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Exponential instability of waves on the cubically nonlinear, one-dimensional lattice is
considered. The lattice has been modeled by the modified Korteweg-de Vries (mKdV)
equation. It is shown that some solutions of the mKdV equation are unstable, and that
these mKdV instabilities correspond to the instabilities observed on the lattice. Such
instabilities may be important in determining whether or not a system behaves stochas-
tically.

Fermi, Pasta, and Ulam (FPU) attempted to
relate nonlinear dynamics to the ergodic hypoth-
esis by numerical simulation of one-dimensional
lattices with nonlinear restoring forces. ' They
expected randomization and equipartition of en-
ergy among Fourier modes, but instead found
periodic recurrences of modal energies.

Zabusky and Kruskal explained these recur-
rences as echos due to essentially free-stream-
ing nonlinear pulses, or solitons. They approxi-
mated the discrete lattice system by the continu-
um Korteweg-de Vries (KdV) equation for quad-
ratic nonlinearity, and by the modified Korteweg-
de Vries (mKdV) equation for cubic nonlinearity.
General initial conditions were observed to break
up into solitons which maintained their individual
identities even after nonlinear interaction. Two
mathematical frameworks, the inverse-scatter-
ing method of Gardner et al. ' and the Backlund
transformation of Wahlquist and Estabrook, ' have
been developed to solve the KdV and mKdV equa-
tions analytically.

Since the work of FPU, the physical basis of
ergodic theory has been developed considerably.
Dynamical systems have been found which are
ergodic and mixing, and Anosov and Sinai' have
shown the essential feature of such systems to
be local instability in phase space; that is, two

arbitrarily close initial conditions separate ex-
ponentially with time. Ford and co-worker s
have demonstrated that systems may be unstable
in certain stochastic regions of phase space
while not globally ergodic.

Several groups have attempted to understand
the local instability properties of the cubically
non-linear FPU lattice. Bivins et a/. ' related the
lattice instability to that of a Mathiue equation for
singular initial conditions. Izrailev and Chirikov'
have attempted to establish a "stochastic limit"
for the lattice, based on the concept of resonance
overlap. Since solutions of the mKdV equation
have been thought to be stable, the relevance of
the mKdV equation to the lattice system has been
questioned. '

In this Letter, we show that the mKdV equation
correctly models the instabilities on the cubically
nonlinear FPU lattice; the explanation is based
on the recent theoretical observation' that cer-
tain solutions of the mKdV equation are unstable.
Since general initial conditions form solitons,
we start with a cnoidal wave train, i.e., the pe-
riodic generalization of solitons. The stability
properties of mKdV cnoidal waves are deter-
mined by application of %hitham's modulational
theory, and by numerical solution of the line-
arized eigenvalue problem. Ne then excite these
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enoidal waves on the FPU lattice, and numerical-
ly integrate the dynamics to determine the lat-
tice stability. We find that the lattice and mKdV
growth rates agree for large numbers of lattice
masses; that is, the lattice instability is mod-
eled by the mKdV equation.

The one-dimensional, cubically nonlinear lat-
tice is governed by the dynamical equation

s'yj/st'= (y;„-y;)—(y; —y,-,)
/

+ -'. [(y~„-y;)'- (y; -y~-&)'j

u -=-y, /2&+2 J "(1+h'rt')'" dq, (2)

where the subscript x or t denotes partial differ-
entiation. The discrete differences in Eq. (1)
are expressed as Taylor expansions, and only
lowest-order terms in dispersion and nonlineari-
ty are kept. Then, ignoring coupling to waves
traveling in the negative direction, one obtains
the mKdV equation

Q~ +12@ Qg+Qggg =0~

where $ —= x —At and 7 = h't/24. The KdV equation,
representing quadratically nonlinear systems,
would have the nonlinear term uu„ instead of
Q Qg,2

The periodic solutions of Eq. (3) stationary in
the frame $ -C v may be obtained by integrating
Eq. (3) twice. This gives

2u, '+ u —2Cu +Bu +A=qu& +(P(u)=0, (4)

where A and B are constants of integration.
Since the "oscillator" polynomial 6'(u) is fourth
order, the solution of Eq. (4) may be expressed
in terms of the Jacobian elliptic functions, ~

e.g. , cn($, q), and is called a cnoidal wave. The
enoidal wave is determined by the three param-
eters A, B, and C, or equivalently by the roots
a, b, c, and d of 6'(u), with a+b+c+d=0 from
Eq. (4).

Since u= y, for small h, a periodic cnoidal

Here, y; (t) is the displacement from equilibrium
of the jth mass, j = I, 2, . . . , N, and periodic
boundary conditions are specified by yo=y& and

y&+, = y~. The nonlinear coefficient &3 may be re-
scaled to any value, but the choice of sign rep-
resents two distinct dynamical possibilities which
will be considered explicitly. Following Zabu-
sky, 2 we consider the lattice displacement to be
a continuous function y(x, t), with y(jh, t) = yz(t),
where h= I /N, a—nd L is the system length. De-
fine the variable u(x, t) representing waves trav-
eling in the positive direction as

wave u mill give a periodic lattice displacement
y only if the spatial mean of u is zero. For com-
parison with the lattice, we thus consider only
those cnoidal waves with B=0, symmetric in pos-
itive and negative &, which consequently have
zero mean. Furthermore, since the length L in-
troduced in Eq. (2) is arbitrary, we need only
consider cnoidal waves with wavelength &=1, i.e. ,

wave number k =2m. With these two restrictions,
the cnoidal waves are described by a single pa-
rameter, which we choose to be the cnoidal mod-
ulus q, 0&q&1. For small q, the waves are
small amplitude and almost sinusoidal; for q
near I, the waves are large-amplitude, mell-
separated solitons.

The stability of mKdV cnoidal waves mith re-
spect to long-wavelength perturbations may be
obtained using %hitham's modulational theory. "
The maves are found to be stable if all four roots
of the associated polynomial e(u) are real, and
unstable if two roots are real and two are com-
plex. ' For the mKdV equation (3) with negative
sign choice, all cnoidal wave solutions are sta-
ble, since the polynomials 6'(u) associated with
bounded solutions all have four real roots. For
the mKdV equation (3) with positive sign choice,
some cnoidal wave solutions are unstable, cor-
responding to polynomials 6'(u) with two real and

two complex roots. The j3=0, zero-mean cnoid-
al waves which me consider here are unstable
for this sign choice. The exponential instability
rate for these maves may be expressed as

32q(1 —q')'"K' [q'E + (1 —q')(K -E)]
2E +(1 —q )(K —EP

Here, a is the wave number of the perturbation,
and EC(q) and E(q) are the complete elliptic in-
tegrals of the first and second kinds. "

The growth rate of Eq. (5) is valid only for
long-wavelength perturbations, i.e. «/k «1. To
obtain stability predictions for shorter-wave-
length perturbations, we have employed two fur-
ther methods. First, for small-amplitude cnoid-
al waves, mode-coupling theory'0 gives correc-
tions of higher order in «/k; these determine the
maximum unstable perturbation wave number to
be «/0= q, for small q. Second, we determine
the unstable modes of any given cnoidal mave uo
by numerically solving the linearized eigenvalue
problem

i v v —Cv
g

+ 12(u o v) g
+ v gag

= 0,
where u($, 7)=u, ($)+v($) exp(ivy). We solve
Eq. (6) in Fourier space, keeping only a finite



VOLUME $7, NUMBER 2 PHYSICAL REVIEW LETTERS 12 JULY 1976

number of modes. The linear transformation on
& is then represented by a matrix determined by
C and the Fourier modes of uo. We find the ei-
genvalues v and eigenvectors v of this matrix us-
ing the numerical routines of EIBPACK.~' The
numerical eigenvalue results agree with the ana-
lytic results and can be extended to large &/0
and q. The instability results for the positive
sign choice in Eq. (3) are summarized in Fig. 1;
here, we display the growth rate y = Im(e) vs ~/0
and q', with two cross sections at x/k =

& and 1.
We now relate these instability results to the

discrete lattice. A given cnoidal wave u(g) can
be excited on the lattice by constructing displace-
ment and velocity functions y(x, 0) and y, (x, 0)
that correspond to u(g) through Eq. (2). The func-
tions y and y& are constructed from positively
traveling Fourier modes of the lattice by an iter-
ative convergent procedure. For large N, the
mass displacements and velocities y& and yz& will
accurately represent the cnoidal wave; for small
N, the representation will be more approximate.

Starting from the cnoidal-wave initial condi-
tions, we numerically integrate the lattice dy-
namical equation (1) forward in time, using
Scranton's algorithm. ~s The cnoidal wave is ob-
served to move with constant form and velocity,
and its modal energies remain constant. Those )'

500-
(0) y/k =

2

N=48o
4Q 0
$2 0

=24~
250- = l6

l2 o

modes not present in the cnoidal wave have only
noise initially present; but for unstable waves,
these modes grow exponentially. We character-
ize the growth by its exponentiation time t, . If
these modes initially had precisely zero ampli-
tude, the dynamical symmetry would require
that they always have zero amplitude; their
growth represents two initially close phase-space
points separating exponentially. The correspon-
dence with the mKdV equation is made by calcu-
lating the scaled exponentiation time v, = t, Its-/24,

or equivalently the scaled growth rate y =-1/r, .
Lattice-instability results for the positive sign

in Eq. (1) are shown in Fig. 2. In Fig. 2(a) we
excite cnoidal waves wit/ wavelength X=1 (pa-
rametrized by q) on the lattice with periodicity
length L = 2; that is, there are two complete
cnoidal waves on the lattice of N masses. We ob-
serve the exponential growth from noise of the
lattice mode with length 2. This corresponds to
the mKdV modulational instability with ~/k = s,
shown as a cross section in Fig. 1 and as the
solid curve in Fig. 2(a). The data points of Fig.
2(a) are the scaled lattice instability rates y for
various N. The uncertainty in the determination
of y is approximately + 5'. The lattice growth
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FIG, 1. mKdV cnoidal-wave instability rate y versus
sealed perturbation wave number K jk and wave modulus
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FIG. 2. Scaled lattice instability rate y (data points)
and mKdV prediction (solid curve) for cnoidal waves
with modulus q~. (a) Growth of longer-wavelength
mode. (b) Growth of forbidden modes.
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rates are seen to asymptotically approach the
mKdV prediction, as N becomes large.

In Fig. 2(b) we excite cnoidal waves with A. = I
on the lattice with periodicity length L = I; that
is, there is one complete wave on the lattice of
N masses. Growth of longer-wavelength modes
is prevented by the periodic boundary conditions.
The "forbidden modes" 2k, 4k, etc. , are not
present in the cnoidal wave, since the cubic non-
linearity couples mode k only to its odd harmon-
ics. These forbidden modes are, however, ob-
served to grow exponentially from noise. This
corresponds to the mKdv instability with it/k = l.
We measure the exponential growth of mode 2k,
and plot the scaled growth rate y. Again, we
observe that the lattice instability for large N
agrees with the mKdV prediction.

The a/k = I instability is seen to be quenched
for q' & 0.826, as is the a/k = z~ instability for q'
&0.235. Thus the "instability limit" for cnoidal
waves depends on the boundary conditions im-
posed. Any given cnoidal wave (modulus q, A, = I)
will become unstable as the periodic system is
made "longer, " i.e., as longer-wavelength per-
turbations are allowed. We also observe an in-
stability limit as N is decreased; this limit is
not, of course, contained in the mKdV equation.

For the lattice with negative nonlinear term in
Eq. (I), we observe no exponential instability;
this corresponds to the stability of cnoidal-wave
solutions of the mKdV equation with negative non-
linear term. This lattice is, however, subject
to explosive dissociation, since for large dis-
placements the potential energy may become in-
finitely negative.

When general (e.g. , sinusoidal) initial condi-
tions are imposed on the lattice, solitons are ob-
served to form and stream through one another.
Fourier modes which initially have almost zero
amplitude are observed to grow in an irregular,
but basically exponential, manner. Since the
"zeroth-order" configuration is changing with
time as the solitons stream through one another,
a "first-order" stability analysis would be dif-
ficult. We find, however, that the scaled lattice
growth rate y(N) approaches a constant for large
N, and this rate is consistent with the instability
of cnoidal waves of appropriate amplitude and

wave number, " Thus we see that the lattice in-
stability from sinusoidal initial conditions is al-
so modeled by the mKdV equation and is similar
to the instability observed for cnoidal waves.
These instability results do not agree with the
predictions of the resonance-overlap model, ' dif-
fering in the dependence on N and on the initial
excitation amplitude.

The lattice instabilities have been interpreted
as signaling the onset of stochastic behavior';
yet the instabilities are modeled by the mKdV
equation which is known to have an infinite num-
ber of integral invariants. " Further analytic
study of the mKdV equation may clarify the na-
ture of these instabilities and provide a link be-
tween the work on stochastic systems with few
degrees of freedome and similar nonlinear sys-
tems with many degrees of freedom.
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