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Abstract. Electron Acoustic Waves (EAWs) with a phase velocity less than twice the plasma
thermal velocity are observed on pure ion plasma columns. At low excitation amplitudes, the EAW
frequencies agree with theory; but at moderate excitation the EAW is more frequency-variable than
typical Langmuir waves, and at large excitations resonance is observed over a broad range. Laser
Induced Fluorescence measurements of the wave-coherent ion velocity distribution show phase-
reversals and wave-particle trapping plateaux at ±vph, as expected, and corroborate the unusual role
of kinetic pressure in the EAW.
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Electron Acoustic Waves (EAWs) are the low frequency branch of electrostatic

plasma (Langmuir) waves. The EAW typically has a phase velocity vph ∼ 1.4v̄ (for

small kλD), quite low compared to typical plasma waves, and its frequency has a strong

temperature dependence, fEAW ∝ T 1/2. Linear Landau damping would suggest that such

slow phase velocity waves are strongly damped; but at finite wave amplitudes, trapping

of particles near the phase velocity “flattens” the distribution function, resulting in a

weakly damped wave.
These waves have been studied theoretically [1, 2] and numerically [3]; they have been

observed in experiments with pure electron plasmas [4] and in laser-produced plasmas

[5, 6] and related numerical simulations [7, 8]. The same name is applied to substantially

different waves on bi-Maxwellian distributions in space physics [9]; but here we focus

on near-Maxwellian plasmas only. Here, we observe EAWs in pure ion plasmas, where

the ions are the mobile species and “EAW” is somewhat of a misnomer. However, the

characteristics of EAWs are the same for mobile ions as for mobile electrons.

In experiments, we observe that at small amplitude, the EAW dispersion relation is

correctly described by the “principal-part” approach of Holloway and Dorning [1]. In

contrast at larger amplitude we observe that we can excite an EAW wave at “any” fre-

quency in the range of 1.4v̄ < vph < 2.1v̄; under these conditions, there is no simple
dispersion relation for these waves. That is, the excitation modifies the particle distri-

bution so as to make the wave resonant with the excitation frequency. This is similar to

results from Vlasov-Poisson simulations [10] in the highly non-linear amplitude regime,

suggesting that EAW-like modes with strong harmonic content, called KEEN waves, can

be excited over a wide range of frequencies.



EXPERIMENTAL APPARATUS

We observe slow (EAW) and fast (Langmuir or Trivelpiece-Gould) waves in pure ion

plasmas, both being azimuthally-symmetric standing waves. We use a Mg+ ion plasma

confined in a Penning-Malmberg trap [11] with a uniform magnetic field B = 3 Tesla.

Figure 1 shows the trap consisting of a series of hollow conducting cylinders of radius

Rw = 2.86 cm contained in ultrahigh vacuum at P ≈ 10−10 Torr. The ion density is n ∼

1.5×107 cm−3, over a radius Rp ≈ 0.45 cm, with length Lp ≃ 9 cm. The plasma ions are

held in steady state for days, by utilizing a weak “rotating wall” electric field [12] applied

to the sectored electrode. The rotating wall is turned off about 100 ms before each wave
measurement and is restored about 200 ms later, and the plasma re-equilibrates to a

Maxwellian distribution during a 5-sec period between wave excitations.
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FIGURE 1. Experimental setup with coherent photon detection.

A diagnostic laser beam parallel to the magnetic field close to the trap axis illumi-

nates the plasma, and Laser Induced Fluorescent (LIF) photons are collected by optics

perpendicular to the trap axis. The diagnosed volume is the intersection of the laser

beam with the viewing volume of the detection optics, corresponding to about a volume

of length ∆zL = 0.3 cm and of radius ∆rL ≃ 0.1 cm. Individual detected photons emitted

in the diagnosed volume are counted and their time of arrival recorded. The laser beam

comes from a frequency-doubled dye laser and is tuned across the cyclic 2S
m j=−1/2

1/2
→

2P
m j=−3/2

3/2
(280 nm) transition from the ground state of singly ionized magnesium ions.

For the data presented here, the pre-wave plasma has a LIF-measured Maxwellian

velocity distribution, with temperature controlled in the range 0.3 eV < T < 1.5 eV.

These plasma parameters give Debye length 0.1 cm < λD < 0.24 cm, thermal velocities

110 cm/ms < v̄ < 245 cm/ms, ion-ion collision rate 8 sec−1 > νii > 0.7 sec−1, and

plasma frequency fp = 165 kHz.

We excite standing EAW and TG waves with an electrode located near the end of the
plasma column, and detect the waves with a separate cylinder located near the other end

of the plasma. Both excitation and detection electrodes are azimuthally symmetric and

so only excite and detect azimuthally symmetric modes (mθ = 0). The modes presented



in this paper have the longest possible axial wavelength (mz = 1), that is λ ≈ 2Lp,

and the lowest radial mode number (mr = 1). The EAWs are excited by an amplitude-

rounded burst Vexc(t) of Nc cycles at a frequency fexc and amplitude Aexc applied to the

wall cylinder. Without amplitude rounding the TG wave is also excited by the harmonic

content of the burst.

The wave-induced wall voltage Vw(t) is then recorded, and is fit in overlapping time

segment as

Vw(t) = Aw(t)cos(θw(t)) (1)

resulting in θw(t) with slowly varying Aw(t) and frequency fw(t) = dθw/2πdt. This

wave phase will be used for wave-coherent measurements of the ion motion.

Figures 2a, b show typical resonant excitation and reception waveforms for the TG

and EAW waves. The TG wave is readily excited by Nc = 10 cycles at amplitude Aexc =
2 mV. In contrast, the EAW is excited to similar amplitude by Nc = 100 with Aexc =
200 mV. Moreover, the TG wave grows smoothy with excitation, whereas the EAW

wave shows an erratic response for hundreds of cycles of excitation. These received

waveforms show γTG ∼ 10/sec, and γEAW ∼ 100/sec. However, if the EAW excitation

had been terminated after 20 cycles, the resulting wave would show γEAW > 103/sec.
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FIGURE 2. a) Detected EAW wall signal Vw(t) and drive burst Vexc(t) at fexc = 21.5 kHz. b) Detected

EAW wall signal Vw(t) and 100 cycles drive burst Vexc(t) at fexc = 10.7 kHz.

DISPERSION RELATION

In an infinite homogeneous unmagnetized plasma, the dispersion relation for an electron

acoustic wave of wavenumber k = kẑ and frequency ω is

ω2
p

∫

Pdvz
∂F0/∂vz

vz −ω/k
= k2 (2)

where ωp =
√

4πe2n/m is the plasma frequency. Here, F0(vz) =
∫

dvxdvyF0(v) is the

equilibrium velocity distribution for velocity component vz, and the integral is the
“principal part” of the Landau contour integral [1]. The principal part is used instead of

the Landau contour because it is presumed that the waves have modified F0, “flattening”

the distribution over a small (i.e. negligible) range of velocities around the phase speed



ω/k. Assuming that F0 is a Maxwellian distribution at temperature T , Eq. (2) may be

solved for ω and the resulting “thumb diagram” is shown in Fig. 3a. The upper branch

is the traditional Langmuir wave, asymptoting to ωp for kzλD = 0. The lower branch

(EAW) has an acoustic dispersion relation for small kzλD.

In a plasma column of radius Rp confined in a trap of radius Rw, the dispersion

relation is modified and the Langmuir wave becomes acoustic also, as first analyzed by

Trivelpiece and Gould [13], here TG. Moreover, for finite plasma length Lp, the waves

are bi-directional and standing, with specific axial wavenumbers given approximately

by kz = mzπ/Lp, mz = 0,1,2, .... The modes have an electrostatic potential structure of

the form
δφ(r,θ ,z) = cos(kzz)e

imθ θ Φmkz
(r) (3)

where Φmθ kz
satisfies

[

1

r

∂

∂ r
r

∂

∂ r
−

m2
θ

r2
+ω2

p(r)

∫

P
dvz ∂F0/∂vz

vz −ω/kz

]

Φmθ kz
(r) = 0 (4)

with boundary conditions that Φ ∝ rmθ near r = 0 and Φmθ kz
= 0 at r = Rw. Here

ωp(r)=
√

4πe2n(r)/m is the plasma frequency for density n(r).
Equation (4) is an eigenvalue problem for the frequency ω , and can be solved numer-

ically for given F0, mθ and kz via the shooting method. For the case of a top-hat density

profile with n(r) = n0 for r < Rp and zero otherwise, a solution to Eq. (4) for Φmθ kz
(r)

can be obtained in terms of Bessel functions [14].

In Fig. 3b ω(kz) is plotted for the case where k⊥λD = 0.25, from (λD/Rp) [2/ ln

(Rw/Rp)]
1/2= 0.25. In Fig. 3c this dispersion relation is plotted versus temperature at

fixed kz = π/Lp. Also, to compare the experiments it is important to use the actual radial

density profile n(r) rather than a top-hat profile, so in obtaining the dashed line of Fig. 3c

the numerical shooting solution was employed.

When the amplitude is turned down sufficiently (Aexc
<
∼

50 mV), the standing waves

are observed at only specific isolated frequencies, plotted in Fig. 3c as dots (EAW) and
squares (TG wave). At small amplitude, these measurements are well described by the

near linear theory of Refs. [1] and [3], including the expected temperature dependence

for these moderately high temperatures. At temperatures above 1.3 eV, no waves are

observed at comparably low excitation amplitude.

However, with larger amplitude excitation, the waves are excited over a range of

frequencies; and furthermore, they ring at frequencies different than fEAW or fexc be-

cause the excitation has significantly modified the distribution function. The gray bar

at T = 0.8 eV shows the range of frequencies over which a 100 cycle burst with

Aexc = 300 mV resulted in a wave fw = fexc ringing for hundreds of cycles. This means

that at T = 0.8 eV, a wave can be excited at “any frequencies” within the vertical extent

of the gray bar. We emphasize that the axial wavenumber kz does not change; rather,
the phase velocity of the wave is changing. Similarly, plasma waves at T = 1.4 eV are

excited with Aexc = 200 mV for 100 cycles, past the “end of the thumb” as shown by the

gray bar where no near-linear solution exists. The drive modifies the particle distribution

until the distribution becomes resonant with the drive. Naming waves in these continu-

ous regime is ill defined, since wave names are generally given for well characterized
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FIGURE 3. Plasma wave dispersion relation in (a) homogeneous, infinite plasma; (b) plasma of finite

radial size; (c) Plasma wave dispersion relation for finite radial size plasma and fixed kz, plotted versus

temperature.

distributions such as Maxwellian or near-Maxwellian distribution functions and beams.

It is worth noting that Skiff et al. [15] observed a new branch of electrostatic wave on

slightly non-Maxwellian plasmas.

COHERENT PARTICLE DISTRIBUTION MEASUREMENT

The LIF data allow us to construct the particle distribution function F(v,θ) coherent

with the wave phase θw(t) received on the wall. The excitation laser propagates axially

at r = 0, with frequency tuned to be resonant with particles of velocity vℓ. The individual

fluorescent photons emitted from the central axial region of the plasma are detected.
The rate of detected photons is P(vℓ, t) representing F(vℓ,z = 0, t). We calculate the

correlation integral

δFcoh(vℓ) =

t2
∫

t1

dt

(

P(vℓ, t)

t2− t1

)

cos[θw(t)−θw0] (5)

for a period t2 − t1 encompassing about 1000 photons over about 100 wave cycles.

Repeating this process for 250 velocities vℓ results in δFcoh(vℓ). Each measurement
is on the same plasma, after waiting ∼ 5 sec for the plasma to re-equilibrate.

Figure 4(a) shows the wave-phase coherent δFcoh(v) in the presence of a moderate

amplitude standing EAW at 10.7 kHz. The change of sign at v = 0 comes from the



∂F/∂v term, and the sign change at ±vph comes from the (v−vph) term in the denom-

inator of Eq. (2). The zero crossings at ±vph are an experimental measurement of the

standing wave phase velocity. Here vph = ±208 cm/ms gives 1
2
λ = vph/2 f = 9.7 cm;

this is about 10% longer than Lp, as is typical of standing plasma waves in traps [16].

The solid line is the result of a simple model representing the superposition of two inde-

pendent waves traveling with ±vph on separate Maxwellian distributions [14].

Figure 4(b) shows the particle distribution F0(v) before the wave, with a temperature

T = 0.31 eV. As the wave damps, the wave energy is transferred to the particles resulting

in a temperature increase to T = 0.44 eV measured 100 ms later.

0

200

400

600

800

-400 -200 0 200 400

F
 (

v
,
 
j, 

z
=

0
)

v   [ cm / ms ]

c)

 
1

 
2

 
5

 
6

 
3

 
4

 
7

 
8

0

200
b)

before

after

0.31eV

0.44eV

<
F

(v
)
>

-20

0

20
!
F

c
o
h

(v
)

a)

v
ph

v
ph

FIGURE 4. (a) Coherent particle response δF(v). (b) Phase average particle distribution before and

after EAW. (c) Phase-coherent particle distribution in the presence of an EAW with vph = 208 cm/ms.

A similar wave-coherent LIF technique gives the particle distribution F(v,θ j) at var-

ious wave phases, by binning the received photons into 8 wave-phase bins θ j = 2π j/8,

shown in Fig. 4(c). To obtain these we accumulate photons in their respective phase bins
for 10 ms, that is ∼ 100 wave cycles. F(v,θ j) show two plateaux, corresponding to the

particles trapped by the wave at ±vph. The widest plateaux ∆vT are observed at phase

θ j = 1 and 5. These wave-trapped particles propagate in the wave troughs past the pho-

ton detector at z = 0, and reflect at the plasma ends, remaining trapped during hundreds

of end reflections. Figure 4(c) also shows clearly the oscillations back and forth (δv0) of

low velocity (non-trapped) particles. The solid curves on Fig. 4(c) are the result of the

standing wave model.



This same data is better visualized in the contour plot of Fig. 5, where the 8 phase-

bins are interpolated to make the wave-phase x-axis. The color (grey) scale represents

the measured F(v,θ), and the curves represent the simple 2-wave theory model. The

plateaux of Fig. 4 are the “cat’s eye” trapping regions of Fig. 5, with maximal velocity

width 2∆VT ; and the δv0 oscillation of the bulk Maxwellian is seen near v = 0.

400

-400

0 π 2π

0

180

0

90

2 δv
0

2 Δv
T

v
  
 [
c
m

 /
 m

s
]

wave phase

FIGURE 5. Contour plot of F(v,θ j) measured at z = 0.

Note that Fig. 5 is F(v,θ ;z = 0) rather than the usual theory phase-space plot of

F(v,z; t). In phase-space, the upper trapping regions would move right with time t,

reflecting into the lower left-moving trapping regions at the right-hand edge. A similar

effect would be seen experimentally if the position of the LIF could be scanned in z.

We also note that the persistence of these BGK trapping states is somewhat surprising,

in that it requires that the wave and the particles reflect at the same z-positions on the

ends. In actuality, the wavelength is somewhat larger than 2Lp, and the reflection point

for a particle depends on its kinetic energy. One might expect that some “untrapping”
would occur at the ends, resulting in damping of the wave. However, this effect has not

yet been observed or analyzed.

From a fluid perspective, the low frequency and frequency variability of the EAW can

both be understood as resulting from the unusual negative dynamical compressibility. A

positive density perturbation δn consists of an increase in particles with v <
∼

vph, and a

decrease in particles with v >
∼

vph, as shown in Fig. 4a. The positive δn gives a positive

restoring potential δφ (as for a Langmuir wave); but it gives a negative restoring pressure

δP , due to the v2 weighting. In the EAW, the restoring δφ is almost totally cancelled by

δP , giving a low frequency. Moreover, this cancellation is quite sensitive to f (v) near
vph, so small changes in f (v) result in large frequency changes. In contrast, the pressure

term is small for Langmuir waves at low temperatures, and the frequency is relatively

independent of f (v).



DISCUSSION

We have observed near-linear plasma waves with a phase velocity slow enough to be lo-

cated in the bulk of the particle velocity distribution, generically called Electron Acous-

tic Waves. At small amplitude, the experimentally observed standing wave frequencies

confirm the theory concept of Holloway and Dorning presuming a local “flattening” of

the particle distribution around the phase velocity. At moderate and large amplitude,

the waves can be excited over a wide continuum range of frequencies. Here the wave

driver modifies the particle velocity distribution until the distribution becomes resonant

with the drive. The observed mode frequency is still surprisingly well described by the
Dorning theoretical approach using the modified particle distribution, even for the large

amplitude case.
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