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The stability of cnoidal wavetrain solutions of the modified Korteweg-de Vries equation is analyzed using 
Whitham's modulational theory. The cnoidal waves are solutions of an oscillator equation obtained by 
twice integrating the modified Korteweg-de Vries equation. The stability of the cnoidal waves is 
determined by the roots of the polynomial in the oscillator equation. For real roots the waves are stable, 
whereas for complex roots the waves are unstable. 

I. INTRODUCTION 

The Korteweg-de Vries (KdV) equation, 1 

U t + 6uux + Uxxx = ° (1) 

characterizes the evolution of many systems with weak 
dispersion and quadratic nonlinearity. 2 Likewise, the 
modified Korteweg-de Vries (mKdV) equation, 3.4 

(2) 

characterizes the evolution of systems with weak dis­
persion and cubic nO:1linearity. For example, long wave­
length disturbances on a one-dimensional lattice are 
described by the KdV equation when the restoring forces 
have a small quadratic nonlinearity, and by the mKdV 
equation when the restoring forces have a small cubic 
nonlinearity. 4 

The numerical coefficients in Eqs. (1) and (2) are ar­
bitrary, since they may be changed by a change of scale 
(i. e. , x- ax, t- (3t, U - YU, or v - yv). The coeffi­
cients 6 and 12 in front of the nonlinear terms in the two 
equations will be convenient for our purposes. The sign 
in front of the nonlinear term in Eq. (1) is arbitrary 
since it may be changed by the transformation u - (- u). 
The sign in front of the nonlinear term in Eq. (2) may 
not be changed by a real transformation, so we include 
the + or - possibilities explicitly. For the case of a 
nonlinear lattice this + or - sign corresponds to the 
sign of the cubic term in the restoring force. 

Exact wavetrain solutions may be obtained for both 
equations. 1,5 By setting u=u(x- Ct) in Eq. (1) and in­
tegrating twice with respect to x, one obtains 

tu~ +u3 - tCu2 
- Eu +A = 0, (3) 

where A and E are constants of integration. By follow­
ing the same procedure with Eq. (2), one obtains 

(4) 

where the constants A, E, and C do not necessarily have 
the same values in the two equations. These equations 
may be viewed as oscillator equations. The variable u 
oscillates back and forth between two roots of the poly­
nomial in Eq. (3), and v oscillates between two roots of 
the polynomial in Eq. (4). Of course, these two roots 
must be real and adjacent, that is, not separated by 
another real root. Since the polynomials are cubic and 
quartic respectively, the equations can be integrated in 
terms of elliptic functions. The solutions are often 
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called cnoidal waves, since they can be expressed in 
terms of the Jacobian elliptic function cn. When the 
modulus of the elliptiC function is much smaller than 
unity the cnoidal waves reduce to Sinusoidal waves, and 
when the modulus is near unity the cnoidal waves re­
duce to sequences of solitons. 

The question of the stability of cnoidal waves was 
considered by Whitham for the case of the KdV equa­
tion. 6.7 He showed that these waves are stable to long 
wavelength perturbations, by applying his modulational 
theory. 

Here, we apply Whitham's modulational theory to the 
case of the mKdV equation. We find that the question of 
the stability of a particular cnoidal wave depends on the 
values of the constants A, E, and C for that wave. The 
wave is stable if the polynomial in the associated oscil­
lator equation [i. e., Eq. (4)] has four real roots and un­
stable if the polynomial has two real roots and two com­
plex roots. A cnoidal wave can exist only if at least two 
roots are real, since in a cnoidal wave l' oscillates back 
and forth between two real roots. From this perspec­
tive, one can understand Whitham's conclusion of 
stability for cnoidal wave solutions of the KdV equation. 
The polynomial in Eq. (3) is a real cubic, and the 
existence of two real roots implies that all three roots 
are real. The stability criterion may be stated in its 
most general form for the case of the generalized 
Korteweg-de Vries (gKdV) equation, 

N't + (6w ± 12jJ. 2U)2)wx +wxxx = 0, (5) 

where jJ. is an arbitrary real constant determining the 
relative amount of quadratic and cubic nonlinearity. A 
cnoidal wave solution of this equation is stable if the 
roots of the polynomial in the associated oscillator 
equation, 

1w; ± jJ. 2w4 +U)3 - ~CW2 - EM' +A =0, (6) 

are all real, and unstable if two roots are real and two 
are complex. 

In Sec. II, we develop Whitham's modulational theory 
for the case of the mKdV equation. To be specific, we 
develop partial differential equations governing the 
temporal evolution of slow spatial modulations of the 
three parameters determining a cnoidal wave. In Sec. 
Ill, we find the Riemann invariants for the lllodulational 
equations. When the characteristic speeds for all three 
Riemann invariants are real the cnoidal wave is stable, 
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and when the characteristic speeds are complex the 
cnoidal wave is unstable. The characteristic speeds are 
expressed in terms of the roots of the polynomial in the 
oscillator equation, and the real or complex nature of 
the characteristic speeds follows from that of the roots. 
In Sec. IV, we extend our results to the gKdV equation. 
In Sec. V, we discuss the relation of our results to the 
Miura transformation3 between the KdV equation and the 
mKdV equation. The interpretation of this transforma­
tion will be seen to depend on the choice of the sign in 
the mKdV equation. 

It is rather surprising that one can find the Riemann 
invariants for the modulational equations, that is, for 
three nonlinear coupled partial differential equations. 
Apparently, this is another example of the surprising 
degree to which problems associated with the KdV (or 
mKdV) equation yield to analytic methods. 

II. MODUlATIONAl EQUATIONS 

Following Whltham6, 7 we derive the modulational 
equations by averaging conservation equations over a 
spatial oscillation of the cnoidal wave. The first three 
conservation equations for the mKdV equation area 

a a 
Tt(v) + ax (± 4v 3 + v xx ) == 0, 

a 2 a (4 2) Tt(V )+ax ±6v +2vvr"-v,, =0, (7) 

where the sign choice corresponds to that of Eq. (2). 

Calculation of the average of quantities appearing in 
these equations is facilitated by introduction of the 
function 

W(A,B, C)=" - :pvxdv 
(8) 

==-12 15 (-A +Bv +tCv2 'fV4)1/2 dv, 

where we have used Eq. (4) to find Vr for the cnoidal 
wave. The integral is defined to be over one complete 
cycle of the cnoidal wave. Since in a complete cycle v 
passes back and forth between two roots of the poly­
nomial, the integral may be interpreted as a loop 
around the branch cut between the two roots. In terms 
of W (A, B, C) the wavelength may be expres sed as 

~ =" A = 13 ~~ = ~; =" W A, (9) 

and the average of v, v2 , and v; may be expressed as 

(10) 

With the aid of Eq. (4) the average of aU quantities in 
Eqs. (7) may be expressed in terms of the simple 
averages in Eqs. (9) and (10). The result is 

a a 
Tt(f?WB) + ax (kCW B - B) = 0, 

a a 
Tt(kWe) + ax (1?CWe -A) = 0, 

a 
Tt[k(AWA +BWB +CWe - W)] 

(11) 
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Simple algebraic reduction brings these equations to the 
more symmetric form 

where 

D a a 
-="-+C­
Dt at ax 

(12) 

is the convective derivative. These equations are the 
modulational equations for the mKdV equation. They 
differ from the corresponding equations for the KdV 
equation only in that W is defined in terms of the poly­
nomial in Eq. (4) rather than that in Eq. (3). 

III. RIEMANN INVARIANTS AND STABILITY 
CRITERION 

We shall find that the Riemann invariants of the 
modulational equations take a simple form when ex­
pressed in terms of the roots of the polynomial in Eq. 
(4). From the relation 

±v4 - tCv 2 - Bv +A =" ± (v - a)(v - b)(v - e)(v - d) (13) 

we find that 

O=a+b+c+d, 

tc ='f (ab +ae +ad +be + bd +ed), 

B=± (abe +abd +aed + bed), 

A =±abed. 

By replacing the variables (A,B,C) by the variables 
(a, b, e), with d given by the first of Eqs. (14), the 
modulational equations take the form 

Da Db Dc 
WA,aDt +WA,hDt +WA'CDt 

='f2WA[(d - a)ar + (d - b)br + (d - e)cJ, 

W Da Db Dc 
B,am + WB,hm + WE,cDt 

(14) 

= ± W A[(b + e)(d - a)a" + (a + e)(d - b)bx + (a + b)(d - c)cx], 

Da Db De 
We,aDt +We,hDl +We,CDt 

"" ± W A[bc(d - ajax +ae(d - b)bx + abed - e)cx], (15) 

where 

aWA =W __ i_ £ (a-d)dv 
'iJa - A,a- 1±8 j [(v- a)3(v _d)3(V.!. b)(v _ c)]Il2' 

(16) 

W - - i f (a - dHv 2 dv 
C, a - v'±8 [(v _ a)3(v _ d)3(v _ b)(v _ e)]172 • 

The quantities W A,b, W B,b' etc. are given by interchang­
ing a and b in W A,a' W B,a, etc. 
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For the KdV case, the Riemann invariants are the 
various sums of roots taken two at a time (i. e., a + b, 
b + c, a + c). We now show that these quantities are 
Riemann invariants for the mKdV case as well. To 
show that b + c is a Riemann invariant, we multiply the 
first of Eqs. (15) by - (da +bc)(b +c), the second by 
2(bc - da), the third by - 4(b +c), and add the three. 
The result is 

i f[ v - a J 1/2 D 
,f±'l (v - d)3(v _ b)(v _ c) dv Dt (b + c) 

(17) 

where we have simplified the rhs of the equations with 
the identities 

2(da + bc)(b + c) + 2(b + c)(bc - da) - 4bc(b + c) = 0, 

(d - b)[2(da + bc)(b + c) + 2(a + c)(bc - da) - 4ac(b + c)] 

= - 2(a - b)(b - d)(a - c)(c - d), (18) 

and the lhs with the identities 

- (da + bc)(b + c) - 2(bc - da)v + 2(b + c)v2 

[(v - a)3(v - d)3(v - b)(v _ c)]172 

_ 2~ [(V - b)(v - c)] 1 /2 

- dv (v-d)(v-a) , 

(b-d)[- (da+bc)(b+c)-2(bc-da)v+2(b+c)v2] (19) 
[(v - W(v - d)3(V - a)(v - c)Jll2 

= _ 2(b _ d)~[(V - a)(v - c)] 112 
dv (v-b)(v-d) 

[ 
(v- a) Jl/2 

+ 2(b - d)(c - d) (v _ d)3(v _ b)(v _ c) . 

Note that b and c may be interchanged in all of these 
identities. Finally, we may rewrite Eq. (17) in the 
standard form 

where the characteristic speed P is given by 

c 2WA(a-b)(a-c) 
= ± W A + 2(d - a)(a/iJd)(W A) . 

(20) 

(21) 

Here, the partial derivative a/ad must be taken before 
the first of Eqs. (14) is used to express d in terms of 
the other roots. By cyclic permutation of (a, b, c), one 
obtains the other two equations 

a a 
aT(a+c)+Q ax(a+c)=O, 

(22) 
2W A(b - c)(b - a) 

Q = C ± W A + 2 (d - b) (a / ad)(W A) , 

and 
a a 

ai(b +a) +R ax (b +a)=O, 
(23) 

R-C 2WA(c-a)(c-b) 
- ±WA +2(d- c)(a/ad)(WA)' 
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We note that W A may be expressed in terms of the 
elliptic integral of the first kind. 9 For the case of four 
real roots (a> b > c > d), W A is given by 

(24) 

where r2 = (a - b)(c - d)/(a - c)(b - d) for the upper sign 
choice in Eq. (2) and r2 = (b - c)(a - d)/(a - c)(b - d) for 
the lower sign choice. For the case of two real roots 
(c > d) and two complex roots (b =a*), W A is given by 

where 

p2 = [c - (a + b)/2]2 - (a - b)2/4, 

q2 =[d _ (a + b)/2]2 - (a - b)2/4, 

2 (c_d)2_ (p_q)2 
S = 4pq 

(25) 

This case is obtained only for the upper sign in Eq. (2). 

To obtain the stability predictions of these equations, 
we follow the evolution of a small initial modulation 
[e. g., b + c = bo + Co + (Ob + oc) COS(KX)], linearizing in 
the amplitude of the modulation [i. e., neglecting terms 
of order (0b)2 or (oc)2]. For the case of four real roots, 
the equations predict stability. For any solution, the 
wavelength W A is real. Consequently, P, Q, and Rare 
each real, and the small amplitude modulations oscil­
late rather than grow [e. g., b + C = bo + Co + (Ob + oc) 
x cos {K(X - Pt)}]. For the case of two real and two com­
plex roots, the equations predict instability. Let c and 
d (c > d) be the real roots, and a and b (b = a*) the com­
plex roots. W A is still real, but P and Q are complex, 
with P = Q*. For a modulation with complex charac­
teristic speed, either the component proportional to 
exp(iKx) or the component proportional to exp(- iKX) 

grows [e.g., b+ c=bo+co+i(Ob+oc)exp{iK(X-Pf)} 
+ hOb + oc) exp{- iK(X - Pt)}]. This exponential growth 
will continue until the perturbation Significantly modifies 
the wave parameters (a, b, c) and thus modifies the 
speeds (P, Q,R). 

One could have anticipated that R is real and Q =p* 
from general considerations. Since the roots must oc­
cur in complex conjugates and since c and d are initially 
real and unequal, c and d must remain real during the 
initial evolution. This requires that R be real, since 
a + b = - (c + d). Also, the evolution must preserve the 
relations b = a* or, since c is real, the relation b + C 

= (a + c)*. This requires that Q =P*. Of course, we 
could turn the argument around and show that the rela­
tions R =R* and Q = P* imply that the evolution pre­
serves the relations a = b*, c = c*, d = d*, and a + b + c 
+d=O. 

For the case of complex characteristic speed, the 
equations take a more familiar form when rewritten in 
terms of real variables. If we let x~ Re(b + c), 
Y~Im(b+c), D~Re(P), and E~Im(P), the real and 
imaginary parts of Eq. (20) are 

(26) 
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Equation (22) leads to the same result, since. Q = P*. 
Eqs. (26) can be rewritten as the elliptic equations 

(
a a )2 2 a2 

ai+Dax X+E a?X=O, 
(27) 

( a a )2 2 a2 
ai+Da;c Y+E a?Y=O' 

and it is well known that elliptic equations are unstable 
for Cauchy boundary conditions. 

For the simple example of small amplitude cnoidal 
waves, P, Q, and R may be explicitly evaluated as ex­
pansions in c - d, as shown in the Appendix. In this 
small amplitude limit, stability predictions may also be 
obtained from mode coupling theory, 10 for comparison 
with the modulational results. In the Appendix, we dem­
onstrate that the characteristic speeds P, Q, and R 
agree with the stability results of mode coupling theory, 
to first order in c - d. 

Finally, we note that the modulational equations de­
scribe the evolution of long wavelength perturbations 
only. For the small amplitude example, we are able to 
obtain higher order dispersive corrections from mode 
coupling theory. It is seen in the Appendix that these 
corrections tend to stabilize shorter wavelength 
perturbations. 

IV. GENERALIZED KORTEWEG-DE VRIES 
EOUATION 

In this section, we extend the results of the previous 
section to the gKdV equation. The first step is to note 
that the mKdV equation [i. e., Eq. (2)] is transformed 
into the gKdV equation [i. e., Eq. (5)] by the 
transformation 

(28) 

Consequently, to every cnoidal wave solution of the 
gKdV equation there corresponds a cnoidal wave solu­
tion of the mKdV equation, and the stability (or insta­
bility) of the former may be inferred from that of the 
latter. By applying the same transfor~ation to the 
oscillator equations for the two waves [i. e., Eqs. (4) 
and (6)], one can see that the roots of the polynomials 
in the two oscillator equations are also related by the 
transformation. Since this is a real transformation, we 
conclude that the cnoidal wave solution of the gKdV 
equation is stable when all four roots of the polynomial 
in the associated oscillator equation are real, and un­
stable when two roots are real and two are complex. 
Of course, the characteristic speeds for modulations 
and growth rates for instabilities are easily inferred 
from the transformation. 

V. RELATION TO THE MIURA 
TRANSFORMATION 

Miura's transformation3 relates solutions of the 
mKdVequation, or gKdV equation, and solutions of the 
KdV equation. By setting u = ± 2v2 + -!:F2 v" one can see 
by direct substitution that 

U t + 6uu" + u"xx = (± 4v + fi2 a~) (v t ± 12v2v" + v"xx). (29) 
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Consequently, to every solution of the mKdV equation 
there corresponds a (possibly complex) solution of the 
KdV equation. The inverse does not follow because of 
the operator (± 4v + fi2 a/ax) on the rhs. 

For the lower choice of sign, the Miura transforma­
tion is real, and the stability properties of real solu­
tions of the two equations should correspond. Consider 
the mKdV equation with negative nonlinear term. One 
can see from the associated oscillator polynomial [i. e. , 
Eq. (4)] that bounded, real solutions exist only if all 
four roots are real. Thus our stability analysis shows 
that all real solutions of the mKdV equation with nega­
tive nonlinear term are stable, and this corresponds to 
the known stability of real solutions of the KdV equation. 

For the upper choice of sign, the transformation is 
complex. The mKdV equation with positive nonlinear 
term has real, unstable solutions, obtained from oscil­
lator polynomials with two real and two complex roots. 
These unstable mKdV solutions transform into complex, 
unstable solutions of the KdV equation. Of course, 
Whitham's stability analysis for the KdV equation was 
restricted to real solutions (as is ours for the mKdV 
equation), so the two results need not agree under a 
complex transformation. 
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APPENDIX 

In this appendix, we consider the simple example of 
small amplitude cnoidal waves; for clarity, we consider 
only the mKdV Eq. (2) with positive sign choice. We 
first obtain the stability results of mode coupling 
theory, 10 valid to first order in the wave amplitude and 
second order in the perturbation wavenumber K. We 
then evaluate the modulational speeds P, Q, and R to 
first order in the wave amplitude. The two theories are 
seen to agree for long wavelength perturbations. For 
shorter wavelength perturbations, mode coupling theory 
gives corrections which tend to stabilize the growth of 
these components. 

The small amplitude cnoidal wave is approximated by 
a mean value (3, a fundamental mode A 1, and a single 
harmonic A 2• The perturbations are seen as sideband 
modes, with wavenumbers differing from the main 
modes by K, 

v(x, t) = (3 +A1 exp(ikx) +A2 exp(2ikx) +A. exp(iKx) 

+A1_ exp[i(k - K)X] +A1• exp[i(k + K)X] 

+A2_ exp[i(2k - K)X] +A2• exp[i(2k + K)X] 

+ complex conjugate. (A1) 

The evolution of a modal amplitude is determined by the 
appropriate spatial Fourier component of the mKdV 
equation. For component k this gives 

(A2) 
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where the linear frequency is WI =- k 3 + 12/32k. Solving 
the analogous evolution equations for the driven modes 
near 2k gives A2 = 4/3AVk2, A 2_ = B/3AIA I./k

2, A 2• 
= B/3A I AI.lk2. The nonlinear frequency of mode k is then 
seen to be nl = WI + 12k IA112(1 + B/32/k2). The coupled 
evolution equations for the remaining perturbations are 

a~l_ + iWI_A I _ + 12i(k - K)(2/3A2_At + 2/3AzAt. 

+ 2/3A,At +Ai At. + 21AI12A IJ = 0, (A3) 

a:r + iwl.A I• + 12i(k + K)(2/3A2.At + 2/3AzAt- + 2/3A IA. 

+ArAt_ + 2IAI 12A I.) = O. 

We take At ex: exp(- mit), A. ex: exp(- illt) , A I_ ex: exp(- mtt 
+ illt) , At. ex: exp(- mit - illt), and solve Eqs. (A3) for the 
three roots II. Two roots are seen to be near II:::: W' K 

= (- 3k2 + 12/32)K; this approximation can be used to solve 
for A. = - B/3(At..At +A,AtJ/k2• The resulting second 
order secular equation is 

(11- W'K)2 = 12k IA112(1 - B/32/k2)W" K2 + (tW"K2)2 , (A4) 

where w" = - 6k. A similar procedure gives the third 
root 

(A5) 

The perturbation grows exponentially when one of the 
roots is complex, i. e. , when the rhs of Eq. (A4) is 
negative. 

We now evaluate P, Q, and R to order c - d, where 
c > v> d. To this order, Eqs. (24) and (25) for W A are 
equivalent; we use Eq. (24) for simplicity, 

W A = f27T [(a - c)(b - d)]-1I2(1 +r2/4 + 9r4/64). 

Expressing all quantities in terms of (a, c, c - d) gives 

....£.In(W)- c 
ad A -(a-c)(a+3c) 

(c - d)(10a2 + 42c2 + 4ac) 
16(a - c)2(a + 3C)2 

(
27T)2 k2= W

A 
=-2(a-c)(a+3c)-2(c-d)(3c-a), 
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IAII =t(c-d), 

/3=c-t(c-d). 

The characteristic speeds may then be expressed as 

P = 6a2 + 12ac - 6c2 + (c - d)(3c - 9a) 

=- 3k2 + 12/32 - 6f2IAII (B/32 _ k2)1I2, 

Q = 6a2 + 12ac - 6c2 + (c - d)(9c - 3a) 

= - 3k2 + 12/32 + 6v'2IA tl (B/32 _ k2)1I2, 

R = 12c2 - 12c(c - d) 

= 12/32• 

(A6) 

The two speeds P and Q, when multiplied by K, cor­
respond to the two roots II in Eq. (A4); similarly, R 
times K corresponds to the third root in Eq. (A5). The 
term (tw"K2)2 in Eq. (A4) is a dispersive correction not 
found in modulational theory, and it decreases the in­
stability for perturbations with large K. Indeed, the 
small amplitude wavetrain is stable with respect to per­
turbations satisfying K2 ~ BIAt I2(1-B/32/k2). Thus modu­
lational theory, valid for small K, agrees with mode 
coupling theory, valid for small amplitude, in their 
range of overlap. Furthermore, mode coupling theory 
indicates that shorter wavelength perturbation tend to 
be stabilized. 
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