos ðlph� xpt þ wpÞ, where wp is an arbitrary phase, lp > 1 is
the azimuthal mode number of the pump wave and xp > 0 is the
pump wave frequency. This wave is observed to decay in amplitude
through the excitation and exponential growth of a second Kelvin/dio-
cotron “daughter” wave with mode number ld, 0 < ld < lp, and with
frequency xd, 0 < xd < xp. (The terms pump wave and daughter
wave are taken from the theory of parametric oscillators.) This process
is mediated by a third wave, termed a beat wave, with mode number
lb ¼ lp � ld , which is driven at the beat frequency xb ¼ xp � xd by
the nonlinear coupling of the two Kelvin/diocotron waves, and which
couples back to these waves to induce the growth of the daughter
wave. Thus, this process is similar in some respects to a standard
three-wave decay instability.17 However, the beat wave is not a Kelvin/
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diocotron wave with mode number lb. The beat wave is instead, pri-
marily, a wavepacket of the continuum eigenmodes18 of the vortex. Its
phase velocity xb=lb is resonant with the vortex rotation at a critical
layer within the vortex, and the resulting strong spatial Landau damp-
ing induced by this resonance is what drives the decay of the pump
wave, along with growth of the daughter wave. We, therefore, refer to
this decay process as a beat wave decay instability, to distinguish it
from three-wave decay.

A previous publication13 described this beat wave decay process
using a theoretical approach based on a weak turbulence expansion of
the nonlinear equations of motion to third order in perturbed quanti-
ties (i.e., one higher order than that required for a description of three-
wave processes). This weak turbulence approach has several antece-
dents in the plasma and astrophysics literature, having been applied to
analyze various nonlinear wave interactions,19–21 including instabilities
similar to the beat wave decay process considered here.22,23

In this paper, we describe beat wave decay from a different perspec-
tive, based on an eigenmode expansion of the system dynamics. These
eigenmodes, consisting of the Kelvin/diocotron modes and continuum
modes, form a complete orthogonal set, with orthogonality defined by an
inner product based either on energy or on angular momentum conser-
vation. We work in the rotating frame of the pump wave, in which the
wave is, in the initial phase of the instability, a stationary equilibrium
state. The beat wave instability is then described as a single unstable
eigenmode of the perturbed pump wave equilibrium, whose frequency
and growth rate can be analyzed (for small pump amplitudes) using per-
turbation theory of the system eigenfrequencies. In the perturbation the-
ory, we represent this unstable eigenmode as a wavepacket of the
eigenmodes (Kelvin/diocotron and continuum) of the unperturbed vor-
tex. This eigenmode approach to analyzing nonlinear instability also has
many antecedents.24–27 The eigenmode approach allows a detailed and
physically intuitive analysis of the beat wave process, in which explicit
expressions are obtained for the instability growth rate, the real frequency
shift, and the beat wave vorticity and stream function perturbations. We
compare these predictions to new experiments that observe the beat
wave decay for a range of decay processes, for pump waves up to mode
number l¼ 5 and every possible daughter wave mode number.

The paper is laid out as follows: Sec. II contains a review of
known theoretical results that will be of use in describing beat wave
decay, including brief discussions of the connection between nonneu-
tral plasma dynamics and the Euler equations, constants of the motion,
the linear eigenmodes of the Euler equations including the Kelvin
waves (diocotron modes) and continuum eigenmodes, and inner prod-
uct relations for these modes. We also include here some new results
regarding the evaluation of the continuum modes. Section III analyzes
the beat wave decay process, including a detailed description of the
beat wave instability as well as nonlinear frequency shifts to both the
pump and daughter waves. Section IV discusses the results of new
nonneutral plasma experiments that observe beat wave decay, with
comparisons to the theory. Section V summarizes the results. Finally,
the Appendix contains some derivations of intermediate results,
including a proof of the equivalence of two expressions for the beat
wave instability growth rate.

II. PRELIMINARIES

In this section, we review some well-known results and also
derive some new results, concerning the linear evolution of

perturbations on an isolated vortex. These results will then be applied,
in Sec. III, to the evolution of the nonlinear beat wave decay instability.

A. 2D equations of motion for ideal fluids
and magnetized plasmas

The Euler equations for the evolution of vorticity nðr; h; tÞ in a
2D ideal (dissipationless) incompressible fluid with uniform mass den-
sity q0 per unit area are

@n
@t

þ v � rn ¼ 0; (1)

where the fluid velocity vðr; h; tÞ is related to the stream function /
through

v ¼ r/� ẑ ¼ r̂
1
r
@/
@h

� ĥ
@/
@r

; (2)

and the stream function /ðr; h; tÞ is determined in terms of the vortic-
ity n by n ¼ ẑ � r � v, which after using Eq. (2), yields

r2/ ¼ �n: (3)

In this paper, we use a free-slip boundary condition / ¼ 0 on a sur-
rounding cylindrical wall at radius r¼ rw, so there is no dissipative
coupling to the wall.

Applying Eq. (2) to Eq. (1) yields another form for the vorticity
continuity equation,

@n
@t

þ 1
r
@/
@h

@n
@r

� 1
r
@/
@r

@n
@h

¼ 0: (4)

It is well known that these equations are isomorphic to the equa-
tions of motion for 2D E�B drift dynamics of a collisionless nonneu-
tral plasma column contained in hollow cylindrical electrodes, with
plasma length much greater than the electrode inner radius rw, in a
uniformmagnetic field�Bẑ , B> 0. The plasma consists of like charges
e> 0 with z-averaged number density Nðr; h; tÞ, creating an electro-
static potential Uðr; h; tÞ. The stream function / is then proportional
to the potential U; / ¼ cU=B; the vorticity n is related to plasma den-
sity N through n ¼ 4pecN=B; and the fluid velocity v is the same in
both plasma and fluid systems. The boundary condition /ðrwÞ
¼ UðrwÞ ¼ 0 corresponds to a grounded electrode. [Note: for a pure
electron plasma consisting of like charges – e, sign changes in two of
the above relations are necessary: the magnetic field is now in the þz
direction,þBẑ with B> 0, and / ¼ �cU=B. Using these sign conven-
tions all other equations in the paper are independent of the sign of
plasma charge, unless directly specified.]

It is useful to Fourier transform in h, writing n and / as

n ¼
X1
l¼�1

nlðr; tÞeilh; (5)

/ ¼
X1
l¼�1

/lðr; tÞeilh: (6)

Mode numbers less than zero satisfy n�l ¼ n�l ; /�l ¼ /�
l in order for

the sums to yield real quantities.
Then, when written in terms of Fourier modes Eq. (4) becomes

@nl
@t

þ i
r

X1
�l¼�1

�l /�l
@nl��l
@r

� n�l
@/l��l
@r

� �
¼ 0; (7)
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and the Poisson Eq. (3) is

@2/l

@r2
þ 1

r
@/l

@r
� l2

r2
/l ¼ �nl: (8)

B. Constants of motion

We will later have occasion to consider constants of the motion.
In the ideal fluid system, there are an infinite number of constants of
the motion, but here we will consider three: energy, angular momen-
tum, and particle number (equivalent to circulation).

In an ideal 2D Euler fluid with free-slip boundary conditions
described previously, the circulation C ¼ Ð d2rn is a conserved quan-
tity. In the plasma analog, the corresponding conserved quantity is the
particle number per unit length

Ð
d2rN .

In the fluid system, total kinetic energy is another conserved
quantity, given by K ¼ q0

2

Ð
d2rjvj2 ¼ q0

2

Ð
d2rjr/j2. In the plasma

case, the analogous conserved energy in 2D drift dynamics is
E ¼ 1

8p

Ð
d2rjrUj2, the potential energy per unit length in the plasma

column. The fluid and plasma energies are then related according to

E ¼ B2

4pq0c2
K : (9)

In addition, the cylindrical free-slip boundary condition implies
that total angular momentum of the fluid, P ¼ q0

Ð
d2rrvh, is a con-

served quantity. Using Eq. (2) for vh and integrating by parts, the angu-
lar momentum can be written in terms of integrals over the vorticity,

P ¼ 1
2
q0r

2
wC� q0

2

ð
d2rr2n: (10)

In the plasma case, the quantity analogous to the second term in this
expression is the canonical angular momentum for charges in a uni-
form magnetic field, Ph ¼ � eB

2c

Ð
d2rNr2. The relation between the

fluid and plasma angular momenta is

Ph ¼ B2

4pq0c2
P � 1

2
q0r

2
wC

� �
: (11)

C. Kelvin waves/diocotron modes

In this subsection, we briefly review some properties of linear
oscillations associated with the two dimensional incompressible fluid
dynamics described by Eqs. (7) and (8). Assume that the l¼ 0 Fourier
component of the vorticity describes a cylindrically symmetric equilib-
rium vortex of vorticity neðrÞ and stream function /eðrÞ. Then, small
amplitude excitations about that equilibrium, with azimuthal mode
number l, may be described by the linearized version of Eq. (7),

@nl
@t

þ ilxeðrÞnl þ il
r
@ne
@r

/l ¼ 0; (12)

where xeðrÞ ¼ �/0
eðrÞ=r is the sheared rotation frequency of the

equilibrium vortex. (Here and throughout the paper primes refer to
radial derivatives.) Since the coefficient functions in Eq. (12) are time-
independent, solutions for nl that are proportional to exp ð�ixtÞ can
be found. These oscillating solutions are linear eigenmodes of the sys-
tem. The oscillatory time-dependence implies that Eq. (12) can be
written as

xnl ¼ lxenl þ l
r
@ne
@r

/l (13)

Equation (13) can be solved for nl in terms of /l and the result applied
to Eq. (8), to yield the following differential equation for the lth
Fourier component of the stream function, /l ,

@2/l

@r2
þ 1

r
@/l

@r
� l2

r2
/l þ

l
rðx� lxeÞ

@ne
@r

/l ¼ 0; (14)

with boundary condition that /lðrwÞ ¼ 0. By correct choice ofx, non-
trivial solutions /lðrÞ ¼ /l;KðrÞ can sometimes be found. These non-
trivial solutions are called Kelvin waves in the fluid literature and
diocotron waves in the plasma literature. For an equilibrium vorticity
profile neðrÞ that is monotonically decreasing [so that xeðrÞ is also
monotonically decreasing] there may be a Kelvin/diocotron mode
solution /l;KðrÞ of Eq. (14) with real frequency xl;K . However, this
solution can only be found if the resonant radius rl;K that satisfies
xl;K ¼ lxeðrl;KÞ is at a location with no vorticity gradient, so that the
denominator in Eq. (14) is only zero for a radius rl;K at which
n0eðrl;KÞ ¼ 0.

Note that for any eigenmode with l> 0, there is a corresponding
eigenmode with l< 0, with frequency x�l;K ¼ �xl;K , and stream
function /�l;K ¼ /�

l;K . The negative l eigenmodes are merely complex
conjugates of the l> 0 eigenmodes, but are still required for complete-
ness, in order to form real functions out of sums of eigenmodes.

These Kelvin/diocotron eigenmodes are l 6¼ 0 traveling waves in
the h direction on the surface of the vortex, with positive phase velocity
xl;K=l. For a vortex of uniform vorticity ne with radius rp, the Kelvin/
diocotron frequency is28

xl;K ¼ signðlÞxe jlj � 1þ rp
rw

� �j2lj
" #

; (15)

where xe ¼ ne=2 is the rotation frequency of the equilibrium vor-
tex. Each mode (summed to its complex conjugate mode) corre-
sponds to time-dependent variation in the shape Rðh; tÞ of the
vortex of the form

Rðh; tÞ=rp � 1 ¼ alðtÞ exp ðilhÞ þ c:c:; (16)

where

alðtÞ ¼ Al exp ð�ixl;KtÞ (17)

is the dimensionless perturbation to the vortex radius and Al is the
dimensionless complex amplitude of this perturbation.

For l¼ 1, the Kelvin/diocotron solution can be found analytically
for general vorticity profiles,

x1;K ¼ xeðrwÞ ¼ C
2pr2w

;

/1;KðrÞ ¼ �Arðx1;K � xeðrÞÞ;
n1;KðrÞ ¼ �An0eðrÞ;

(18)

where A is an arbitrary amplitude equal to A1rp for the case of a uni-
form vortex patch. This mode is a displacement of the center of the
vortex, which then rotates about the axis of the cylinder at the mode
frequencyx1;K due to its interaction with “image vortices” in the cylin-
drical wall.
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For higher mode numbers l and for general radial vorticity pro-
files, Eq. (14) can be solved numerically, for example, using a shooting
method, to determine the perturbed stream function /l and vorticity
nl of a Kelvin/diocotron wave. For future reference, we define a dimen-
sionless radial perturbation amplitude al in terms of the lth multipole
moment of the vorticity,

alðtÞ ¼

ð
d2r nðr; h; tÞrle�ilh

ðl þ 2Þ
ð
d2r nðr; h; tÞrl

¼

ð
rdr nlðr; tÞrl

ðl þ 2Þ
ð
rdr neðrÞrl

; (19)

which agrees with Eq. (16) for a Kelvin/diocotron mode on a uniform
vortex of radius rp.

Examples of the Kelvin/diocotron stream functions /l;K for the
first five modes are shown in Fig. 1 for an equilibrium vorticity profile
neðrÞ shown in Fig. 2. This profile is close to one generated in nonneu-
tral plasma experiments with a wall radius rw ¼ 3:5 cm, discussed in
Sec. IV.

In the figure, Kelvin/diocotron eigenmodes are all scaled in
amplitude so that their corresponding dimensionless amplitudes Al

equal unity. We use this normalization for Kelvin/diocotron eigenmo-
des throughout the paper.

D. Continuum modes

There is a second approach to finding the eigenmodes of an iso-
lated vortex, which identifies a complete set of eigenmodes, including a
set of continuum modes. The continuum modes in sheared Euler flow
were first identified by Case18 and are analogous, and play a similar
role, to the van Kampen continuum in plasma kinetic theory.29 We
will briefly review the properties of these Case/van Kampen continuum
modes and also discuss some new results that will be useful later in the
description of the nonlinear beat wave instability.

Equation (13) for the linear eigenmodes of the perturbed vortex
equilibrium can be written as an integral equation involving the
Green’s function for the stream function /l ,

xnl ¼ lxenl þ l
r
@ne
@r

Ĝlnl � L̂lnl; (20)

where Ĝl is the Greens function operator,

/l ¼ Ĝlnl ¼ �
ð
r0dr0Glðr; r0Þnlðr0Þ (21)

with

Glðr; r0Þ ¼ � 1
j2lj

r<
r>

� �jlj
1� r>

rw

� �j2lj
" #

: (22)

Equation (20) is an eigenvalue problem for the operator L̂l , deter-
mining an infinite set of vorticity eigenfunctions nl;aðrÞ with corre-
sponding real frequencies xl;a in the range xeð0Þ � xl;a=l > xeðrwÞ,
where a is a counter that enumerates the eigenmodes. One of these
eigenmodes is the vorticity perturbation corresponding to the Kelvin/
diocotron mode found using the previous method, Eq. (14), if such a
mode exists. The other eigenmodes are continuum modes with singu-
lar radial dependence, i.e., a Dirac delta function in the vorticity pertur-
bation at radius rl;a given by the solution to the resonance equation,

xl;a ¼ lxeðrl;aÞ: (23)

These singular continuum eigenfunctions do not appear in the previ-
ous solution of Eq. (14), because there we divided by x� lxeðrÞ
assuming that it is nonzero everywhere that n0eðrÞ is nonzero.

The continuum modes can be determined numerically, for exam-
ple, by discretizing the radial dimension, converting Eq. (20) into a
standard matrix eigenvalue problem.11 An example of the resulting
discretized frequency spectrum is shown in Fig. 3 for l¼ 2 using the
equilibrium vorticity profile of Fig. 2, setting n0eðrÞ ¼ 0 for all radii r
greater than some radius R chosen to be smaller than the resonant
radius rl;K of the Kelvin/diocotron mode, which equals 2:3 cm for this
vorticity profile (see Fig. 2). We, therefore, choose R ¼ 2:1 cm. Figure
3 shows that the continuum modes form a band of frequencies satisfy-
ing Eq. (23) for resonant radii in the range 0 < rl;a 	 R, while the
Kelvin/diocotron mode frequency falls outside this band, and for this
reason is sometimes referred to as a “discrete eigenmode.”

FIG. 1. Kelvin/diocotron mode stream functions /l;K for azimuthal mode numbers
l ¼ 1;…; 5, each scaled to ne0 where ne0 ¼ neðr ¼ 0Þ is the central vorticity, for
the equilibrium vorticity profile shown in Fig. 2. These eigenmodes have amplitudes
chosen so that their dimensionless amplitudes Al equal unity. This normalization is
used for Kelvin/diocotron eigenmodes throughout the paper.

FIG. 2. Equilibrium vorticity profile neðrÞ used throughout the paper (smooth solid
black curve), and the locations of the resonant radii r2;K ; r3;K ; r4;K ; r5;K , as well as
the beat wave resonant radius rbeat for 3 ! 2 decay. The noisy data (red curve) is
the equilibrium density profile measured in the experiment. Also shown is the beat
wave forcing function Fb;KðrÞ for 3 ! 2 decay (dotted line); see Eq. (54).
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If we had instead chosen R > rl;K in Fig. 3, the discrete mode
would then be manifested as a wavepacket of continuummodes. If one
excites the plasma using an external applied potential with mode num-
ber l and a broad frequency bandwidth, the resulting motion of the
plasma may be dominated by this wavepacket, which is more or less
sharply peaked in frequency around the original Kelvin/diocotron fre-
quency xl;K depending on the magnitude of n0eðrl;KÞ. When this reso-
nant vorticity gradient is small, the wavepacket has a radial
dependence close to that of the discrete Kelvin/diocotron mode found
when R < rl;K . The finite frequency width of this wavepacket induces
phase-mixing in the time dependence of the packet, causing exponen-
tial “spatial Landau-damping” of the perturbation. The exponential
damping rate can be predicted via a contour-deformation analysis of
the solution to Eq. (14), assuming a complex frequency x and deform-
ing the radial integration path into a Landau contour around the
pole.11,12 Because the resulting damped mode is not a single eigen-
mode—it is a wavepacket of continuum eigenmodes—it is often
referred to as a “quasimode.” All of this has been covered in the refer-
enced publications.

We now consider some new results involving the continuum
eigenmodes that will be of use in the analysis of beat-wave decay.
Numerical accuracy of the matrix method used to determine the contin-
uummodes in Fig. 3 is limited by the difficulty of resolving a Dirac delta
function using a discrete radial grid. There is a novel, more accurate
approach. Using Eq. (13), it can be seen that the functional forms of the
singular vorticity and stream function perturbations in a continuum
eigenmode, nl;aðrÞ and /l;aðrÞ, respectively, are related according to

nl;a ¼ bdðr � rl;aÞ þ l
r
n0eðrÞ/l;a

P
xl;a � lxeðrÞ ; (24)

where b is an arbitrary normalization with units of velocity, and P
denotes the principal part of the resonant denominator. The functions
nl;a and /l;a are further related by the Poisson equation (8) yielding
the ODE,

1
r
@

@r
r
@/l;a

@r

� �
� l2

r2
/l;a þ

l
r

P
xl;a � lxe

@ne
@r

/l;a ¼ �bdðr � rl;aÞ;

(25)

with boundary condition /l;aðrwÞ ¼ 0. Comparing this equation to
Eq. (14), we can see that the continuum mode stream function /l;a is
akin to a Green’s function for the regularized Kelvin/diocotron mode
differential operator, with the source point rl;a chosen to be the reso-
nant radius satisfying Eq. (23). In this formulation, the stream function
/l;a solves a differential equation, allowing the application of high-
accuracy numerical methods not available for integral equations such
as Eq. (20).

In particular, one can employ such high-accuracy methods to
numerically solve for two independent homogeneous solutions
waðrÞ;wbðrÞ, with boundary conditions wað0Þ ¼ 0 ¼ wbðrwÞ.
Standard analysis of the solutions near the regular singular point at
r ¼ rl;a shows that these homogeneous solutions are finite and contin-
uous there. The solutions are then connected across the delta function
to obtain

/l;aðrÞ ¼ �b
waðr<Þwbðr>Þ

Wðrl;aÞ ; (26)

where the Wronskian WðrÞ ¼ waw
0
b � wbw

0
a and where

r>
<
¼ max

min
ðr; rl;aÞ. Examples of the stream function of continuum

modes are displayed in Fig. 4 for three values of the mode number l,
taking the resonant radius to be rl;a ¼ 1:5 cm in each case.

Furthermore, for l¼ 1 an analytic solution for the continuum
modes is available,

/1;aðrÞ ¼
br

r1;ax0
eðr1;aÞ

ðxeðrÞ � x1;aÞhðr1;a � rÞ; (27)

n1;aðrÞ ¼ bdðr � r1;aÞ � b
r1;ax0

eðr1;aÞ
n0eðrÞhðr1;a � rÞ; (28)

where h(x) is a Heaviside step function. This can be proven by direct
substitution of Eqs. (27) and (28) into Eqs. (24) and (25). The l¼ 1
continuum eigenmodes are “self-shielding”: there is no stream func-
tion perturbation beyond the resonant radius r1;a because these modes
do not have a dipole moment. Only the discrete l¼ 1 Kelvin/diocotron
mode makes a potential/stream function that can be felt at the wall; see
Eq. (18). For l> 1, however, numerical solutions for the continuum
modes show that they are not perfectly self-shielding (Fig. 4); the con-
tinuum eigenmodes can all be picked up at the wall for l> 1.

FIG. 3. Frequency spectrum of eigenmodes found by discretizing the radial dimen-
sion in Eq. (20) for l¼ 2, taking r ¼ iDr; i ¼ 1;…;M, for Dr ¼ R=M;M ¼ 50,
and R ¼ 2:1 cm. Frequencies are scaled to xe0 ¼ ne0=2, the vortex rotation fre-
quency at r¼ 0.

FIG. 4. Examples of the stream function /l;a of continuum eigenmodes, normalized
to b, for azimuthal mode numbers l¼ 1, 2, 3, and for resonant radius rl;a ¼ 1:5 cm,
for the vorticity profile neðrÞ shown in Fig. 2.
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E. Inner products, orthogonality, and completeness

It has been previously shown11 that the vorticity eigenfunctions
nl;a form a complete orthogonal set with respect to an inner product
defined as

hnl;a; nl;biP ¼ p
ð
r2dr

n�l;anl;b
@ne=@r

: (29)

This follows from the fact that the linear operator L̂l appearing in
Eq. (20) is Hermitian with respect to this inner product, so the spectral
theorem applies to the eigenmodes of this operator.11 This is a general
feature of linearized non-dissipative wave systems. Due to the underly-
ing Hamiltonian nature of the dynamics, an inner product can be
found that is related to a constant of the motion, and with respect to
which the system eigenmodes are orthogonal.30 For the above inner
product, the constant of the motion is the angular momentum of the
mode, given by q0hnl;a; nl;aiP . We will prove this in Sec. III A2. In the
plasma case, the constant of the motion associated with the above
inner product is the canonical angular momentum (per unit length of
the plasma column), B2

4pc2 hnl;a; nl;aiP . We, therefore, refer to the
quantity

Pl;a � hnl;a; nl;aiP (30)

as a (scaled) angular momentum for the eigenmode.
Now, it is well known that angular momentum of a rotating

wave, Pl;a, is related to the wave energy El;a, through

El;a ¼ xl;a

l
Pl;a: (31)

Moreover, the wave energy is also related to a second inner product
for the 2D Euler system,31

hnl;a; nl;biE ¼ p
ð
rdr n�l;a/l;b þ xer

n�l;anl;b
@ne=@r

 !
; (32)

with El;a ¼ hnl;a; nl;aiE the scaled energy, scaled in the same way as was
done for the angular momentum; that is, in the Euler fluid case the
actual mode energy is q0El;a, while in the plasma analogue, the mode
energy (per unit length of the plasma column) is B2hnl;a; nl;aiE=ð4pc2Þ.

System eigenmodes are also orthogonal with respect to this
energy inner product, and so

hnl;a; nl;biE ¼ xl;a

l
hnl;a; nl;biP; (33)

for all a and b. This and other inner product relations will be derived
in a following paper.31

Later in the paper we will need to consider a change of frame
from the laboratory frame to one rotating with some angular velocity
x/. The plasma rotation frequency xeðrÞ then changes to
�xeðrÞ ¼ xeðrÞ � x/, and eigenfrequencies are Doppler-shifted to
�x l;a ¼ xl;a � lx/, but the functional form of the eigenmodes is
unchanged. It then follows directly from Eqs. (30) and (31) that angu-
lar momentum and energy transform according to

�Pl;a ¼ Pl;a; (34)

�El;a

�x l;a
¼ El;a

xl;a
: (35)

The latter relation is consistent with the fact that jEl;a=xl;aj is the clas-
sical wave action (the “number of quanta” in a wave) and is, therefore,
invariant under frame change.

Since wave energy is not invariant under frame change, neither is
the energy inner product given by Eq. (32). Nevertheless, the eigenmo-
des remain orthogonal. When evaluated in a rotating frame the energy
inner product is denoted by hnl;a; nl;bi�E , given by Eq. (32) but with xe

replaced by �xe. On the other hand, the angular momentum inner
product is frame-independent.

Completeness of the set of eigenmodes, a consequence of the
Hermitian property of the operator L̂l , implies that any “sufficiently
smooth” function f(r) can be represented on 0 < r 	 R as a superposi-
tion of the eigenmodes,

f ðrÞ ¼
X
a

canl;aðrÞ; (36)

while mode orthogonality implies that the “Fourier coefficients” ca can
be determined by either an energy or angular momentum inner prod-
uct. Here, we will use the energy inner product defined in Eq. (32),
yielding

ca ¼ hnl;a; f iE
El;a

: (37)

In Eq. (36), we have used a summation convention, appropriate
for the discretized continuum modes found by using a discrete radial
grid with stepsize Dr ¼ R=M, M finite, as in Fig. 3. However, in the
M ! 1 continuum limit, an integral form is more appropriate. Now
we split off the Kelvin/diocotron mode contribution (assuming that
there is a discrete mode) and convert the remaining sum over a into
an integral over the resonant radii rl;a using Eq. (23) to relate the mode
number a to a given resonant radius, obtaining

f ðrÞ ¼
ðR
0
drl;a

hnl;a; f iE
�lðrl;aÞ nl;aðrÞ þ hnl;K ; f iE

El;K
nl;KðrÞ; (38)

where El;K is the energy of the discrete Kelvin/diocotron mode, and

�lðrl;aÞ � lim
M!1

DrEl;a: (39)

Equation (38) is a novel type of integral transform similar in some
respects to an inverse Fourier transform. We will find that this trans-
form is useful in the description of the beat wave instability considered
in Sec. III.

However, there is a complication: for a continuum mode, the sin-
gularity in the mode causes a divergence such that the energy El;a and
angular momentum Pl;a of the mode are infinite. For l¼ 1, this can be
seen directly by attempting to evaluate E1;a or P1;a using Eqs. (27) and
(28). Fortunately, we are saved by the fact that continuum mode
energy enters Eq. (38) only in the combination �l ¼ limM!1 DrEl;a.
When M is finite, the Dirac delta function in the continuum modes is
regularized and the energy and angular momentum (found by discre-
tizing the radial integrals in the usual way) is finite; so that Eqs. (36)
and (37) are sensible equations for finite M. However in the M ! 1
limit, Dr ! 0 and El;a ! 1 in such a way that �lðrl;aÞ is a finite
function.

This can be seen by direct numerical evaluation, first solving the
matrix eigenvalue problem Eq. (20) on a discretized radial grid
rj ¼ jDr; j ¼ 1;…;M, with Dr ¼ R=M, as was done for Fig. 3, and
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then using these discretized eigenmodes to evaluate the eigenmode
energies via a discretized version of the integral in Eq. (32). One may
then use these discretized eigenmode energies to determine �lðrl;aÞ via
Eq. (39), and show that asM increases the result for the function �lðrÞ
converges. However, this only provides an approximate numerical
form for �lðrÞ. An analytic approach, derived in the Appendix, yields
the following exact result:

�lðrl;aÞ ¼ pr2l;axeðrl;aÞ b2

n0eðrl;aÞ
1þ pn0eðrl;aÞ/l;aðrl;aÞ

brl;ax0
eðrl;aÞ

 !2
2
4

3
5: (40)

We have checked that this analytic form for �lðrÞ agrees with the
numerical approach outlined above.

III. BEAT WAVE DECAY OF A KELVIN/DIOCOTRON
WAVE

In this section, we consider an experiment in which a Kelvin/dio-
cotron “pump wave” is excited to amplitude Ap, with mode number
lp > 1 and frequency xp 
 xlp;K > 0. This mode can decay in ampli-
tude through a nonlinear beat wave process via the spontaneous
growth of a Kelvin/diocotron mode “daughter wave” with mode num-
ber ld in the range 0 < ld < lp, frequency xd 
 xld ;K ; 0 < xd < xb,
and small but exponentially growing amplitude AdðtÞ. In this decay
process a “beat” daughter wave is also excited, with frequency
xb 
 Dx � xlp ;K � xld ;K , and mode number lb ¼ lp � ld .

The beat wave is not a discrete Kelvin/diocotron mode; otherwise
this would be a standard three-wave decay process.17 Note here that
the Kelvin/diocotron mode with mode number lb does not satisfy the
three-wave resonance condition17 xlp ;K ¼ xld ;K þ xlb ;K . Instead, the
beat wave is the l¼ lb Fourier component of a discrete eigenmode of
the nonlinear equations, drawn from a Landau-damped spectrum of
continuum eigenmodes with mode number lb.

Nevertheless, there are some similarities between beat wave decay
and three-wave decay. As in three-wave decay, we will see that the
daughter wave and beat wave have energies of opposite sign when
viewed in the frame of the pump wave, and this allows both waves to
grow through the resonant exchange of energy from the negative
energy wave to the positive energy wave.27 Also, the resonance condi-
tion xlp ;K ¼ xld ;K þ Dx obviously holds for the process, just as it
does in three-wave decay.

A. Theory of beat wave decay

The beat wave decay process involves only a few azimuthal
Fourier components: the pump wave mode number lp, the daughter
wave mode number ld, the beat wave mode number lb, and the com-
plex conjugate modes �lp;�ld;�lb. We, therefore, approximate the
vorticity as

nðr; tÞ � neðrÞ ¼ eilphnlpðr; tÞ þ eildhnld ðr; tÞ þ eilbhnlbðr; tÞ þ c:c:;

(41)

where the complex conjugate vorticity perturbations satisfy the stan-
dard Fourier identity n�l ðr; tÞ ¼ n�lðr; tÞ.

We should note here that Eq. (41) neglects the nonlinear change
dn0ðrÞ to the l¼ 0 component of the vorticity, caused by the pump
wave, as well as two other beat waves (and their complex conjugates):

Fourier components 2lp and ld þ lp. Mode 2lp, the second harmonic of
the pump wave, is needed to evaluate the frequency shift of the pump
wave due to its finite amplitude, and mode ld þ lp is needed to evaluate
an extra frequency shift term in the daughter wave and beat wave.
These extra modes do not affect the growth rate of the beat wave insta-
bility at order A2

p and will therefore be considered separately in Sec.
III A2.

The nonlinear continuity equation for the pump wave vorticity
perturbation with azimuthal mode number lp is given by Eq. (7), after
substitution of Eq. (41),

@nlp
@t

þ ilpxenlp þ
ilp/lp

r
@ne
@r

þ iFpðr; tÞ ¼ 0; (42)

where the nonlinear term Fp is due to mode coupling to the daughter
and beat waves,

Fp ¼ lb
/lb

r
@nld
@r

� nlb
r

@/ld

@r

� �
þ ld

/ld

r
@nlb
@r

� nld
r

@/lb

@r

� �
: (43)

However, we will assume for simplicity that the daughter
wave and beat wave are much smaller in amplitude than the pump
wave so we drop Fp. This linearizes the equation, and along with
the Poisson equation (8) yields a linear Kelvin/diocotron mode
solution for nlpðr; tÞ,

nlp ¼ Ape
�ixl;K tnl;KðrÞ; (44)

where Ap is the dimensionless mode amplitude of the Kelvin/dio-
cotron mode; see Eqs. (16), (17), and (19). Dropping Fp implies
that the pump wave has time-independent amplitude Ap; this is a
good approximation only in the early stages of growth of the
daughter and beat waves, before they grow large enough to notice-
ably deplete the pump wave, but this is enough to determine the
growth rate of the instability.

Here, and throughout the paper, we use the normalization con-
vention that discrete Kelvin/diocotron eigenmodes nl;KðrÞ are real
with dimensionless amplitudes [defined by Eq. (19)] equal to unity.
For simplicity, we also assume that Ap is real.

For the daughter and beat waves, we will work in the frame of the
pump wave, which rotates at phase velocity x/ ¼ xlp;K=lp with
respect to the lab frame. This greatly simplifies the analysis because the
pump wave is stationary in this frame, with stream function
2Ap/l;KðrÞ cos ðlphÞ (after adding in the complex conjugate mode).
This allows a description of the daughter and beat waves in terms of
an eigenmode of a new equilibrium that includes the stationary pump
wave perturbation. Nonlinear coupling between the daughter wave,
beat wave, and the pump wave can then be understood in terms of a
fairly straightforward perturbation theory of the eigenfrequencies of
the new equilibrium.

The equation for the l¼ lb beat wave vorticity perturbation nlbðrÞ
is also given by Eq. (7),

@nlb
@t

þ ilb �xenlb þ
ilb/lb

r
@ne
@r

þ iApFbðr; tÞ ¼ 0; (45)

where �xe ¼ xe � x/ is the rotation frequency as seen in the rotating
frame of the pump wave, and the nonlinear term Fbðr; tÞ is due to
mode coupling to the pump wave and the l ¼ �ld Fourier component
of the daughter wave,
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Fbðr; tÞ ¼ �ld
/�ld ðr; tÞ

r

@nlp;K
@r

� n�ld ðr; tÞ
r

@/lp ;K

@r

� �

þlp
/lp ;K

r
@n�ld

@r
ðr; tÞ � nlp ;K

r

@/�ld

@r
ðr; tÞ

� �
: (46)

Next, we write a similar equation for the daughter wave Fourier
component�ld , since this is the component that appears in Eq. (46):

@n�ld

@t
� ild �xen�ld �

ild/�ld

r
@ne
@r

þ iApFdðr; tÞ ¼ 0; (47)

where the nonlinear term Fdðr; tÞ is due to mode coupling between
the l¼ lb Fourier component of the beat wave and the l ¼ �lp compo-
nent of the pump wave,

Fdðr; tÞ ¼ lb
/lbðr; tÞ

r

@nlp ;K
@r

� nlbðr; tÞ
r

@/lp ;K

@r

� �

� lp
/lp;K

r
@nlb
@r

ðr; tÞ � nlp;K
r

@/lb

@r
ðr; tÞ

� �
; (48)

and where we used the fact that nlp ;KðrÞ is real, so that n�lp ;K ¼ nlp ;K ,
and similarly for /lp ;K .

We expect that Fourier component �ld is close to a discrete
Kelvin/diocotron mode with vorticity eigenmode nld ;KðrÞ, stream
function eigenmode /ld ;K , and some growing amplitude
a�ld ðtÞ ¼ a�ld ðtÞ, so we write the solution to Eq. (47) as

n�ld ðr; tÞ ¼ a�ld ðtÞnld ;KðrÞ þ Dnðr; tÞ;
/�ld ðr; tÞ ¼ a�ld ðtÞ/ld ;KðrÞ þ D/ðr; tÞ; (49)

where Dnðr; tÞ and D/ are small corrections. Recall that the Kelvin/
diocotron eigenmode is chosen so that nld ;K and /ld ;K are real, so that
n�ld ;K ¼ nld ;K and /�ld ;K ¼ /ld ;K . However, ald may be complex,
describing an arbitrary phase shift between the Kelvin/diocotron
daughter wave and the pump wave. The corrections Dn and D/ can
be expressed as a sum (integral) over the other continuum eigenmodes
of azimuthal mode number �ld . By construction, Dn is orthogonal to
nld ;K , with orthogonality defined by either of the inner products dis-
cussed in Sec. II E.

Applying Eq. (49) to Eq. (47) then yields

_a�ld nld ;K þ D _n þ i�̂L�ld ða�ld nld ;K þ DnÞ þ iApFd ¼ 0; (50)

where �̂L lp is the linear Kelvin/diocotron eigenmode operator of Eq.
(20) as viewed in the rotating frame of the pump wave,

�̂L lpnlp ¼ l�xenlp þ
l
r
@ne
@r

Ĝnlp : (51)

We simplify Eq. (50) by taking an energy inner product with respect to
the Kelvin/diocotron eigenmode nld ;K to obtain the following evolution
equation for the dimensionless Kelvin/diocotron mode amplitude
ald ðtÞ, as viewed in the frame of the pump wave,

�Eld ;Kð _a�ld þ i�x�ld ;Ka
�
ld
Þ þ hnld ;K ; iApFdi�E ¼ 0; (52)

where �x�ld ;K ¼ ��x ld ;K is the Doppler-shifted frequency of the �ld
Kelvin/diocotron eigenmode, as seen in the pump wave frame, and
�Eld ;K ¼ hnld ;K ; nld ;Ki�E is the energy of an l¼ ld or �ld Kelvin/dioco-
tron eigenmode as seen in the pump wave frame.

Turning to the beat wave with mode number lb, we substitute for
n�ld and /�ld into Fb from Eq. (49), and drop the small corrections Dn
and D/ since the Fb term in Eq. (45) is already small. This yields

_nlb þ ilb �xenlb þ
ilb/lb

r
@ne
@r

þ iApa
�
ld
ðtÞFb;KðrÞ ¼ 0; (53)

where the beat wave forcing function Fb;K is determined entirely by
the Kelvin/diocotron mode densities and stream functions,

Fb;KðrÞ ¼ �ld
/ld ;K

r

@nlp ;K
@r

� nld ;K
r

@/lp;K

@r

� �

þ lp
/lp;K

r
@nld ;K
@r

� nlp ;K
r

@/ld ;K

@r

� �
: (54)

Equations (52) and (53) are coupled linear homogeneous differ-
ential equations with time-independent coefficients, so solutions with
time-dependence of the form exp ð�i�xtÞ exist,

ða�ld ðtÞ; nlbðr; tÞÞ ¼ e�i�xtðA�
di; ~nlbðrÞÞ; (55)

where Adi is the dimensionless initial amplitude of the ld diocotron
mode and ~nlbðrÞ is the radial dependence of the beat wave.

Equations (52) and (53) can then be expressed as

�xA�
di ¼ �x�ld ;KA

�
di þ Ap

hnld ;K ; ~Fdi�E
�Eld ;K

; (56)

�x~nlbðrÞ ¼ lb �xe~nlbðrÞ þ
lbn0eðrÞ

r
~/ lbðrÞ þ ApA

�
diFb;KðrÞ; (57)

where ~/ lbðrÞ ¼ ei�xt/lbðr; tÞ and ~FdðrÞ ¼ ei�xtFdðr; tÞ. These coupled
equations are an eigenvalue problem for the daughter and beat wave
vector eigenfunction ðA�

di; ~nlbðrÞÞ, if we recall that Fd is linear in nlb
and /lb , and that /lb ¼ Ĝlbnlb . This eigenvalue problem includes the
mode-coupling effect of the pump wave on the daughter and beat
waves, and can therefore describe the nonlinear beat wave instability.

These eigenvalue equations can be solved numerically by dis-
cretizing radius, and then determining the eigenvalues and eigenvec-
tors of the resulting matrix eigenvalue problem. This is a simple
generalization of the numerical method used to find linear contin-
uum eigenmodes of the unperturbed (Ap¼ 0) system discussed in
relation to Fig. 3. We will use this numerical method later, but for
now, we will obtain analytic expressions for the instability growth
rate and frequency shift.

In the beat wave decay process, the l¼ lb perturbation is a wave-
packet of continuummodes, so we write the vorticity perturbation as

~nlbðrÞ ¼
X
a

aanlb;aðrÞ; (58)

where the sum is over all of the l¼ lb continuum eigenmodes as well as
the single discrete l¼ lb Kelvin/diocotron eigenmode. We will later
convert the sum over continuum eigenmodes into an integral, but for
now it is convenient to leave the expression in this form. Using this
eigenmode expansion in Eq. (57) and taking an energy inner product
with respect to one eigenmode then yield

�Elb ;a �xaa ¼ �Elb ;a �x lb ;aaa þ ApA
�
diCad; (59)

where the nonlinear coupling coefficient Cad between the continuum
eigenmode and the daughter wave is defined as
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Cad � hnlb ;a; Fb;Ki�E : (60)

On the other hand, in Eq. (56) ~Fd ¼ ei�xtFd depends on nlb and
/lb ; see Eq. (48). Substituting for nlb ¼ e�i�xt~nlb and /lb ¼ e�i�xt ~/ lb in
terms of the eigenmode expansion via Eq. (58), Eq. (56) then becomes

�xA�
di ¼ �x�ld ;KA

�
di þ Ap

X
a

Cdaaa ¼ 0; (61)

where the second nonlinear coupling coefficient Cda between the con-
tinuummode and the daughter wave is defined as

Cda � hnld ;K ; Fd;ai�E ; (62)

and where

Fd;aðrÞ ¼ lb
r
ð/lb ;an

0
lp ;K � nlb ;a/

0
lp;KÞ

� lp
r
ð/lp ;Kn

0
lb;a

� nlp ;K/
0
lb;a

Þ; (63)

Equations (59) and (61) are coupled linear equations for daughter
wave amplitude A�

di and continuum mode amplitude aa. The equa-
tions can be solved to obtain the frequency and growth rate of the
decay instability. First, one can solve Eq. (59) for aa in terms of A�

di.
Substituting the result into Eq. (61) yields

Dð�xÞA�
di ¼ 0; (64)

where Dð�xÞ, the nonlinear dielectric function, is

Dð�xÞ ¼ �x � �x�ld ;K � A2
p

X
a

CdaCad

�Elb ;a
�Eld ;Kð�x � �x lb ;aÞ

: (65)

To evaluate the sum appearing in this expression, we now separate the
single Kelvin/diocotron mode contribution, with frequency �x lb;K

¼ xlb ;K � lbx/ in the pump wave frame, energy �Elb ;K , and coupling coef-
ficients CdK, CKd [obtained by replacing a by K in Eqs. (60), (62), and (63)].
We convert the rest of the sum to an integral since we are dealing with con-
tinuummodes. Following the discussion surrounding Eq. (38) we obtain

Dð�xÞ ¼ �x � �x�ld ;K � A2
p

CdKCKd

�Elb ;K
�Eld ;Kð�x � �x lb ;KÞ

� A2
p

ð
dra

CdaCad

�� lbðraÞ�Eld ;Kð�x � lb �xeðraÞÞ ; (66)

where �� lðraÞ is given by Eq. (40), evaluated in the barred (pump wave)
frame.

We search for a zero of the dielectric function. Anticipating that
for small Ap, �x 
 �x�ld ;K þ ic for some growth rate c (assumed small),
we use this in the 0ðA2

pÞ terms to obtain a perturbed value for �x,

Dð�xÞ ¼ 0 ¼ �x � �x�ld ;K � A2
p

CdKCKd

�Elb ;K
�Eld ;Kð�x�ld ;K � �x lb;KÞ

� A2
p

ð
dra

CdaCad

�� lbðraÞ�Eld ;Kð�x�ld ;K þ ic� lb �xeðraÞÞ :

(67)

We apply the Plemelj formula to the Landau pole in the last integral
and solve for �x, yielding

�x ¼ �x�ld ;K þ dxþ ic; (68)

where the growth rate c and nonlinear frequency shift dx are

c ¼ �pA2
p

ð
dra

CdaCad

�� lbðraÞ�Eld ;K
dðlb �xeðraÞ � �x�ld ;KÞ; (69)

dx ¼ A2
p

ð
P dra

CdaCad

�� lbðraÞ�Eld ;Kð�x�ld ;K � lb �xeðraÞÞ
þ A2

p
CdKCKd

�Elb ;K
�Eld ;Kð�x�ld ;K � �x lb;KÞ

; (70)

and where
Ð
P is the Cauchy principal value of the integral.

The expression for the growth rate c involves a Dirac delta func-
tion, which is nonzero only when the resonance condition �x�ld ;K

¼ lb �xeðraÞ ¼ �x lb;a is met, i.e., the daughter and beat waves have the
same frequency when viewed in the frame of the pump wave. The res-
onance condition is met at a radial location ra ¼ rbeat , the beat wave
resonant radius. Transforming the resonance condition to the lab
frame yields a more familiar form for the resonance condition,

xlb;a ¼ lbxeðrbeatÞ ¼ xlp ;K � xld ;K ¼ Dx: (71)

This Landau resonance at the beat frequency Dx between the Kelvin/
diocotron modes occurs at a location within the plasma where both
@ne=@r and Fb;K are typically nonzero: see Fig. 2.

At such a resonance, energy conservation for the daughter and
beat waves then implies Cad ¼ C�

da.
31 This can be verified by direct cal-

culation of Cad and Cda. Therefore, we may write

c ¼ �pA2
p

ð
dra

jCadj2
�� lbðraÞ�Eld ;K

dðlb �xeðraÞ � �x�ld ;KÞ (72)

¼ �pA2
p

jCadj2
jlb �x0

eðraÞj�� lbðraÞ�Eld ;K
jra¼rbeat : (73)

Note that ���1
lb
ðrbeatÞ / n0eðrbeatÞ [see Eq. (40)], so the growth rate is

nonzero only if there is a nonzero equilibrium vorticity gradient at the
beat wave resonant radius.

Also, the growth rate is positive only when the beat and daughter
wave energies in the pump wave frame are of opposite sign, satisfying
�� lb�Eld ;K < 0. This is consistent with a general criterion for instability
due to mode coupling between two daughter waves:19,27 when the
waves have equal frequencies and energies of opposite sign when
viewed in the frame of the pump wave, the negative energy daughter
wave can then resonantly transfer energy to the positive energy wave,
allowing both daughter waves to grow.

In the lab frame, all two-dimensional drift waves have negative
energy, including the l ¼ �ld Kelvin/diocotron wave and the l¼ lb
beat wave. Note, however, that their lab frame frequencies are of oppo-
site sign, since x�ld ;K ¼ �xld ;K < 0 but xlb ;a ¼ Dx > 0. However, in
the pump wave frame their frequencies are the same,
�x lb ;a ¼ �x�ld ;K > 0. This implies, via Eq. (35), that the daughter wave
energies are of opposite sign when viewed in the pump wave frame,
satisfying the instability criterion. In the pump wave frame, the l¼ ld
Kelvin/diocotron mode has positive energy, while the l¼ lb beat wave
has negative energy. Thus, when viewed in this frame, energy flows
from the negative energy beat wave to the positive energy Kelvin/dio-
cotron wave, so that both grow. The energy is extracted from the wave-
packet of resonant l¼ lb continuum modes making up the beat wave, a
Landau damping process that induces wave growth rather than damp-
ing due to the resonant interaction with the positive energy daughter
wave.
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Equation (73) is similar in some respects to Eq. (10) of Ref. 13,
although we have not been able to determine whether the expres-
sions yield the same growth rate. Rather than a sum over wavenum-
bers involving an inverse propagator that appears in Ref. 13, our
expression for the growth rate involves a single resonant continuum
mode—in the eigenmode expansion, the propagator is analytically
invertible as an eigenmode frequency, which simplifies the growth
rate expression.

Equation (73) implies that the growth rate is proportional to the
square of the pump wave amplitude Ap. The A2

p scaling of the growth
rate with pump amplitude is one of the main observations in past
experiments on beat wave decay.14 However, by neglecting higher har-
monics of lp in Eq. (41), we are treating the pump wave as a linear
mode, which is only a good approximation for small pump amplitudes
Ap. Our expression for the growth rate is therefore valid only to lowest
order in Ap.

The growth rate expression, Eq. (73), is fairly easy to evaluate
since only a single continuum eigenmode is required: the mode at
the beat wave frequency, i.e., xlb ;a ¼ Dx. For lb¼ 1 the mode is
known analytically [Eqs. (27) and (28)], while for lb > 1 it can be
evaluated via the numerical methods discussed in Sec. II. One such
method uses the discretized version of the resonant continuum
mode obtained for finite Dr, along with discretized forms for the
inner products Cad; �Elb;a involving this mode. When these inner
products are written in terms of sums, each sum is proportional to
Dr. In the denominator, �� l ¼ Dr�Elb;a / Dr2 and this factor of Dr2

cancels with the same factor arising from jCadj2 in the numerator,
leaving a finite result for c that approaches the continuum limit as
Dr ! 0, provided that Dr is chosen so that the resonant radius of the
beat wave, rbeat, is on the grid, i.e., rbeat=Dr 2 Integers. More accurate
numerical results can be obtained by evaluating the inner products
in Eq. (73) using the resonant continuum mode obtained from a
high accuracy shooting method solution of Eq. (25), or via the
Green’s function approach of Eq. (26).

1. Alternate expressions

The expressions developed so far for the frequency shift dx and
the functional form of the beat wave, as integrals over the continuum
eigenmodes, are unwieldy. More elegant, easy to evaluate expressions
can be found. We return to eigenvalue equations (56) and (57) for the
initial Kelvin/diocotron amplitude A�

di and the beat wave vorticity
~nlbðrÞ. Noting that the eigenfrequency �x 
 �x�ld ;K þ ic, we will use
this approximate expression to determine alternate forms for the real
frequency shift, the growth rate, and the radial dependence of the beat
wave vorticity perturbation, without employing a continuum mode
expansion.

We first define and the scaled beat wave vorticity and stream
function,

n̂lbðrÞ � ~nlbðrÞ=ðApA
�
diÞ; /̂ lbðrÞ � ~/ lbðrÞ=ðApA

�
diÞ; (74)

and then solve Eq. (57) for n̂lb and apply the Plemelj formula (assum-
ing c is small), yielding

n̂lb ¼
lb
r
/̂ lb

@ne
@r

þ Fb;K

� �
P

�x�ld ;K � lb �xe
� ipdð�x�ld ;K � lb �xeÞ

� �
:

(75)

Combining this with Poisson’s equation yields an inhomogeneous
boundary value problem for the scaled beat wave stream function
/̂ lbðrÞ,

@2/̂ lb

@r2
þ 1

r

@/̂ lb

@r
� l2b
r2
/̂ lb þ n̂lb ¼ 0 (76)

with boundary condition /̂ lbðrwÞ ¼ 0.
The inhomogeneous term in Eq. (75), proportional to Fb;KðrÞ,

drives the beat wave stream function. Furthermore, the function
~FdðrÞ ¼ ei�xtFdðr; tÞ appearing in the inner product in Eq. (56) is lin-
ear in ~nlbðrÞ and ~/ lbðrÞ, [see Eq. (48)], and so ~Fd is also proportional
to ApA�

di. This implies that we can divide out a factor of A�
di from every

term in Eq. (56), leaving the expression

�x ¼ �x�ld ;K þ A2
p
hn2;K ; F̂ di�E

�Eld ;K
; (77)

where

F̂ dðrÞ �
~FdðrÞ
ApA�

di

¼ lb
r
ð/̂ lb n

0
lp ;K � n̂lb/

0
lp ;KÞ

� lp
r
ð/lp;Kn̂

0
lb
� nlp ;K /̂

0
lb
Þ: (78)

Equation (77) is an alternate expression for the growth rate and real
frequency shift in the beat wave instability, which can be evaluated
without needing to evaluate and integrate over the continuum eigenm-
odes. Instead, the inner product involves the scaled beat wave vorticity
and stream function n̂lb and /̂ lb . It can be written explicitly in a fairly
compact form as an integral over these functions by converting the
energy inner product to an angular momentum inner product using
Eqs. (33) and (31) and then applying Eq. (29), yielding

�x � �x�ld ;K ¼ dxþ ic ¼ � pA2
p

Pld ;K

ð
dr n̂lbðldrrld/0

lp;K þ lpðrrld Þ0/lp ;KÞ
h

�/̂ lbðldrrld n0lp ;K þ lpðrrld Þ0nlp ;KÞ
i
; (79)

where we introduce rlðrÞ � �nl;K=n0e, the radial displacement of fluid
elements in a Kelvin/diocotron eigenmode, and where we have com-
bined terms after substituting lb ¼ lp � ld and integrating by parts, so
that no radial derivatives of n̂lb or /̂ lb appear.

This expression shows that the real parts of the scaled beat wave
vorticity n̂lb and stream function /̂ lb are responsible for the frequency
shift dx, and the imaginary parts determine the growth rate c. The
real parts of the beat wave are in phase with the ld Kelvin/diocotron
mode, and the imaginary parts are 90o out of phase (when viewed
in the pump frame where the daughter and beat waves have the same
frequency). As is typically the case, growth (or damping) of waves
due to interaction between them requires a phase shift between the
waves.

In the Appendix, it is shown that the imaginary part of the beat
wave vorticity is directly proportional to the resonant continuum
eigenmode nlb ;a that enters our previous expression for the growth
rate, Eq. (72), so Eqs. (79) and (72) yield the same result for c.

As a special case, Eq. (79) simplifies when the daughter wave is
assumed to have mode number ld¼ 1. Mathematically, this is due to a
cancelation between the term in the integrand proportional to /̂ lb and
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the term proportional to n̂lb , which occurs because rld ¼ constant for
the ld¼ 1 Kelvin/diocotron mode: the mode is a uniform displacement
of the plasma off of the trap axis. The cancelation is then proven by
performing two integrations by parts on the n̂lb term after substituting

from Poisson equation (76) for n̂lb in terms of /̂ lb , then substituting
for /0 0

lp ;K
and /000

lp ;K
in terms of nlp;K and n0lp;K respectively, and then

taking ld¼ 1 and lp ¼ 1þ lb. After the cancelations a single boundary
value term is left over from the integrations by parts, yielding

dxþ ic ¼ pA2
p

Pld ;K
rwrld /̂

0
lb
ðrwÞ/0

lp;KðrwÞ; if ld ¼ 1: (80)

Thus, for ld¼ 1, instability arises from the imaginary part of the beat
wave electric field [proportional to /̂0

lb
ðrÞ] evaluated at the wall radius

rw. If the wall is very far away, rw ! 1, the growth rate therefore van-
ishes. Intuitively, this makes sense because in the absence of a wall, the
location of the center of mass of the plasma column (the “center of
vorticity” of the fluid vortex) is a constant of the motion, and so in this
case the ld¼ 1 Kelvin/diocotron mode, which is a displacement of the
center of vorticity, cannot be spontaneously excited by coupling to
other vortex modes.

Evaluation of Eq. (79) [or Eq. (80)] requires an accurate functional
form for the beat wave stream function /̂ lb . For lb¼ 1, we will see in a
moment that an analytic form for this function can be found. For lb > 1,
however, the inhomogeneous boundary value problem given by Eqs. (75)
and (76) must be solved numerically. There are several ways of doing so.
We have found that the most accurate and efficient approach is to use a
shooting method in which, for /̂ lbð0Þ ¼ 0 and an arbitrary value of
/̂0

lb
ð0Þ, a numerical solution is obtained in the range 0 < r < rbeat � �,

for some � � 1; a typical value is � ¼ 10�4. This solution is then con-
nected across the resonance to an outer numerical solution running from
rbeat þ � to rw, using an analytic power series solution in the connection
region jr � rbeat j < � of the form /̂ lbðrbeat þ xÞ ¼ a0 þ

PM
m¼1 x

mðam
þbm log jxjÞ, where the series coefficients (am, bm) are related to
ðam�1; bm�1Þ through a recursion relation. Note that the coefficient a1
changes value from x< 0 to x> 0 in order to account for the delta func-
tion in nlb , and this changes the other coefficients through the recursion
relation. Then, /̂0

lb
ð0Þ is varied until the boundary condition /̂ lbðrwÞ ¼ 0

is obtained in the outer solution.
For the case lb¼ 1, (the case observed in previous experiments14)

the boundary value problem for /̂ lb , Eqs. (75) and (76), is solvable ana-
lytically for general equilibrium vorticity profiles. The imaginary parts
of /̂ lb and n̂lb ; /̂i and n̂i, respectively, are particularly simple:

/̂ i ¼
D

x0
eðrbeatÞ

rðDx� xeðrÞÞ; r < rbeat ;
0; r � rbeat ;

�
(81)

where the coefficient D (with units of vorticity) is given by

D ¼ p
r2beat jx0

EðrbeatÞj
ð/̂rðrbeatÞn0eðrbeatÞ þ rbeatFb;KðrbeatÞÞ; (82)

and where the real part of /̂ lb when evaluated at the Landau resonance
radius rbeat, is given by the expression

/̂rðrbeatÞ ¼ � 1
r2beatx

0
EðrbeatÞ

ðrbeat
0

drr2Fb;KðrÞ: (83)

The imaginary part of the vorticity is then found by taking the imagi-
nary part of Eq. (75), yielding

n̂iðrÞ ¼ D
n0eðrÞ

x0
eðrbeatÞ

hðrbeat � rÞ � rbeatdðr � rbeatÞ
" #

; (84)

where h(x) is the Heaviside step function.
The real parts of the vorticity and stream function can also be

found in integral form. The real part of the stream function, /̂r , is

/̂rðrÞ ¼ �wbðrÞ
ðr
0
r02dr0Fb;Kðr0Þ � waðrÞ

ðrw
r
P r02dr0

wbðr0ÞFb;Kðr0Þ
waðr0Þ

;

(85)

where the functions wa and wb are l¼ 1 homogeneous solutions to the
differential equation appearing in Eq. (25),

waðrÞ ¼ rðDx� xeðrÞÞ; (86)

wbðrÞ ¼ �waðrÞ
ðrw
r

C
dr0

r0waðr0Þ2
; (87)

and where here C is any contour in the complex r0 plane running from
r to rw that avoids the pole at r0 ¼ rbeat [note that waðrbeatÞ ¼ 0]. The
real part of the beat wave vorticity is then

n̂r ¼ P
wa

ðn0e/̂r þ rFb;KÞ; (88)

where P stands for the principal part of the resonant denominator.
In Fig. 5, the complex beat wave stream function /̂ lb is plotted vs

radius for the 3 ! 2 decay, i.e., for lb ¼ 1; ld ¼ 2; lp ¼ 3. The beat
wave stream function is calculated for the same vorticity profile as
shown in Fig. 2. The figure shows that there is a discontinuity in slope
of the imaginary part of the stream function at the beat wave resonant
radius rbeat [see also Eq. (81) which describes this analytically for
lb¼ 1)], and a “jog” in the real part, which has logarithmically infinite
slope (i.e., an infinite velocity field) at the resonance.

The inset to the figure shows that the beat wave stream function
is almost, but not quite, self-shielding: there is a weak beat wave veloc-
ity field at the wall. The corresponding electric field at the wall in the
plasma analogue, in the lab frame, is, in principle at least, a measurable
quantity in the plasma experiments, given by the expression
Elbðrw; tÞ ¼ �e�ið�xþlbx/Þt@UlbðrÞ=@rjrw with UlbðrÞ ¼ 6B~/ lbðrÞ=c
[with the upper (lower) sign for positive (negative) nonneutral

FIG. 5. Real (solid) and imaginary (dashed) components of the radial dependence
/̂ lb ðrÞ of the beat wave stream function /lb ðr; tÞ ¼ ApA�di e

�i �x t/̂ lb ðrÞ for a 3 ! 2
decay, assuming infinitesimal pump wave amplitude Ap.
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plasmas]. For lb¼ 1, the beat wave electric field at the wall can then be
determined analytically from Eqs. (85)–(87):

E1ðrw; tÞ ¼6
B

c rwwaðrwÞ
ApA

�
di exp ð�ið�x þx/ÞtÞ

ðrw
0
r2drFb;KðrÞ;

(89)

where we also used Eqs. (55) and (74).
For lb¼ 1, Eq. (89) shows that the beat wave electric field is pro-

portional to the dipole moment of the beat wave forcing function Fb;K .
For the 3 ! 2 decay, the ratio of the wall electric fields of the beat
wave to the ld daughter wave is fairly small, given by 0:07Ap, so the
beat wave field is difficult to observe in the experiments for this decay.

In Fig. 6, the complex beat wave vorticity nlb for the 3 ! 2 decay
is plotted vs radius. The vorticity is singular at the resonant radius rbeat.
The singularities in the beat wave vorticity and stream function are
expected because the beat wave has a Landau resonance. For growth
rate c ! 0 (i.e., for pump amplitude Ap ! 0), the imaginary part of
the beat wave is proportional to a single singular continuum eigen-
mode, as discussed in the Appendix, see Eq. (A8). However, for finite
growth rate c (i.e., finite pump amplitude) these singularities and dis-
continuities are smoothed out over a radial distance of order
c=jx0

eðrbeatÞj. In other words, for finite pump amplitude Ap the unsta-
ble eigenmode becomes a discrete eigenmode in the eigenvalue prob-
lem given by Eqs. (56) and (57).

An example of the vorticity perturbation for finite pump ampli-
tude is displayed in Fig. 7 for 3 ! 2 decay, calculated by solution of
the matrix eigenvalue problem obtained by discretizing radial position
in Eqs. (56) and (57). For a radial grid with M elements (M¼ 2000 in
the figure), there areMþ 1 eigenmodes in this problem. M � 2 of the
modes are discretized versions of singular continuum modes analo-
gous to the continuum modes of the unforced Kelvin/diocotron prob-
lem, discussed previously in relation to Eq. (20) and displayed in
Fig. 3. The other three eigenmodes are discrete (i.e., with continuous
eigenfunctions). One of these discrete modes is the l¼ lb Kelvin/dioco-
tron mode. The other two discrete eigenmodes have complex frequen-
cies and eigenfunctions that are conjugate to one-another, so one

grows in time and the other decays. The real and imaginary parts of
the eigenmode corresponding to exponential growth are plotted in
Fig. 7 and is compared to the infinitesimal amplitude case plotted in
Fig. 6. Note that the vector eigenmode ðA�

di; ~nlbðrÞÞ can have an arbi-
trary overall amplitude, but the ratio ~nlbðrÞ=A�

di is uniquely deter-
mined, and this is what is plotted in the figure, scaled by Ap as well in
order to produce n̂lb [see Eq. (74)] and to compare to Fig. 6.

In addition to resonance broadening at finite pump amplitude,
there is a small but noticeable decrease in the radius of the resonance.
This is explained by the nonlinear increase dx in the real frequency of
the eigenmode as shown in Table I. This frequency increase shifts the
position of the Landau resonance to smaller radius according to
lbxeðrÞ ¼ Dxþ dx.

In Table I, we display the theoretically predicted growth rates in
beat wave decay, for a range of Kelvin/diocotron mode numbers. For
lp ¼ 2; ld ¼ 1, the growth rate is zero. This is an analytic result based
on Eq. (80), using Eq. (81) for the imaginary part of the scaled radial

derivative of the beat wave stream function, /̂
0
iðrwÞ. Since this function

is zero at all radii beyond the resonant radius rbeat, the growth rate van-
ishes. The rate is also small and decreasing with increasing lp for
lp > 2; ld ¼ 1. In these decays, the wall is far enough from the vortex
that there is almost no coupling of the pump wave to the ld¼ 1 mode.

In general, growth rates increase with increasing daughter wave
mode number ld. The experiments also observe this trend as shown by
the final column in the table, with measured growth rates of similar
size to those evaluated theoretically. This column will be discussed in
more detail in Sec. IV.

2. Other nonlinear effects on Kelvin/diocotron waves:
Frequency shifts and the Love instability

Frequency shifts caused by the pump wave in typical experimen-
tal conditions are small, of order A2

p � 1, but might still be observed
in the experiments, so it is worthwhile to pursue them theoretically.
We start with the frequency shift dxp to the pump wave itself. We

FIG. 6. Real (solid) and imaginary (dashed) components of the scaled radial depen-
dence n̂ lb ðrÞ of the beat wave vorticity perturbation nlb ðr ; tÞ ¼ ApA�die

�i �x t n̂ lb ðrÞ for
the 3 ! 2 decay, corresponding to the beat wave stream function /̂ lb ðrÞ in Fig. 5.
The imaginary part of n̂ lb is proportional to a single continuum eigenfunction nlb ;aðrÞ
[a solution of Eq. (20)], with a determined by the beat wave resonance condition
xlb ;a ¼ Dx.

FIG. 7. Real (solid) and imaginary (dashed) components of the radial dependence
n̂ lb ðrÞ of the beat wave vorticity perturbation nlb ðr ; tÞ ¼ ApA�die

�i �x t n̂ lb ðrÞ for 3 ! 2
decay and for two dimensionless pump amplitudes: Ap ¼ 0:03 and Ap ! 0 (the
latter limit is the same as in Fig. 6; note the change in scale of the x and y axes). At
finite pump amplitude, the beat wave vorticity perturbation is no longer singular; it is
the lb Fourier component of a discrete unstable eigenmode, a solution of Eqs. (56)
and (57).
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have not considered this shift so far. For an lp¼ 2 mode on an isolated
vortex patch, the nonlinear mode frequency was determined by
Kirchhoff for arbitrary amplitudes.32 For general mode numbers, the
frequency shift was evaluated by Burbea, also for an isolated vortex
patch, using an elegant conformal mapping method.33 Burbea
obtained, to lowest order in Ap,

dxp ¼ �A2
pnelpðlp � 1Þ: (90)

This formula is generalizable to the case where the patch is con-
tained within walls of finite radius rw,

dxp ¼ �A2
pnelp

1� 2q2lp

ð1� q2lpÞ2 ðlp � 1Þð1� 2q2lpÞ � ð1þ lpÞq4lp
h i

;

(91)

where q � rp=rw. For lp ¼ 1, this expression agrees with the nonlinear
frequency shift of an lp ¼ 1 mode derived by Fine.34 Equation (91)
also reduces to Eq. (90) in the q ! 0 limit. The formula follows from
a perturbation analysis of the vortex patch edge. The edge is deformed
by the mode to

Rðh; tÞ ¼ rp
1þ 2Ap cos ðlph� xptÞ þ A2

pB cos 2ðlph� xptÞ þ � � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A2

p þ A4
pB

2=2þ � � �
q

(92)

[a nonlinear generalization of Eq. (16)], where A2
pB is the amplitude of

the second harmonic, and the denominator is chosen so that the area
enclosed by the contour is pr2p , independent of mode amplitude Ap.
This is required by the incompressible nature of the flow. The value of
B and the nonlinear pump wave frequency xp ¼ xlp ;K þ dxp can
then be found by satisfying the dynamical equation for the edge of the
vortex,35

@R
@t

þ vhðh; tÞ
R

@R
@h

¼ vrðh; tÞ; (93)

where vh ¼ �@/=@rjr¼R and vr ¼ @/=@hjr¼R are the h and r compo-
nents, respectively, of the fluid velocity evaluated at the vortex edge,

and / is the stream function of the deformed vortex patch. The
dynamical equation is then solved in a power series expansion in Ap

order by order. Incidentally, this expansion can be automated by using
computer algebra manipulation, to produce analytic expressions for
the frequency shift and the shape of the patch to arbitrary order in Ap.
The results reproduce the numerically determined large amplitude
mode results of Deem and Zabusky.36

At large amplitudes, an instability in the nonlinear mode is pre-
dicted to occur, termed the Love instability, after A. E. H. Love, who
analyzed the instability of large amplitude lp¼ 2 Kelvin modes on an
isolated vortex patch.24 The Love instability occurs when one of the
eigenmodes of the deformed vortex patch approaches zero frequency
(as seen in the frame of the pump wave), and causes a bifurcation of
the deformed equilibrium to a new equilibrium containing both higher
and lower azimuthal mode numbers. The instability has been observed
for lp¼ 2 in nonneutral plasma experiments37 and contour dynamics
simulations.38

For larger values of lp, the Love instability has been studied ana-
lytically and numerically on uniform vortex patches.39 This instability
is quite different from the beat wave decay instability. There is an
amplitude threshold for onset of the Love instability, and also, the
excited waves have substantial contributions from both higher and
lower mode numbers, unlike the decay instability where the energy is
transferred mainly to lower mode numbers, and where growth rates
are finite for all finite pump amplitudes. Finally, the Love instability
can occur for a vortex patch, but beat wave decay cannot, as it requires
a finite vorticity gradient at the resonant radius rbeat within the vortex.

Returning to the question of frequency shifts, for a general non-
uniform vortex with an edge of finite width, the frequency shift of the
pump wave caused by finite pump amplitude has not been considered
theoretically to our knowledge, although the shift has been observed in
recent experiments.15 The frequency shift to the ld daughter wave
caused by the finite pump amplitude has also not been considered. We
determined one portion of the shift to the daughter wave frequency,
dx, in Sec. IIIA1, caused by mode coupling to the lb beat wave.
However, there are two other shifts that have not yet been considered.
First, the pump wave changes the l¼ 0 component of the vorticity at
second order in A2

p, which in effect changes the equilibrium vorticity

TABLE I. Frequency shifts and growth rates in beat wave decay for the experimental density profile of Fig. 2.

Decay process
Unperturbed

pump frequency
Unperturbed daughter

frequency
Frequency shift
contribution Growth rate

Experimental
growth rates

lp; ld; lb

xlp ;K

xe0

xld ;K

xe0

dx
xe0A2

p

c
xe0A2

p

c exp
xe0A2

p

5 4 1 3.72 2.83 64.3 27:9 20.6 (Fig. 16)
5 3 2 1.92 21.0 10.9 10.
5 2 3 1.02 6.07 2:00 3.1
5 1 4 0.22 �9:6� 10�6 4:1� 10�7 0
4 3 1 2.83 1.92 20.7 11.1 7.86 (Fig. 15)
4 2 2 1.02 6.43 2.29 2.1
4 1 3 0.22 �1:2� 10�4 2:4� 10�6 0
3 2 1 1.92 1.02 6.78 2.77 2.73 (Fig. 14)
3 1 2 0.22 �0.0015 8:0� 10�6 0
2 1 1 1.02 0.22 �0.017 0 0
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used to determine the mode frequency. This effect is purely geometri-
cal, producing a frequency shift dxð1Þ due to the shift in the contours
of constant vorticity caused by the pump wave. Second, nonlinear cou-
pling of the daughter wave to the pump wave produces a second beat
wave at wavenumber lp þ ld , which then couples back to ld to produce
a frequency shift dxð2Þ. If we take ld¼ lp then this same calculation
provides the pump wave shift. Each of these two effects can be consid-
ered separately, producing frequency shifts dxð1Þ and dxð2Þ that can
be added to obtain the total nonlinear shift in the frequency to either
the pump wave or the daughter wave.

We first consider the 0ðA2
pÞ change to the l¼ 0 vorticity profile

caused by the pump wave. On a nonuniform vortex, a given contour
of constant vorticity deforms from a circle of radius r to a curve with
radial variation in h which, in the rotating frame of the mode, is a gen-
eralization of Eq. (92),

Rðh; rÞ ¼ r
r þ 2AprlpðrÞ cos lphþ A2

pBðrÞ cos 2lphþ � � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2A2

prlpðrÞ2 þ A4
pBðrÞ2=2þ � � �

q ; (94)

where rlpðrÞ ¼ �nl;KðrÞ=n0eðrÞ is the radial displacement caused by
the pump wave in linear theory, and B(r) is the nonlinear correction,
now a function of radius. The denominator is again determined by the
incompressibility of the flow, so that the area enclosed by the contour
is pr2. Now, the vorticity nðr; hÞ in the presence of the pump wave is
expressed as

nðR; hÞ ¼ neðrðR; hÞÞ; (95)

where rðR; hÞ is the function obtained by taking the inverse of Eq.
(94). This follows from the fact that the solution of the continuity
equation (1) is that vorticity is constant along the equation’s
characteristics.

This equation can be evaluated as a power series in Ap and to sec-
ond order yields

nðR; hÞ ¼ neðRÞ � 2AprlpðRÞn0eðRÞ cos lph

þ A2
p n0eðRÞ

r2lpðRÞ
R

þ 2rlpðRÞrlp 0ðRÞ
 !

þ n00e ðRÞr2lpðRÞ
" #

þ A2
p cos ð2lphÞ

h
n0eðRÞð�BðRÞ

þ2rlpðRÞrlp 0ðRÞÞ þ n00e ðRÞr2lpðRÞ
i
: (96)

The l¼ 0 vorticity component is the h average, n0ðrÞ ¼
Ð
dhnðr; hÞ=

ð2pÞ ¼ neðrÞ þ dn0ðrÞ with the change dn0ðrÞ given by

dn0ðrÞ ¼ A2
p n0eðrÞ

r2lpðrÞ
r

þ 2rlpðrÞrlp 0ðrÞ
 !

þ n00e ðrÞr2lpðrÞ
" #

: (97)

Using an integration by parts one can easily show that the change
in total circulation,

Ð
d2rdn0, is identically zero, as one would expect.

However, this vorticity perturbation does cause a variation
dxeðrÞ in the E� B rotation rate of the vortex,

dxeðrÞ ¼ A2
p

r2lpðrÞ
r

n0eðrÞ: (98)

Adding these terms to mode equation (20) for a Kelvin/diocotron
wave of mode number ld, the equation becomes

xnld ¼ L̂nld þ lddxenld þ
ld
r
dn00/ld : (99)

Taking an inner product with respect to eigenmode vorticity nld ;K then
yields the lowest order frequency shift,

dxð1Þ ¼ x� xld ;K ¼ ld

nld ;K ; dxenld ;K þ 1
r
dn00/ld ;K

� �
P

Pld ;K
; (100)

where Pld ;K ¼ hnld ;K ; nld ;KiP is the scaled angular momentum of the
diocotron eigenmode.

For ld ¼ 1, an evaluation of the inner product shows that this fre-
quency shift vanishes, as expected, since a change to the equilibrium
radial vorticity profile has no effect on the ld¼ 1 mode frequency pro-
vided that total circulation C is conserved, see Eq. (18).

Incidentally, the eigenmode angular momentum Plp ;K can be
directly evaluated from the l¼ 0 vorticity perturbation dn0 using the
definition of angular momentum, Eq. (10),

dP
q0A2

p

¼ � 1
2A2

p

ð
d2rr2dn0ðrÞ

¼ � 1
2

ð
2prdrr2 n0eðrÞ

r2lpðrÞ
r

þ 2rlpðrÞrlp 0ðrÞ
 !

þ n00e ðrÞr2lpðrÞ
" #

¼
ð
2pdrr2n0eðrÞr2lpðrÞ ¼ 2Plp ;K ; (101)

where in the last line an integration by parts on the n00e ðrÞ term was
applied. This calculation verifies the functional form of eigenmode
angular momentum given in Eqs. (30) and (29). The change in angular
momentum is twice the eigenmode angular momentum Plp ;K because
6lp eigenmodes contribute equally to the vorticity perturbation.

Turning now to the frequency shift dxð2Þ due to mode coupling
of ld and lp, we first evaluate the nonlinear mode equation (7) for the
second beat wave at mode number lp þ ld � lb2 , with frequency
xlp ;K þ xld ;K � xb2 . To do so we use Eq. (44) for the pump wave, and
the linear form for the daughter wave vorticity perturbation,

~nld ðrÞ ¼ Adnld ;KðrÞ: (102)

The equation for the lb2 vorticity harmonic is then

ðxb2 � lb2xeðrÞÞ~nlb2
¼ lb2

r
n0eðrÞ~/ lb2

þ ApAdFb2ðrÞ; (103)

where the mode coupling term Fb2 is

Fb2ðrÞ ¼
ld
r
ð/ld ;Kn

0
lp ;K � nld ;K/

0
lp ;KÞ

þ lp
r
ð/lp;Kn

0
ld ;K

� nlp;K/
0
ld ;K

Þ if ld 6¼ lp; (104)

Fb2ðrÞ ¼
lp
r
ð/lp ;Kn

0
lp;K � nlp ;K/

0
lp ;KÞ if ld ¼ lp: (105)

Solving Eq. (103) for ~nlb2
in terms of ~/ lb2

and the driving term
Fb2 , we substitute for ~nlb2

into the Poisson equation (8) and solve the
resulting inhomogeneous boundary value problem for ~/ lb2

, providing
the beat wave vorticity and stream function. Since the driving term is
proportional to ApAd , the beat wave is also proportional to these
amplitudes, so we write
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~nlb2
¼ n̂lb2

ApAd; ~/ lb2
¼ /̂ lb2

ApAd; (106)

where n̂lb2
and /̂ lb2

are scaled so as to be independent of the pump
and daughter amplitudes. An example solution for the scaled vorticity
n̂lb2

is shown in Fig. 8 for the case ld ¼ 2; lp ¼ 3. The contribution to
this lb2 ¼ 5 beat wave of the l¼ 5 Kelvin/diocotron mode is displayed
as the dashed line. One can see that much of the beat wave perturba-
tion is due not to the discrete mode but due to lb2 ¼ 5 continuum
modes. However, unlike the main beat wave with mode number lb,
there is no Landau resonance with xb2 ¼ lb2xe within the vortex, so
there is no resonant response and no contribution to the growth rate,
only a frequency shift.

The frequency shift dxð2Þ can now be evaluated by accounting
for the lb2 mode in the ld nonlinear mode equation (7),

xnld ¼ L̂nld þ A2
pAd�FdðrÞ; (107)

where

�FdðrÞ ¼ lb2
r
ð/̂ lb2

n0lp;K � n̂lb2
/0
lp ;KÞ �

lp
r
ð/lp ;Kn̂

0
lb2

� nlp ;K /̂
0
lb2
Þ:
(108)

Substituting for nld using Eq. (102) and taking an inner product with
respect to nld ;K then yields the frequency shift,

dxð2Þ ¼ x� xld ;K ¼ A2
p
hnld ;K ; �FdiP

Pld ;K
: (109)

The total shift is then the sum of dxð1Þ and dxð2Þ. For ld¼ lp, the result
is the pump wave frequency shift, dxp ¼ dxð1Þ þ dxð2Þ.

We have performed this evaluation for a few of the modes, for
the vorticity profile shown in Fig. 2. The resulting pump wave fre-
quency shifts are given in Table II and compared to expression (91)
for a uniform vortex patch. For smaller mode numbers, the formula
for the experimental profile, the sum of Eqs. (100) and (109), provides
a frequency shift that is fairly close to that for a uniform patch, Eq.
(91), with similar ratio of plasma to wall radius chosen as q ¼ 1=2.
For lp > 3, however, the pump wave frequency shift for a nonuniform
profile increases rapidly compared to that for a patch. This is because
the resonant radius rlp ;K becomes closer to the edge of the plasma (see

Fig. 2). Integrals required in Eqs. (100) and (109) exhibit divergences
and dxp diverges to negative infinity as rlp;K approaches the region of
finite vorticity. Physically, only very small mode amplitudes are
required to push the vorticity to a radius where it becomes resonant
with the mode, forming a cat’s eye that cannot be described using per-
turbation theory. In this situation, a perturbation theory for a nonlin-
ear mode is relevant only for very small amplitudes, before cat’s eyes
become important. To describe larger amplitudes it would be useful to
construct “BGK”-like stationary states40 that include the vorticity
trapped in the cat’s eyes. We leave this more sophisticated analysis to
future work.

However, some idea of the effect of particle trapping in cat’s eyes
can be obtained through particle in cell simulations, which we have
performed for a range of mode amplitudes. The simulations follow
8� 106 particles with time advanced using a third-order accurate
Adams Bashforth method. To evaluate the velocity field at each time
step, the Poisson equation for the stream function /ðx; y; tÞ is solved
on a uniform square grid with grid spacing Dx ¼ Dy ¼ rw=201, keep-
ing grid points within a circular boundary at r¼ rw, and with boundary
condition / ¼ 0 at r¼ rw evaluated by linear interpolation between
boundary grid points just inside and outside the circular domain.41

The Poisson equation on this grid is reduced to a linear matrix prob-
lem by standard second-order discretization of the Laplacian operator,
and solved using the Slatec routine SNBFS. Particles are arranged ini-
tially to produce the experimental equilibrium vorticity profile of
Fig. 2, and with an approximation to an lp¼ 4 Kelvin/diocotron mode
of amplitude Ap added to the initial condition,
nðr; t ¼ 0Þ ¼ neðr=ðRðh; 0Þ=rpÞÞ, with Rðh; 0Þ given by Eq. (92).

Oscillations in moments of the vorticity can then be observed,
whose frequencies are similar to those expected in perturbation theory
for a vortex patch, Eq. (91), provided that the mode amplitude is

FIG. 8. Solid curve: scaled vorticity n̂ lb2 of the second beat wave, at mode number
lb2 ¼ lp þ ld for the case lp ¼ 3; ld ¼ 2. Dashed curve: the l¼ 5 Kelvin/diocotron
wave component of the beat wave vorticity.

TABLE II. Nonlinear frequency shifts of Kelvin/diocotron pump and daughter waves.

Pump
mode

Daughter
mode

Pump frequency
shift using
exp. profile

Pump frequency
shift for patch,

Eq. (91)

Daughter
frequency

shift

lp ld

dxp

xe0A2
p

dxp

xe0A2
p

����
q¼1=2

dxd

xe0A2
p

1 1 0.180 0.222
2 2 �3.44 �3.44
2 1 0.15
3 3 �12.8 �11.6
3 2 �6.00
3 1 0.043
4 4 �36.3 �23.8
4 3 �16.2
4 2 �6.28
4 1 0.012
5 5 �117.3 �39.9
5 4 �44.2
5 3 �21.5
5 2 �6.81
5 1 0.0034
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sufficiently small; see Fig. 9. Note that the downward shift appears
somewhat larger than expected from the patch theory, and might be
argued to agree better with the theory for a nonuniform patch in this
small amplitude regime, but scatter in the data makes the size of the
discrepancy difficult to interpret. An example of the particle positions
at the end of a run is shown in Fig. 10 for an lp¼ 4 mode with small
amplitude, Ap ¼ 0:005; there are no significant cat’s eyes at this ampli-
tude. However, for somewhat larger amplitudes, trapping in cat’s eyes
starts to occur (Fig. 11). The mode frequencies then begin to deviate
significantly from the relatively large downward shift expected in per-
turbation theory (Fig. 9).

We have also determined the frequency shift contributions to the
ld daughter wave, dxð1Þ þ dxð2Þ; when ld < lp. The total frequency
shift to the ld mode is then �dxþ dxð1Þ þ dxð2Þ � dxd . (Recall that
the shift dx is to the �ld mode frequency, while we define dxd as the

shift to the þld mode; this explains the minus sign in the equation for
dxd .) In Table II, we tabulate dxd values for all relevant values of lp
and ld, for the experimental density profile of Fig. 2.

To summarize, when frequency shifts are included up to 0ðA2
pÞ in

the pump wave amplitude, the pump wave frequency is xp ¼ xlp ;K

þdxp, the ld daughter wave frequency is xd ¼ xld ;d þ dxd , and the
beat wave has frequency xb ¼ xp � xd ¼ xlp ;K � xld ;K þ dxp

�dxd .

IV. EXPERIMENTS ON BEAT WAVE DECAY

We have performed a series of experiments to observe beat wave
decay. The experiments employ a pure electron plasma trapped in a
cylindrical Penning trap. The trap consists of a set of hollow cylindrical
electrodes of radius rw ¼ 3:5 cm, with the end electrodes biased nega-
tively to �100V in order to provide a potential well that traps elec-
trons in the axial (z) direction (Fig. 12). In these experiments the
plasma length is roughly 34 cm. Radial trapping is provided by an
applied magnetic field Bẑ , with a strength of B ¼ 12kG. In order to
measure the z–integrated plasma density, the plasma can be dumped
onto a phosphor screen by lowering the end confinement potential,
and the emitted light from the phosphor is then captured by a CCD
camera. Dividing the z-integrated density by the plasma length then
provides the plasma number density Nexptðr; h; tÞ. A typical equilib-
rium radial density profileNexpt

e ðrÞ is displayed in Fig. 2, normalized to
the central density. With the exception of a small tail at large radius,

FIG. 9. Nonlinear shift dxp ¼ xp � xlp ;K in the Kelvin/diocotron mode frequency
vs pump amplitude Ap compared to the theoretical linear frequency xlp ;K, for an
lp¼ 4 mode on a vortex with the equilibrium profile of Fig. 2. Solid curve is the the-
ory for a vortex patch, Eq. (91), where xlp ;K is given for a patch by Eq. (15).
Dashed curve is the shift given in Table II for the nonuniform vorticity profile used in
the simulation, with xlp ;K determined by the shooting method. Dots give values of
dxp obtained in particle in cell simulations, with xlp ;K again given by the shooting
method.

FIG. 10. Particle positions in the edge of a vortex after 25 oscillation periods in a
particle in cell simulation of a small amplitude (Ap ¼ 0:005) lp¼ 4 Kelvin/diocotron
mode on a vortex with the equilibrium vorticity profile of Fig. 2. The resonant radius
r4;K is shown as the dashed line.

FIG. 11. Particle positions in a larger amplitude lp¼ 4 mode after 25 periods, with
Ap ¼ 0:015.

FIG. 12. Schematic of the experimental apparatus.
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which we neglect in the theory, this density can be fit by a fairly simple
functional form that is used in the theory of Secs. II and III,

NeðrÞ ¼ Ne0 exp �b ð1þ eðr=rcÞ50Þðr=rpÞ
h if� 	

ð1� cðr=rpÞ2Þ;
(110)

where b ¼ 32:2; c ¼ 0:036; f ¼ 13:6; the approximate plasma radius
is rp ¼ 2:2cm, the cut off radius is rc ¼ 1:95cm; the central density is
Ne0 ¼ 9:88� 106cm3, and e¼ 1. A smooth form for the density,
rather than noisy experimental data, is required in the theory because
derivatives of the density are needed. The listed Ne0 value is obtained
from comparison of measured diocotron mode frequencies to theory
for the given density profile, which gives a more accurate value of the
central density than the phosphor screen can provide. We should also
note that there is shot to shot variation in the overall particle number
of order 1%, and shot to shot variation in the plasma radius by about
1% as well. Also, the value e¼ 0 gives a better fit to the density data
shown in Fig. 2 in the edge region of the plasma, but the value e¼ 1 is
chosen instead in order to smoothly eliminate a small portion of the
edge density beyond the listed cutoff radius rc, so as to remove weak
Landau resonances for the l¼ 4 and l¼ 5 pump modes, allowing a
description of these modes as discrete linear eigenmodes. We
completely neglect the low-density tail observed in the experimental
data (Fig. 2) at larger radii, for the same reason. For l 	 3, either value
of e can be taken without much change to theory results (< 1% on
eigenmode frequencies, < 10% on growth rates and frequency shifts),
except for the functional form of the l¼ 2 and l¼ 3 diocotron mode
density perturbations, which are more accurately described by the
e¼ 0 theory.

Diocotron modes are excited on the plasma column by applying
oscillating voltages to the sectored electrode labeled S7 in Fig. 12,
which consists of eight 25� sectors. We apply 15–30 cycles of properly
phase-shifted oscillating voltages (with amplitude up to several volts)
to two adjacent sectors to excite the pump mode of interest. Frequency
selection implies that simultaneous excitation of other diocotron
modes is at least two orders of magnitude smaller in amplitude. A third
sector on S7 is used to detect image current in order to monitor the fre-
quency and amplitude of the resulting diocotron wave(s) as a function
of time. An example is displayed in Fig. 13. Here, t¼ 0 corresponds to

the time directly after the oscillating voltage is turned off, 10 s after ini-
tial injection of the plasma into the Penning-Malmberg trap. This 10 s
period is used to prepare the equilibrium density profile. In this exam-
ple an lp¼ 3 pump wave is excited with amplitude ApðtÞ, and an ld¼ 2
daughter diocotron mode with amplitude AdðtÞ subsequently grows
out of noise, with a measured growth rate in this case of
cexpt ¼ 13:6s�1. No lb¼ 1 beat wave signal is observed in the experi-
ment, presumably because the signal is below the noise floor of the
measurements. [Recall that the beat wave wall signal is expected to be
small, as discussed in relation to Eq. (89).] However, as discussed later,
the lb¼ 1 beat wave density perturbation can be observed using the
phosphor screen dump diagnostic.

This experiment is then repeated for a range of initial pump
amplitudes Ap. The resulting growth rates are plotted vs amplitude in
Fig. 14. The theory for the rate for the best-fit equilibrium profile of
Eq. (110), given in Table I, is c ¼ 2:77A2

pxe0, which is within two per-
cent of the value obtained from a fit to the growth rate data,
cfit ¼ 2:73A2

pxe0.
This process was repeated for 4 ! 3 and 5 ! 4 decays, and the

resulting growth rates are plotted vs pump amplitude in Figs. 15 and
16. The theory for the growth rates is given in Table I,
c4!3 ¼ 11:1A2

pxe0, and c5!4 ¼ 27:9A2
pxe0. For both decays, the

predicted growth rate is somewhat larger than the experimental fits,
cfit ¼ 7:86A2

pxe0 for the 4 ! 3 case and cfit ¼ ð�4:6� 10�4 þ
20:6A2

pÞxe0 for the 5 ! 4 decay. For the 5 ! 4 decay, a slight nega-
tive offset, �4:6� 10�4xe0 is added to the fit to better match the
growth rate data. It is likely that this offset is caused by linear Landau
damping of the ld¼ 4 daughter wave.

Other decays have also been observed and measured growth rates
are compared to theory in Table I, for several of these decay processes.
For the case of 3 ! 2; 4 ! 3, and 5 ! 4 decays, the quoted value in
the Table is c fit from the data in Figs. 14–16. For other cases, the quoted
values are from single evolutions similar to that shown in Fig. 13. These
growth rates also follow the general trend of the theory that rates are
increasing functions of the daughter wave mode number ld.

For lb ¼ ld ¼ 1 (i.e., a 2 ! 1 decay), the theory value of c is
c¼ 0. This follows analytically from Eq. (80) along with the fact that
=/̂ lbðrÞ ¼ 0 for r > rbeat ; see Eq. (81). The measured value for 2 ! 1

FIG. 13. Amplitude vs time for an lp¼ 3 pump wave (labeled Ap) and an ld¼ 2
daughter wave (labeled Ad), measured from the signals induced on sectored cylin-
drical electrodes, and an exponential fit to the daughter wave amplitude.

FIG. 14. Experimental decay rates for 3 ! 2 decay, normalized by the central rota-
tion rate xe0 ¼ 74:5krad=s, vs pump amplitude Ap. Solid curve is the theory for the
rate, and the dashed curve is a quadratic fit to the data.
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decay is also zero, consistent with the theory, to within experimental
accuracy. In more detail, there is an observed (very) small growth of
the ld¼ 1 diocotron mode that we have determined to be caused by
the resistive wall instability,42 with a growth rate of 0:0037s�1. This
growth rate can be varied by adding or removing resistors between the
sectored electrodes. However, keeping such resistances as small as pos-
sible, this ld¼ 1 growth rate is independent of whether or not an lp¼ 2
pump wave is launched, and therefore, to experimental accuracy we
measure a beat wave growth rate of zero.

Similarly, for all ld ¼ 1 decays with lp > 2, both c and dx are
predicted to be nonzero but extremely small, according to Eq. (80) and
the numerical solution for /̂ lb discussed previously; see Table I. These
decays were also not observed in the experiments; i.e., the small resis-
tive growth rate of the ld¼ 1 mode was unaffected by the launch of
any pump wave.

In addition to the measured growth rates, the dump diagnostic
can provide an instantaneous measurement of density perturbations in
the plasma. In Fig. 17, we display the density Nðr; hÞ obtained from a

CCD image of the phosphor screen after a plasma dump at the end of
a 3 ! 2 decay experiment. One can observe an obvious l¼ 3 perturba-
tion in the image, along with a less obvious l¼ 2 perturbation. By
Fourier analyzing the data in h, we can then obtain nlðrÞ for different
mode numbers l, and the magnitude of these Fourier components are
shown in Figs. 18–20. The dimensionless amplitudes Al can also be
computed directly from Nðr; hÞ using Eq. (19). The magnitudes are,
for l¼ 3, jApj ¼ 0:03 and for l¼ 2, jAdj ¼ 0:02. This is a compara-
tively large amplitude pump wave, and the daughter wave has grown
until it is almost as large. The dashed lines in Figs. 18 and 19 are the
theory predictions for the Kelvin/diocotron eigenfunctions at the given
amplitudes, which are reasonably good fits to the experimental data
[for these plots we have taken e¼ 0 in Eq. (110); the fit would be

FIG. 15. Experimental decay rates for 4 ! 3 decay, normalized by the central rota-
tion rate xe0 ¼ 74:5krad=s, vs pump amplitude Ap. Solid curve is the theory for the
rate, and the dashed curve is a quadratic fit to the data.

FIG. 16. Experimental decay rates for 5 ! 4 decay, normalized by the central rota-
tion rate xe0 ¼ 74:5krad=s, vs pump amplitude Ap. Solid curve is the theory for the
rate, shifted to account for weak linear mode damping, and the dashed curve is a
quadratic fit to the data.

FIG. 17. Color contour map of plasma density Nðr; hÞ measured via the dump diag-
nostic at the end of a 3 ! 2 decay experiment. The linear color scale on the right
is in arbitrary units. The red arcs at the edge of the image indicate the wall radius,
rw ¼ 3:5 cm, and the cross at the center indicates the geometrical center of the
trap electrodes. The faint spiral in the central region is an artifact caused by a burn
in the phosphor.

FIG. 18. Solid curve: Fourier component n3ðrÞ of the vorticity measured from the
image in Fig. 17. Dashed curve—diocotron eigenfunction Apn3;KðrÞ, with Ap ¼ 0:03
as determined from Eq. (19) applied to nðr ; hÞ for l¼ 3.
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significantly worse for e¼ 1 because of the larger edge density gradient
in the model].

For the l¼ 1 beat wave, a signal can also be observed in Fig. 20
above the level of noise in the data. The signal has peaks in similar
locations to those predicted by the theory (dashed), and in particular,
the experimental peak at 1:62 cm is close to the beat wave resonant
radius rbeat ¼ 1:7 cm. The small discrepancy could easily be due to a
slightly different radial vorticity profile used in the theory as compared
to this particular experimental shot. However, the experimental peak
at the beat wave resonance is considerably lower and broader than the
theory predicts. We believe that the explanation for this discrepancy
may be a nonlinear trapping effect, described below.

The dump diagnostic was triggered at the end of the decay experi-
ment, when perturbations are no longer growing exponentially due to
nonlinear saturation. The discrepancy between the theoretical and
experimental beat wave peak widths may therefore be related to non-
linear effects not kept in the theory of linear Landau resonance. One
such effect is pump depletion, the reduction in pump wave amplitude
caused by the growth of the daughter and beat waves, which plays an
important role in the saturation of the instability. However, we refer to

a different nonlinear effect: nonlinear Landau damping, i.e., cat’s eye
formation due to trapping of vorticity in the beat wave. To investigate
this further, we consider the stream function in the frame of the beat
wave, taking �h ¼ h� Dxt. The stream function then has the form, to
first order in Ap and Ad,

/ðr; �h; tÞ � /eðrÞ �
1
2
Dxr2 ¼ /1ðrÞei�h þ Ad/2;KðrÞe2i�h�iðxd�2DxÞtÞ

þ Ap/3;KðrÞe3i�h�iðxp�3DxÞtÞ þ c:c:

(111)

For radii near the beat wave resonance, where �r�1
beat/

0
eðrbeatÞ

¼ xEðrbeatÞ ¼ Dx, the l¼ 0 stream function can be Taylor expanded,
yielding

/ðr; �h; tÞ þ 1
2
rbeatx

0
eðrbeatÞðr � rbeatÞ2

¼ /1ðrÞei�h þ Ad/2;KðrÞe2i�h�ið3xd�2xpÞtÞ

þ Ap/3;KðrÞe3i�h�ið3xd�2xpÞtÞ þ c:c: (112)

The l¼6 2 and l¼63 components to the stream function are
nonresonant, so we will ignore them and focus on the resonant beat
wave stream function only, which has the form of a pendulum
Hamiltonian. Contours of this stream function in the r � h plane are
displayed in Fig. 21, superimposed on the theoretical beat wave density
perturbation <fn̂1ðrÞeih=ne0g. This can be compared to the experi-
mentally measured density perturbation shown in the same figure. The
cat’s eye observable in the stream function contours is of similar width
to the density features in the experimental data, indicating the possibil-
ity that nonlinear Landau damping has saturated the instability. To
investigate this further, an estimate of the trapping frequency xt in the
cat’s eye follows from the stream function:

xt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x0

eðrbeatÞj/1ðrbeatÞj=rbeat
q


 0:6
ffiffiffiffiffiffiffiffiffiffiffi
AdAp

p
xe0 : (113)

For Ad ¼ 0:02;Ap ¼ 0:03, the trapping frequency is roughly 6 times
the theory growth rate for 3 ! 2 decay (see Table I), which is consis-
tent with the possibility that cat’s eye formation in nonlinear Landau
damping is responsible for the broadening of the observed resonant
density peak, and plays a role in the saturation of the instability. In this
case, the width of the cat’s eye, xt=jx0

eðrbeatÞj 
 0:05 cm, replaces the
linear resonance width c=jx0

eðrbeatÞj of the beat wave, roughly consis-
tent with the observed width of the beat wave density features.
Nonlinear Landau damping has also been shown to cause the satura-
tion of linear plasma kinetic instabilities such as the bump on tail insta-
bility.43 A more detailed analysis of the effect of nonlinear Landau
damping on the growth and saturation of the beat wave instability will
be pursued in future work.

V. DISCUSSION

We have presented new experiments and theory investigating the
beat wave decay instability of Kelvin/diocotron modes on a two-
dimensional vortex, in which a Kelvin/diocotron pump wave decays
into a smaller wavenumber Kelvin/diocotron daughter wave and a
Landau-damped beat wave at the difference frequency and difference
wavenumber between the pump and daughter waves. This is an exam-
ple of the general process of self-organization in 2D fluid flow, where
energy is transferred from small scales to larger scales (the “inverse

FIG. 19. Solid curve: Fourier component n2ðrÞ of the vorticity measured from
the image in Fig. 17. Dashed curve—diocotron eigenfunction Adn2;KðrÞ, with
Ad ¼ 0:02 as determined from Eq. (19) applied to nðr ; hÞ for l¼ 2.

FIG. 20. Solid curve: Absolute value of the beat wave vorticity perturbation n1ðrÞ
measured from the image in Fig. 17, scaled by the amplitudes Ad ¼ 0:02 and
Ap ¼ 0:03 of the diocotron daughter and pump wave. Dashed curve—absolute
value of the l¼ 1 beat wave component to the unstable vorticity eigenmode (the
absolute value of the Ap ¼ 0:03 function displayed in Fig. 7).
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cascade”44) By working in the frame of the pump wave, in which the
wave is a stationary equilibrium at early times, the Kelvin/diocotron
daughter wave and the beat wave were described as two Fourier compo-
nents of a single eigenmode of the perturbed pump wave equilibrium.
Using this approach, explicit, physically intuitive expressions for the
growth rate of the instability and the functional form of the beat wave
were derived and compared to nonneutral plasma experiments that mea-
sured the growth rate, and that also observed the beat wave. Measured
growth rates for a range of beat wave decay processes were in quantitative
agreement with theory, within the scatter of the experimental data.

Nonlinear frequency shifts of both the pump and daughter waves
were also derived, and through comparison with particle in cell simula-
tions it was found that frequency shifts for pump waves on a vortex
patch differ from those for a vortex with a more realistic rounded edge
when pump amplitudes become sufficiently large so that vorticity in the
edge begins to become trapped in cat’s eyes. This effect becomes more
important for higher mode number pump waves, where the resonant
radius for spatial Landau damping approaches the edge of the vortex.

A discrepancy between the theory and experimental measure-
ments of the beat wave vorticity perturbation was also observed. A
possible explanation of this discrepancy is that the measurements were
taken in the late stages of the beat wave decay, where nonlinear
Landau damping (cat’s eye formation) had time to broaden the beat
wave vorticity perturbation compared to the theoretical model, which
describes only the earlier linear Landau damping stage of the instabil-
ity. In future work, we intend to study this instability saturation mech-
anism in more detail, for example, through numerical simulation.

Beat wave decay was shown in this paper to be dependent on a
Landau resonance between the beat wave and the plasma rotation rate.
It would, therefore, be of interest to consider what the effect would be
on the instability of modifying this resonance process. In recent
work,45,46 it has been observed that externally applied time-
independent asymmetries in the stream function can produce a slow
radial flux of vorticity that strongly modifies the Landau damping of
Kelvin/diocotron modes, resulting in algebraic rather than exponential

damping. The effect of such a flux on the growth rate of the beat wave
instability could be substantial and will be considered in future theory
and experiments.
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APPENDIX: GREENS FUNCTION SOLUTION FOR THE
BEAT WAVE, AND THE FUNCTIONAL FORM OF ����lðrÞ

Equations (75) and (76) can be formally solved for the scaled
beat wave vorticity n̂lbðrÞ and stream function /̂ lbðrÞ via a Greens
function, providing some analytic insight, as well as the functional
form for the function �lðrÞ. Breaking /̂ lb into real and imaginary
parts, /̂ lb ¼ /̂r þ i/̂i, Eqs. (75), (76), and (74) yield

FIG. 21. Color contour maps of the theory (right) and experimental measurement (left) of <fn1ðrÞeih=ðne0ApAdÞg. Contours of the resonant beat wave stream function given
by Eq. (112) are superimposed on the theory density, indicating the region of cat’s eye formation expected for wave amplitudes Ad ¼ 0:02 and Ap ¼ 0:03. The dashed line is
the theoretical beat wave resonant radius rbeat; the experimental resonant radius is smaller by about 0.8 mm.
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@2/̂r

@r2
þ 1
r
@/̂r

@r
� l2b
r2
/̂r þ

s/̂r þ Fb;K
�x�ld ;K � lb �xe

þ pdð�x�ld ;K � lb �xeÞs/̂i ¼ 0;

(A1)

@2/̂i

@r2
þ 1

r
@/̂ i

@r
� l2b
r2
/̂i þ

s/̂i

�x�ld ;K � lb �xe

� pdð�x�ld ;K � lb �xeÞðs/̂r þ Fb;KÞ ¼ 0; (A2)

where sðrÞ ¼ lbn0e=r, and resonances are evaluated using only their
principal parts. We can solve these coupled equations using a
Greens function gðr; r0Þ, which satisfies

@2g
@r2

þ 1
r
@g
@r

� l2b
r2
g þ P

�x�ld ;K � lb �xe
sg ¼ dðr � r0Þ: (A3)

In terms of this Greens function the real and imaginary beat wave
stream functions are

/̂iðrÞ ¼ gðr; rbeatÞ p
jlbx0

eðrbeatÞj
� sðrbeatÞ/̂rðrbeatÞ þ Fb;KðrbeatÞ
h i

; (A4)

/̂rðrÞ ¼ �
ðrw
0
P dr0

gðr; r0ÞFb;Kðr0Þ
�x�ld ;K � lb �xeðr0Þ

� p
jlbx0

eðrbeatÞj
sðrbeatÞ/̂ iðrbeatÞgðr; rbeatÞ: (A5)

When Eqs. (A4) and (A5) are evaluated at r ¼ rbeat they can be
combined to yield a closed-form expression for /̂rðrbeatÞ:

/̂rðrbeatÞ ¼ �

ðrw
0
P dr0

gðrbeat ; r0ÞFb;Kðr0Þ
�x�ld � lb �xeðr0Þ þ pgðrbeat ; rbeatÞ

lbx0
eðrbeatÞ

 !2

sðrbeatÞFb;KðrbeatÞ

1þ pgðrbeat; rbeatÞsðrbeatÞ
lbx0

eðrbeatÞ

 !2 : (A6)

This expression for /̂rðrbeatÞ can then be used in Eq. (A4) to obtain a
closed-form expression for the imaginary beat wave stream function
/̂iðrÞ,

/̂iðrÞ ¼ gðr; rbeatÞ p
jlbx0

eðrbeatÞj

�
Fb;KðrbeatÞ � sðrbeatÞ

ðrw
0
P dr0

r0

rbeat

gðr0; rbeatÞFb;Kðr0Þ
�x�ld ;K � lb �xeðr0Þ

1þ pgðrbeat ; rbeatÞsðrbeatÞ
lbx0

eðrbeatÞ

 !2 ;

(A7)

where we applied the identity gðrbeat ; r0Þ ¼ gðr0; rbeatÞr0=rbeat .
Note that �bgðr; rbeatÞ solves the same differential equation

as the continuum eigenmode stream function /lb ;a for resonant
radius rlb;a ¼ rbeat ; compare Eq. (A3) and Eq. (25). This implies
that /̂i is proportional to this continuum eigenmode stream func-
tion, i.e.,

/̂iðrÞ ¼ C/l;aðrÞ (A8)

for some constant of proportionality C, and thus n̂iðrÞ ¼ Cnl;aðrÞ
also. Substituting gðr; rbeatÞ ¼ �/lb ;a=b into Eq. (A7), and applying
the definition s, we can write this constant of proportionality as

C ¼ � pCad

jlbx0
eðraÞj

n0eðraÞ

pr2a �xeðraÞb2 1þ pc/lb;aðraÞn0eðraÞ
braBx0

eðraÞ

 !2
2
4

3
5
���������
ra¼rbeat

:

(A9)

Here we have related Cad to C by applying Eq. (33) to Eq. (60),
yielding

Cad ¼ �x lb ;a

lb
hnlb ;a; Fb;KiP

¼ p�x lb ;a

lb

ð
r2dr

nlb;aFb;K
n0e

¼ p�xeðraÞr2ab
n0eðraÞ

Fb;KðraÞ þ sðraÞ
bra

ð
Pr0dr0

/lb ;aðr0ÞFb;Kðr0Þ
�x�ld ;K � lb �xeðr0Þ

" #

(A10)

and where in the second line we substituted for nlb ;a using Eq. (24),
used the definition s, and applied the resonance conditions
ra ¼ rbeat , and lb �xeðraÞ ¼ �x lb;a ¼ �x�ld ;K . The quantity in the square
bracket appears in the numerator of Eq. (A7), leading to Eq. (A9).

Equation (A9) allows us to connect the new expression for the
growth rate, the imaginary part of Eq. (77), to the old expression Eq.
(69). The imaginary part of the radial integral in Eq. (79) is determined
by n̂i and /̂i, which are proportional to the resonant continuum
eigenmode vorticity and stream function, respectively, ðn̂i; /̂iÞ
¼ Cðnlb ;a;/lb ;aÞ, see Eq. (A8). This implies that the imaginary part of
the inner product appearing in Eq. (77) is =hnb;K ; F̂ di�E
¼ Chnb;K ; Fd;ai�E ¼ CCda, where in the last step we used the definition
of Cda, Eq. (62). Thus, the imaginary part of Eq. (77) yields

c ¼ A2
p
CCda

�Eld ;K
: (A11)

Comparing this expression to Eq. (69) after applying Eq. (A9), we
see that the two expressions for the growth rate are identical pro-
vided that Eq. (40) for �lðraÞ is satisfied, for l¼ lb. This argument
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provides a (somewhat roundabout) method for determining the
proper functional form of �lðraÞ.
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