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THOSE UBIQUITOUS, BUT OFT UNSTABLE, 
LATTICE SOLITONS* 

C. F. DRISCOLL AND T. M. O NEIL 

ABSTRACT. The soliton is the dominant characteristic of one-di
mensional, nonlinear lattices. It is shown that these lattice solitons 
commonly manifest exponential instabilities. The modified Korteweg-
deVries equation is shown to have unstable solutions which quan
titatively model the instability on the cubicly nonlinear lattice. In 
contrast, the quadratically nonlinear lattice shows an instability 
which scales with terms neglected in the KdV approximation. 

Introduction. The study of nonlinear dynamical systems has been 
motivated by the desire to understand effects which have traditionally 
been treated statistically. The justification of the ergodic hypothesis of 
thermodynamics and the finite heat conductivity of nonconducting crys
tals are two such problems. Fermi, Pasta, and Ulam [1] considered the 
one-dimensional anharmonic lattice as a simple model which was ex
pected to show ergodic behavior and thermalization. The observation of 
periodic recurrences and the apparent lack of randomization were star
tling results which required explanation. 

This led Zabusky and Kruskal [2] to the discovery that the lattice dy
namics is dominated by solitary propagating pulses, or solitons; the ob
served modal recurrences are seen to be echoes from essentially free-
streaming solitons. The analysis was facilitated by relating the discrete 
lattice to the continuum Korteweg-deVries (KdV) equation. With the 
development of analytic methods to solve nonlinear equations, and the 
numerical simulation of other physical systems, the soliton has been es
tablished as the fundamental mode of many nonlinear systems [3]. 

The concept of the stable, free-streaming soliton has seemed at odds, 
however, with the original desire to understand randomization and 
equipartition of energy. The continuing work on lattice wave randomi
zation has focused on exponential instabilities as the basis for stochastic 
effects: an infinitesimal perturbation in initial conditions will grow ex
ponentially and completely alter the dynamics. This work on lattice in
stabilities [4], [5], [6] has been largely independent of the work on soli
tons. 

In this paper, we take a first step toward relating lattice instabilities 
to solitons and the KdV approximation. We find that lattice solitons are 
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not as perfectly stable as often supposed, but rather commonly exhibit 
exponential instabilities. The quadratically nonlinear lattice shows an in
stability which scales to zero in the continuum limit, corresponding to 
the known stability of KdV solutions. The cubicly nonlinear lattice 
shows an instability which does not scale to zero in the continuum lim
it: analysis of the modified Korteweg-deVries (mKdV) equation shows 
that some solutions are exponentially unstable, and the mKdV in
stabilities agree quantitatively with the observed lattice instabilities. 
The lattice instabilities are seen to allow energy to flow into otherwise 
inaccessible modes, and may form the basis for at least partial randomi
zation. 

Nonlinear Lattice and KdV Equations. Consider the one-dimensional 
nonlinear lattice governed by the dynamical equation 

d2 

- g ^ - % = (%+i - 2% + î/i-i) 

(i) + *[(yM - » r 1 - to - %-iT1]. 
Here, y^t) is the displacement from equilibrium of the fh mass, / = 1, 
2 • • - N, and periodic boundary conditions are specified by y0 = yN and 
yN+1 = yv The nonlinear forcing term has coefficient a and exponent 
p; we sill consider the cases p — 1 and p — 2, that is, quadratic and cu
bic nonlinearities. The excitation of the nonlinear lattice may be viewed 
as a sum of linear Fourier modes, 

y ft) = 2 Aw(t) exp ( i^~ m\ - iumt ) 

(2) 
+ BJt) exp yi-fi- ™i + i<°m' J > 

with linear frequencies 

(3) <om = 2 sin(77m/N), -N/2 ^ m^ N/2. 

The time evolution of the individual Fourier modes will in general be 
quite complicated, since the nonlinearity couples many modes together. 

Zabusky and Kruskal [2] made two incisive approximations in order 
to understand the nonlinear evolution of lattice waves. First, the lattice 
displacement is considered to be a continuous function y(x, t), with 
y(jh, t) — y^t); here, h = L/N, and L is the system length, nominally 1. 
Second, the two directions of wave propagation are considered sepa
rately. Waves travelling in the positive direction are represented by the 
variable 
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(4) u f r O - "J"' + | X " [ l + (P + l)«^V ] 1 / 2 ^ 

where the subscripts x and t denote partial differentiation. The discrete 
differences in (1) are expressed as Taylor expansions, and only lowest 
order terms in nonlinearity and dispersion are kept. The neglected 
higher order terms are not important for sóliton formation, but will be 
seen to be important in stability considerations. Then, by ignoring cou
pling to waves travelling in the negative direction, one obtains the 
equation 

(5) uT + ßupui + 82um = 0. 

For p = 1 this is the KdV equation, and for p = 2 the mKdV equation. 
Here, £ is the wave-frame spatial variable, £ = x — h t, and r is a 
scaled time. The coefficients ß and ô2 may be scaled arbitrarily; in this 
paper we use 

p = 1 : ß - 6, S2 = h/4a = 1, T = th3/24, 
(6) 

p = 2 : ß - 12 sign(a), Ô2 = 1/3|«| - 1, T = th3/24. 

For p = 1, the sign of a may be reversed by the transformation 
y—*( — y) in (1), so we consider only a > 0. For p = 2, however, a > 0 
and a < 0 are two distinct dynamical possibilities which result in the 
two possible signs for ß. The magnitude of a is always chosen so as to 
make the KdV or mKdV parameter S2 = 1; this amounts to a scaling of 
the magnitude A of the lattice excitation, since from (1) the dynamics 
depends only on the product OLAP. 

The KdV and mKdV equations can be seen to have solitary propa
gating pulse solutions, or solitons. For example, the solutions 

u(£, T) = A sech2/*[(£ - ^ r ) / A ] , 
(7) 

A = (2/App2)1 /2 ,^ = 2A^, 

propagate without change of form, for ß > 0 and — oo ^ £ ^ oo. Fur
thermore, it is seen that general initial conditions form series of soli-
tons, which maintain their individual identities even after passing 
through one another; that is, the solitons are persistent. It is this prop
erty which explains the behavior seen on the periodic lattice: the ob
served modal recurrences are echoes from essentially free-streaming 
solitons. The persistence of the individual solitons prevents complete 
randomization of modal energies. 
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Lattice Instabilities. The fact that lattice solitons are persistent does 
not imply, however, that they are stable, in the usual sense of the 
word. Indeed, exponential instabilities are observed in lattice waves for 
both quadratic and cubic nonlineari ties. 

Figure 1. Lattice Fourier amplitudes Ax and A2 vs scaled time T for three separate lat
tice integrations. The "recurrences" of mode 2 are the same for all three integrations, 

but the growth of mode 1 depends on the number of masses N. 
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Consider first the quadratically nonlinear lattice, i.e., (1) with p = 1. 
When a long wavelength Fourier mode, Am, is excited with large am
plitude, it is observed to couple nonlinearly to its harmonics; this corre
sponds to spatial steppening of the wave. As the wavefront becomes 
steeper, dispersive effects become important, and the wave breaks up 
into a series of individual solitons. These solitons stream with their indi
vidual velocities, and after lapping each other, return to near their 
original spatial positions. This causes the temporal recurrences of the 
original Fourier mode, as in the upper curve of Figure 1. 

If the large amplitude mode is not the longest wavelength in the sys
tem, the possibility exists for decay of energy to longer wavelength, 
lower frequency modes. In Figure 1, we have excited mode 2 
(A2 = B2 = 64), and observe growth from "noise" in mode 1. Three 
separate lattice integrations are shown, each having a different number 
of masses N, but all having the same KdV parameters ß and ô2. AU 
three integrations show the same soliton formation, and the same recur
rences of mode 2, on the r time scale. 

The growth of mode 1 is seen, however, to depend on N. In the con
tinuum limit, only linear growth is seen: the peaks of the N = 96 curve 
are equally spaced in time and have relative amplitudes 1.0, 1.9, 2.8, 
3.7, 4.8, and 5.8. The presence of mode 1 disturbs the symmetry of 
mode 2, making one group of solitons larger than the other. The differ
ence in amplitudes causes a proportional difference in velocities. Every 
second recurrence, when the two groups are again distinct, the velocity 
differences result in a positional shift proportional to time. When Fou
rier analyzed, this appears as linear growth of mode 1. As discreteness 
effects are increased, however, exponential growth is seen. For N = 80, 
the exponential growth is comparable to the linear streaming, on the 
time scale of observation. When N is decreased further to 64, mode 1 is 
seen to grow in a clearly exponential manner. The discrete lattice thus 
manifests an exponential decay instability of variable strength. 

The exponential growth of mode 1 may be seen to depend on the in
itial amplitude A2(0) as well as on N. We characterize the growth by 
its scaled exponentiation time re, or equivalently by the scaled growth 
rate y = l/re . Figure 2 displays y vs hA2 (recall h = 1/N). We consid
er two types of initial conditions: "travelling waves" where only the 
positively travelling mode A2 is excited; and "standing waves" where 
B2 — A2, equivalent to fixed boundary conditions with half as many 
particles. 

The dotted lines of Figure 2 show y °c (hA2)
3. This may also be writ

ten y oc (h/A2)3 oc (frVA2)1-5 A"3, using the soliton spatial scale A of (7). 
The ratio ft2/A2 is the basic expansion parameter of the KdV approx-
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Figure 2. Scaled instability rate y vs "discreteness parameter" hA2(0), for the quad-
ratically nonlinear lattice. 
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imation, and gives the relative magnitude of the terms neglected in ob
taining the KdV equation. In the continuum limit of h = 0, the growth 
rate is zero. For any given A2, determining a distribution of solitons, 
the growth rate increases as the discreteness h is increased. For any giv
en h, as A g is increased and A is thereby decreased, the growth rate 
again increases. The range of A2 shown corresponds to between two 
and eight solitons per wavelength of mode 2. The growth rate could al
ternatively be expressed in terms of unsealed time as 
l/te oc (h2A2)

3 oc (h2/à2)3. 
Since y tends to zero in the continuum limit, we conclude that soli

tons on the periodic KdV model equation are stable with respect to 
decay to longer wavelengths. Discrete lattice solitons, however, show 
an exponential decay instability not found in the KdV approximation. 

We now consider the cubicly nonlinear periodic lattice, i.e., (1) with 
p = 2; we first choose a > 0, specifically a = 1/3. When the long 
wavelength mode A2 is excited to large amplitude, it is observed to 
couple to its odd harmonics, until dispersive effects become important. 
We again see the formation of persistent, free-streaming solitons. This 
streaming again causes noticeable recurrences in mode 2, although the 
recurrences are less complete. Further, exponential growth of mode 1 is 
observed, again dependent on N and A2. 

The cubic instability scaling is, however, somewhat surprising. We 
find l/te oc (JÄA22)1-5 oc (fcVA2)1-5, giving y oc (A2)

3\ The scaled growth 
rate y is independent of h, and therefore does not tend to zero in the 
continuum limit. This indicates that solutions of the mKdV equation are 
exponentially unstable. 

mKdV Instabilities. We now consider the stability of solutions of the 
mKdV equation, 
(8) uT ± I2u2u^ + uiH = 0, 

0 ^ £ ë L, with periodic boundary conditions. The two possible choices 
of sign will be considered explicitly whenever necessary. In order to fa
cilitate the analysis, we consider stationary solutions ti(£ — -êr), such so
lutions are obtained by integrating (8) twice. This gives 

(9) 2 2 

where s/amd äß are constants of integrations. Since the "oscillator poly
nomial" &(u) is fourth order, the solution of (9) may be expressed in 
terms of the Jacobian elliptic functions, e.g., cn(£, q), and is called a 
cnoidal wave. The cnoidal wave is determined by the three parameters 
(<p/yâ&,-é)y or equivalently by the roots (a, b, c, d) defined by 
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(10) gP(u) = ±(u- a)(u - b)(u - c)(u - d). 

Note that a + b + c + d = Q, since &(u) has no cubic term. 

Not all mKdV cnoidal waves correspond to possible excitations of the 
periodic lattice. Since u ^ yx for small h, a periodic wave u will give a 
periodic lattice displacement y only if the spatial mean of u is zero: 

(H) f0
L u <% = £ yx dx = y(L) - y(0) = 0. 

For comparison with the lattice, we consider those cnoidal waves with 
g$ — 0 which are symmetric in positive and negative u; these waves 
have zero mean. Furthermore, since the system length is arbitrary and 
may be re-scaled to any value, we consider cnoidal waves with wave
length À = 1, i.e., fundamental wavenumber k = 2ir. With these two 
restrictions, the cnoidal waves are specified by a single parameter, 
which we take to be the cnoidal modulus q, 0 ^ q ^ 1. For the posi
tive sign choice in (8), the wave is 

u(ir) = (S)1/2qKcn[4K(è-^r)l 
(12) 

€ = (4K)2(2q2 - 1), 

and the associated 0>(u) has roots a = i (8)1/2K(1 - q2)1/2, b = - a , 
c = (S)1/2q K, d — —c. Here, K(q) is the complete elliptic integral of 
the first kind. For small q, the wave is almost sinusoidal; as q ap
proaches 1, the cnoidal wavetrain becomes a periodic array of the soli-
tons of (7), with alternating positive and negative pulses. For the nega
tive sign choice in (8), the wave is 

u&T) = (8)1/2qKsn[4K(£-^T)], 
(13) 

tT= -(4K)2(1 + g2), 

with roots a — (8)1/2 K, b = q a, c — —b, d — —a. 

The stability of mKdV cnoidal waves with respect to long wave
length perturbations may be obtained usingWhithanVs modulational the
ory [7], [8]. Our analysis for the mKdV equation parallels Whitham's 
analysis for the KdV equation. Three equations governing the temporal 
evolution of slow spatial modulations of the wave parameters are 
needed; these equations are obtained by averaging conservation equa
tions over a spatial oscillation of the cnoidal wave. The first three 
mKdV conservation equations [9] are 
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(«)+ ± (± 4u3 + uit) = 0, 

(14) £ (M
2) + -2-(±6u4 + 2uuti - u£

2) = 0, 

YT{U)+ ai 

— 12w2«^2 =F u^u^ ± I- w^2) = 0, 

( u 4 * ^ 2 ) * ^ ( ± 8 u f l + 4u3u« 

where the + or — sign corresponds to that of (8). The averages of 
quantities appearing in (14) are most easily expressed in terms of the 
function 

W K J / ) - - / u^du 
(15) ' £, 

= _ ( 2 ) l /2 j {_^u)]l/2 dUy 

where the intergal is over one complete cycle of the cnoidal wave. The 
spatial average of equations (14) may then be expressed as 

lkw'-w'W 

(16) 

where 

DT 3É 

D 
w€= wv DT di ' 

D _ 9 9 dW 

The three coupled nonlinear equations (16) simplify and decouple 
when expressed in terms of their Riemann invariants. The invariant 
quantities turn out to be the roots of &(u) taken two at a time, that is, 
a + b, b + c, a + c. One evolution equation may then be expressed as 

(17) jL(fe + c) + p_^. ( 6 + c) = o, 

where the characteristic speed is 
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(18) ?=€± % W^a - b)(a - c) 
ws/ + 2(d-a)(d/dd)(Wj/) ' 

The other two evolution equations are obtained by cyclic permutation 
of (a, b, c) in (17) and (18). 

The stability or instability of the cnoidal wave is determined by 
whether the roots (a, b, c, d) are real or complex. When all four roots 
are real, the characteristic speeds are real, and small perturbations os
cillate rather than grow: e.g., b + c = b0 + c0 + (ôb + ôc)cos 
[K(£ — PT)]. When two roots are real (c > d) and two are complex 
(a — b ), two characteristic speeds are complex, and small perturbations 
grow exponentially: e.g., b + c = b0 + c0 + l/2(8b + 8c) 
{exp[i/c(£ — PT)] + exp[ — i/c(£ — PT)]}. Note that at least two roots must 
be real to define a bounded cnoidal wave. 

For the mKdV equation (8) with negative sign choice, all cnoidal 
waves are stable: the polynomials SP{u) associated with bounded waves 
all have four real roots. For the mKdV equation (8) with positive sign 
choice, some cnoidal waves are unstable, corresponding to polynomials 
SP{u) with two real and two complex roots. Specifically, the & — 0, 
zero mean cnoidal waves of (12) are unstable for this sign choice; from 
(17) and (18), a sinusoidal modulation with wavenumber K will have ex
ponential growth rate 

y = Im(P)/c 
( 1 9 ) _ 32q(l - q2)1/2Ks[q2E + (1 - q2)(K - £)] 

q2E2 + (1 - q2)(K - Ef *' 

Here, K(q) and E(q) are the complete elliptic integrals of the first and 
second kinds. 

The growth rate of (19) is valid only for slow spatial modulations, 
i.e., K/k < 1. Stability predictions for shorter wavelength perturbations 
may be obtained by numerically solving the linearized stability equa
tion. We consider w(£, T) = w0(£ — -er) + Ü(£ — €T) exp(i^r), where u0 is 
the cnoidal wave of (12). This gives the linearized perturbation equa
tion 

(20) ivv - -évi + 12(U0
2D)£ + %£ = 0. 

We solve (20) in Fourier space, keeping only a finite number of modes. 
The linear operator on v is then represented by a matrix, determined 
by € and the Fourier modes of u0. We find the eigenvalues v and 
eigenvectors v of this matrix using the numerical routines of EISPACK 
[10]. The Fourier modes of v are separated from the modes of u0 by 
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the wavenumber K. The numerical eigenvalue results agree with the an
alytic results, for small K/k. We find, however, that shorter wavelength 
modulations tend to be stabilized. In Figure 3 we summarize the in-

Figure 3. mKdV cnoidal wave instability rate y vs scaled perturbation wavenumber K/k 
and wave modulus q2. 
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stability results for the Sß — 0, zero mean cnoidal waves: here, we dis
play the growth rate y = Im(*>) vs K/k and q2, with two cross-sections 
at K/k = 1/2 and 1. 

Some insight may be gained into the K/k — 1 instability by analysis 
of (20) with uQ given by (12). The eigenvalue v is purely imaginary, and 
goes to zero at two limits of q. The eigenvector at the lower limit may 
be seen to be v = cn2(4K£, q) - (2q2 - l)/2q2 oc U(2 _ (U(2y; a n d the 
limit is determined by K(q) = 2E(q), giving q — (.826)1/2. The eigenvec
tor at the upper limit of q = 1 may be seen to be sn(4K£, q) cn(4K£, q). 
This latter eigenvector approximates the spatial derivative of w0, differ
ing by a factor of ± 1, with additional corrections of order (1 — q2)1/2. 
It corresponds to shifting the positive pulse in one direction, and the 
negative pulse in the other direction; that is, the two pulses are moving 
closer together exponentially with time. 

Cubicly Nonlinear Lattice Instability. We are able to obtain quan
titative agreement with the mKdV predictions, by exciting cnoidal 
waves on the cubicly nonlinear lattice and measuring instability rates. A 
zero mean cnoidal wave u(£) can be excited on the lattice by construct
ing displacement and velocity functions y and yt which correspond to 
w(£) through (4). The functions y and yt are constructed from the posi
tively travelling modes Am. We also consider the case where identical 
waves are excited in each direction, i.e., Bm = Am. For large N, the 
mass displacements and velocities yj and yjt will accurately represent 
the cnoidal wave; for small N, the representation will be more approx
imate. 

Lattice instability results for the positive sign choice in (1) are shown 
in Figure 4. In Figure 4a we excite cnoidal waves with X = 1 (param
etrized by q) on the lattice with length L = 2; that is, the fundamental 
mode of the cnoidal wave is A2. We observe exponential growth from 
noise of the lattice mode Av This corresponds to the mKdV modu-
lational instability with K/k = 1/2, shown as a cross-section in Figure 3 
and as the solid curve in Figure 4a. The data points are the scaled in
stability rates y — l/re, for various N. The hollow symbols are for 
waves excited in one direction only, while the solid symbols are for 
waves excited in both directions. The uncertainty in the determination 
of y is about ±5%. The lattice growth rates are seen to asymptotically 
approach the mKdV prediction, as N becomes large. 

In Figure 4b, we excite cnoidal waves with X = 1 on the lattice with 
periodicity L = 1; that is, the fundamental mode of the cnoidal wave is 
Av The initial cnoidal wave contains only the odd harmonics A3, A^ 
etc., but the "forbidden modes" A2, A^ etc. are observed to grow from 
noise. We measure the exponential growth of A2 and plot the scaled 
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Figure 4. Scaled lattice instability rate y (data points) and mKdV prediction (solid 
curves) for cnoidal waves with modulus q2. (a) Growth of longer wavelength mode, (b) 

Growth of "forbidden modes." 



224 C. F. DRISCOLL AND T. M. O'NEIL 

growth rate y. Again, the observed lattice instability corresponds to 
that predicted by the mKdV equation. The q ^ 1 data for waves 
travelling in both directions is erratic, however, and is not shown. It is 
not yet known whether this is due to insufficiently large N9 or to a new 
instability mechanism. 

The cubicly nonlinear lattice instability is interesting in that there is 
a definite, analytically accessible cut-off: the K/k = 1 instability is 
quenched for q2 < .826, as is the K/k = 1/2 instability for q2 < .235. 
This may be viewed as due to the boundary conditions imposed: any 
given cnoidal wave (modulus q, X = 1) will become unstable as the pe
riodic system is made "longer", that is, as longer wavelength per
turbations are allowed. The data also shows that the waves may be
come stable as N is decreased, but this limit is not contained in the 
continuum mKdV approximation. 

For the cubicly nonlinear lattice with a < 0 in (1), we observe no 
similar instability. This corresponds to the stability of cnoidal wave so
lutions of the mKdV equation with negative sign choice. This lattice is, 
however, subject to "explosive dissociation" (as is the p = 1 lattice), 
since for large displacements the potential energy may become in
finitely negative. 

The instability of cnoidal waves on the cubicly nonlinear lattice pro
vides the explanation for the instability observed with sinusoidal initial 
conditions. The large amplitude wave forms a series of solitons of vari
ous amplitudes. Since the basic configuration is changing with time as 
the solitons stream through one another, an exact stability analysis 
would be difficult. However, the scaled growth rate y is the same order 
of magnitude as that observed for cnoidal waves of similar amplitude 
and wavelength. 

Conclusions and Future Directions. We have seen that lattice solitons 
may be persistent, and dominate the dynamics, yet still show in
stabilities. For the quadratically nonlinear lattice, the instability scales 
with terms neglected in the KdV approximation, and thus tends to zero 
in the continuum limit. For the cubicly nonlinear lattice, the instability 
is only seen for one sign of the nonlinearity; when present, however, it 
is seen even in the continuum limit, and is in fact well modeled by the 
mKdV equation. 

Solitons have been observed for many different nonlinearities. Yet it 
is still an open question, What classes of nonlinearities give rise to the 
various types of instabilities? A first step in this direction would be to 
understand the periodic mKdV instability within the framework of the 
Inverse Scattering Method, which has been applied to many nonlinear 
evolution equations [3]. Comparison can be made with singular systems 
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such as the Toda lattice which shows no instabilities and is known to 
be integrable [11]. Exponential instability is the signature of "stochas
tic" behavior, and leads to loss of information about the previous state 
of the system [12]; but what fraction of phase space do these in
stabilities cover? How does one characterize the soliton state when 
these instabilities saturate? Lattice solitons have been conjectured to 
contribute significantly to the thermal conductivity of crystals [13]. Can 
instabilities determine an effective "lifetime" for a soliton trajectory, 
thereby associating an energy gradient with a heat flow? The answer to 
these and other questions may yet help establish nonlinear dynamical 
effects as the foundation of present statistical theories. 
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