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Abstract. Experiments and theory characterize the novel chaotic neoclassical transport scaling
as ν0

cB−1 in contrast to traditional collisional neoclassical transport scaling as ν
1/2
c B−1/2. This

chaotic transport occurs when local trapping separatrices have θ-variations or temporal fluctuations.
Experiments observe bulk particle transport, damping of Langmuir waves and diocotron waves,
and nonlinear wave-wave couplings. These effects may be important in low-collisionality fusion
plasmas.
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INTRODUCTION

This paper gives an overview of experimentally observed neoclassical transport and
damping effects, distinguishing the novel “chaotic” effects from the standard collisional
effects.

The neoclassical transport is due to global field errors which break cylindrical sym-
metry, combined with a separatrix creating locally trapped populations of particles. The
chaotic enhancement occurs when the separatrix is “ruffled” in the drift direction, or
fluctuating in time, and may be prominent in cylindrical non-neutral plasmas and in
magnetic fusion devices such as stellarators.

The five effects described here include bulk particle transport [1, 2, 3, 4, 5], damping
of drift [6] and Langmuir [7] waves, and modified nonlinear wave-wave couplings [8].
Experiments and theory distinguish traditional collisional effects from the novel chaotic
effects, with chaotic effects dominating in regimes of low collisionality.

For strong magnetic fields (B > 1 kG here), effects due to locally-trapped particle
populations are often dominant, and relatively simple “bounce-averaged” neoclassical
theory is effective [2, 4, 6]. In this regime, collisional separatrix crossings give rates
scaling as ν

1/2
c B−1/2, whereas chaotic separatrix crossings due to θ-ruffles or temporal

fluctuations give rates scaling as ν0
cB−1, i.e. independent of collisionality. Experiments

demonstrate that magnetic ripples as small as δB/B ∼ 10−3 can produce significant
trapped-particle effects, and that electrostatic fluctuations with eδφ ∼ T cause signif-
icant chaotic separatrix crossings just as effectively as do spatial ruffles or traditional
collisions.

For low magnetic fields, resonances between z-kinetics and θ-drifts are apparently



dominant, making the theory more complex. Experimentally observed transport rates
scale approximately as B−2.7, roughly consistent with resonant particle transport calcu-
lations.

Theory analyses which include trapped particles and ruffled separatrix effects have
now been developed from two complementary perspectives, and are in fair quantitative
agreement with experiments. A dynamical bounce-mapping approach characterizes the
quasi-steady-state density perturbations, including bounce-resonant effects in regimes of
ultra-low collisionality. A second bounce-averaged approach [2, 4, 9] assumes random
(chaotic) separatrix crossings, connects smoothly with collisional transport, and agrees
with the dynamical approach outside the bounce-resonant regimes.

Experimentally, quiescent pure electron plasmas are confined close to the rotating
thermal equilibrium states made possible by the azimuthal trap symmetry [10]. Con-
trolled transport and damping effects are then induced by applying “global field errors”
such as magnetic field tilt; and the transport is enhanced by trapped particles and colli-
sional or chaotic separatrix dissipation.

In this paper, we review two effects of applied field errors:
1) bulk radial transport, increasing the mean-square-radius and of the plasma at rate
ν〈r2〉; and
2) damping of `θ > 0, kz = 0 drift (diocotron) modes at rate γ`d .

Three similar wave damping effects are observed with no applied field errors, when
the wave itself is the θ-dependent error field. Observed effects include
3) damping of the `θ > 0, kz(+/−) Trapped Particle Diocotron Mode;
4) damping of `θ > 0, kz > 0 plasma (Langmuir) modes; and
5) modified nonlinear wave-wave couplings, when waves ruffle the separatrix.

Finally, we relate these results to toroidal stellarator geometry, where the toroidal
curvature always provides a strong global field error, and particles trapped in magnetic
field ripples give rise to “superbanana” neoclassical transport. We suggest that chaotic
transport discussed here may dominate over the theoretically analyzed ν1

c and ν
1/2
c

collisional regimes, especially in fusion-relevant plasmas where the collisionality νc is
small.

APPARATUS

The pure electron plasma columns utilized here are confined in a cylindrical Penning-
Malmberg trap [5], with magnetic field 0.4 < B < 20 kG (Fig. 1). The electron columns
have length Lp = 49 cm, and radial density profile n(r) with central density n0 =

1.6×107cm−3 and line density NL = πR2
pn0 = 6.1×107 cm−1. The equilibrium potential

gives an E × B drift-rotation frequency fE(r) which decreases monotonically from
fE0 = 230 kHz · (B/1kG)−1. The electrons have a near-Maxwellian velocity distribution
with thermal energy T <∼ 1 eV, giving axial bounce frequency fb ≡ v/2Lp <∼ 430 kHz.

An electrostatic trapping barrier with separatrix energy φs is created at z = 0 by a
“squeeze” wall voltage Vsq having adjustable strength “ruffles” with azimuthal variation
mθ. This gives interior separatrix energy φs(r,θ)= φs0(r)+∆φm(r)cos[m(θ−θm)]. Here,
we consider m = 2 ruffles only, created by voltages ±∆Vm applied to four 60◦ sectors,
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FIGURE 1. Cylindrical trap schematic, showing plasma with trapping barrier created by applied wall
squeeze voltages, and with global field error from a controlled magnetic field tilt.

with θm = 0.22π. At every plasma radius, low energy particles are trapped in either the
left or right end, whereas higher energy untrapped particles transit the entire length.

Particles change from trapped to untrapped (and vice versa) due to collisions, due to
drift-rotation across θ-ruffles ∆φm, or due to temporal fluctuations ∆φt in the separatrix
energy. The electron-electron collisionality of the present experiments is relatively low;
collisions acting for a drift-rotation period spread parallel velocities at the separatrix
[6, 11, 9] by an energy width ∆Wc ≡ (νc/2π fE)

1/2(φs0T )1/2 ≈ 20 meV · (B/1kG)1/2.
The “chaotic” processes will be important when ∆φm >∼ ∆Wc, or when ∆φt >∼ ∆Wc.

BOUNCE-AVERAGED NEOCLASSICAL DIFFUSION

Radial transport is driven by global “error fields” varying as δφ` ∼ ei`θZ(z); here, we
consider ` = 1 only; and we use ` (rather than m) for the field error θ-variation. For
our transport data, the error field is created by a small magnetic tilt with controlled
magnitude εB ≡ B⊥/Bz <∼ 10−3 and chosen tilt direction θB ≡ tan−1(By/Bx), i.e. rotated
by

α≡ θB−θm (1)

relative to the ruffle. This tilt is equivalent to applying wall voltages V (Rw,θ,z) =
(εBz)(2eNL/Rw)cos(θ− θB), which causes interior Debye-shielded ` = 1 error fields
δφ1(r,z).

When there are trapped particles, bounce-averaged neoclassical transport arises from
the difference in drifts in the left and right z-averaged error fields δφL and δφR, with step
size ∆r2 = [(δφL− δφR)/

∂

∂r Φe]
2. (These bounce-averaged effects will be distinguished

from bounce-resonance “kinetic” effects later in Fig. 4.) Collisions randomly trap or
detrap a particle fraction FM(φs)∆Wc in a rotation period, where FM is the Maxwellian
distribution of energies. Similarly, separatrix mθ-ruffles of amplitude ∆φm chaotically



trap or detrap a fraction FM∆φm, and temporal fluctuations of amplitude ∆φt chaotically
trap or detrap a fraction FM∆φt . One thus obtains [1, 2, 4, 9] a radial diffusion coefficient

Dr = fE ∆r2 1
4

FM(φs0){ ∆WcDcA + ∆φmDmA sin2 `α + ∆φtDmA }, (2)

with “collisional bounce-Averaged” coefficient DcA <∼ π; “m-ruffle bounce-Averaged”
coefficient DmA ≈ 4; and the sin2 `α term represents a varying dynamical symmetry
which reduces the effective step size.

BULK EXPANSION RATE ν〈r2〉 (1)

Experimentally, we diagnose the bulk expansion rate

ν〈r2〉 ≡
d
dt
〈r2〉/〈r2〉 , with 〈r2〉 ≡

∫
2πr dr n r2/NL. (3)

Fortunately, ν〈r2〉 can be accurately and readily obtained from the frequency f20 of a
weak diagnostic m = 2, k = 0 diocotron mode, as ν〈r2〉 =− d

dt f2d/ f2d . This follows from
f2d ∝ 〈n〉 = NL/2π〈r2〉 with NL constant; and it has been verified to ±2% by camera
images of plasma evolutions.

Figure 2 shows measured expansion rates ν〈r2〉 versus magnetic tilt direction θB, for
various applied wall ruffle strengths ∆Vm. The ruffled-induced chaotic transport shows
an unambiguous sin2

α dependence, with magnitude proportional to ∆Vm, adding to the
θB-independent collisional component. For alignments with α = 0, the ruffle reduces the
collisional transport slightly (solid bars), in agreement with theory showing a decrease
in DcA due to ruffle-induced transitions (Fig. 3). Both components scale as ε2

B for
εB <∼ 1 mrad, transitioning into the ε

1/2
B (banana) regime [12] for larger tilts.

The distinctive sin2
α signature, together with control of Vsq, ∆Vm and εB, enables

experimental identification of bounce-averaged effects separately from bounce-rotation
resonance (i.e., kinetic) effects. Fig. 4 shows the observed magnetic field scalings (sym-
bols, dashed lines) together with bounce-averaged theory estimates (solid lines). Here,
CcA and CmA represent radial integrals of the bounce-averaged Dr. The CcK1 and CcK2
coefficients represent “standard” plateau-regime transport, with collisions randomizing
bounce-resonant (kinetic) orbit steps driven by the tilt and ruffle error fields. The residual
ν
(bkg)
〈r2〉 represents transport from uncontrolled background error fields, separatrices, and

ruffles. The theory calculations are radial integrals of diffusion and associated mobility
[9] from the Debye-shielded fields δφ`(r), φs0(r) and ∆φm(r).

At high B, the chaotic and collisional neoclassical coefficients CmA and CcA agree well
with theory, scaling as B−1 and B−1/2 respectively. Here the comparison is limited by
temperature uncertainty, sensitivity to edge density gradients, and induced modification
of FM(φs0). At low B, the collisional kinetic transport labeled CcK1 is observed to depend
strongly on field (∼ B−2.7), but no simple power-law is expected as bounce-rotation
resonances become dominant [12]. Prior transport scaling experiments [5] have been
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FIGURE 2. (Left) Measured bulk expansion rate ν〈r2〉 versus magnetic tilt direction θB for 4 different
ruffle voltages ∆Vm. Note that the ruffle-induced chaotic transport reduces the collisional transport (bars)
only for the 2 specific alignments of α = 0, π.

FIGURE 3. (Right) Calculated bounce-Averaged diffusion coefficients DmA and DcA from mθ ruffles
and collisions respectively, versus ruffle strength as characterized by the ratio of separatrix spreading
widths ∆φm/∆Wc.

confused by the presence of uncontrolled separatrices and ruffles, and by overlapping
transport regimes.

Similar chaotic transport is observed when there are temporal variations ∆φt in the
separatrix energy. Figure 5 illustrates the immediate (but reversible) increase in radial
expansion rate when white noise of rms amplitude ∆Vt ∼ 0.2 V is applied to the θ-
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FIGURE 4. Measured Bulk expansion coefficients versus magnetic field B. Coefficients CmA, CcA
represent ruffle-induced and collision-induced neoclassical transport in the bounce-Averaged regime; and
CcK1 represents Kinetic effects such as bounce-resonant transport. Solid lines represent theory estimates
in the bounce-Averaged regime.



symmetric squeeze ring, causing chaotic trapped-passing transitions. The 3× increase in
(d/dt)〈r2〉 observed here is consistent with a collisional separatrix layer ∆Wc ∼ 70 meV
fluctuating by ∆φt ∼ 200 meV. Presumably, any noise or wave-induced fluctuations
which change particle kinetic energies relative to the separatrix energy would be equally
effective in enhancing transport.

FIGURE 5. (Left) Bulk plasma expansion due to an applied tilt is enhanced 3× during an applied wall
“noise” voltage which causes trapping barrier fluctuations ∆φt .

FIGURE 6. (Right) Plot of vendor-specified magnetic field strength versus z shows a δB/B ∼ 10−3

peak which causes plasma expansion when positioned within the confinement region.

MAGNETIC RIPPLE TRAPPING

Trapped particles arising from weak magnetic mirroring give rise to similar enhanced
transport effects. The superconducting magnet used for the present experiments has a
(gratuitous) magnetic peak with δB/B∼ 10−3, interior to our original axial position for
the containment electrodes, as shown in Fig. 6. By positioning this peak at the end of the
containment electrodes, “background transport” was decreased [5] by a factor of 5×.

The 10−3 mirror is expected to trap about 3% of the particles, and this causes strong
superbanana transport. Interestingly, adding a stronger mirror does not seem to increase
the transport, possibly because the magnetic separatrix covers the entire range of v‖ and
v⊥. Experimentally, the magnetic separatrix is substantially harder to control and vary,
so our experiments have focused on electrostatic barriers.

`θ > 0 DIOCOTRON DAMPING γ`d (2)

Damping of kz = 0 diocotron (drift) modes with `θ = 1,2 is observed when a global
field error such as tilt acts on trapped particle populations created by a central squeeze
voltage. It is now clear from experiments and theory that this damping is intimately
related to particle diffusion and transport, in both the chaotic and collisional regimes.

Figure 7 shows the measured `= 2 diocotron mode damping rate, γ2d , versus magnetic
tilt direction θB; also shown is the bulk expansion rate ν〈r2〉, measured on the same
plasma at the same time. The same distinctive sin2(α) variation is observed in both



measurements, and scalings with magnetic field strength reveal the same collisional and
chaotic scalings of B−1/2 and B−1 respectively.
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FIGURE 7. (Left) Measured damping of the mθ = 2 diocotron mode (γ2d) due to separatrix and
magnetic tilt shows exactly the same sin2(α) dependence as does bulk plasma expansion ν〈r2〉 .

FIGURE 8. (Right) Measured TPDM damping rates γ1a versus B due to a separatrix with no applied
magnetic tilt, showing the separate contributions from collisions (coll), from a static applied mθ = 2 ruffle
(V2), and from a separately launched mθ = 2 diocotron mode (Q).

`θ > 0, kz(±) TRAPPED PARTICLE DIOCOTRON MODE
DAMPING (3)

We now discuss three wave damping effects where the wave itself constitutes the global
field error, in the sense of driving the neoclassical separatrix dissipation. This requires
that the wave have `θ 6= 0 and kz 6= 0, so that it breaks cylindrical symmetry and acts
differently on the separate trapped populations. Here, there is no applied magnetic tilt
εB, and various tests establish that the damping is independent of any remaining trap
asymmetries.

In one sense, these damping experiments merely demonstrate the theoretical adage
that “damping is the flip side of transport.” One important distinction is that with
wave-induced damping, the dissipation continues until the wave is abated; wheres with
asymmetry-induced transport, the dissipation continues until the plasma is abated.

Historically, the appearance and damping of the Trapped Particle Diocotron Mode
was the first effect noticed when a squeeze was applied to the middle of cylindrical pure
electron plasma [5, 6]. The mode is anti-symmetric in z (and was initially called the
“Asymmetry Mode”); it can have any `θ, but we focus on `θ = 1.

In extremis, the TPDM is two separate diocotron modes, 180 degrees out of phase
with each other, each supported by the separately drifting trapped particles, somewhat
shielded by the passing particles, and damped by trapped/passing separatrix transitions.
The TPDM frequency decreases continuously from fE to the “standard” diocotron



frequency f1d as the squeeze increases towards “cut-off”; and the TPDM damping rate
correspondingly decreases.

Initial theory work analyzed the TPDM damping in terms of traditional collisional
separatrix dissipation [11]. This gave a B−1/2 scaling in correspondence with strong-
field experiments, but did not explain the B−1 scaling observed at lower magnetic fields.

A key theory insight introduced by Tsidulko in 2008 was that even weak mθ = 2 (or
higher) ruffles on a nominally theta-symmetric separatrix can be as effective as weak
collisions in producing damping and transport.

Figure 8 shows the measured `θ = 1 TPDM damping rates γ = γ1a versus magnetic
field. Here, we are able to experimentally distinguish 3 effects causing separatrix trans-
actions: collisions, giving γ(coll); an applied static mθ = 2 ruffle on the separatrix, giving
γ(V2); and a wave-induced separatrix ruffle from a separately launched “standard” mθ = 2
diocotron mode giving γ(Q). Here, the collisional B−1/2 and chaotic B−1 scalings are
clearly observed over 2 decades in magnetic field.

DAMPING OF `θ > 0, kz > 0 PLASMA MODES (4)

Damping from separatrix dissipation can readily dominate the theoretically beloved
Landau damping, and is effective even in the “BGK” wave-trapped-particle states.
Moreover, even weak magnetic ripples cause moderately strong damping.

Figure 9 shows the measured damping rates for an `θ = 1, kz = 1 π/Lp Langmuir
mode at f11 ∼ 1.2 MHz which as been excited to large amplitude, with δn/n ∼ 0.3.
Here, a linear wave would be overdamped (with γ/ f11 ∼ 2); but the wave persists in a
BGK state for a thousand wave cycles.

f11 ~ 1.2MHz

FIGURE 9. (Left) Instantaneous damping rate γ
(t)
‖ of an `θ = 1, kz = 1 π/Lp Langmuir mode is unaf-

fected by an applied positive “anti-squeeze” voltage (blue triangular ramp); but is directly proportional to
a negative θ-symmetric squeeze voltage.

FIGURE 10. (Right) Measured amplitudes versus time of a driven `θ = 2 diocotron mode (A2), which
decays into an `θ = 1 TPDM. Dashed lines are coupling theory without separatrix effects; dotted curves
are improved prediction from a partial correction K.

We find that the measured “background” damping γ
(M)
11 ∼ 103/sec is due to the δB/B∼

10−3 magnetic ripple; and that this damping is enhanced by 8× when a squeeze voltage



is applied to a 360 degree cylinder. The triangular ramp of Vsq shows that a positive
voltage has no effect, whereas a negative squeeze increases the damping proportional
to the number of squeeze-trapped particles. This squeeze-enhanced damping γ

Vsq
11 is

presumably due to collisions, and the chaotic effects of a ruffled separatrix have not
yet been investigated.

RESONANT WAVE-WAVE COUPLINGS WITH SEPARATRIX
DISSIPATION (5)

Separatrix dissipation, manifested either as damping or as phase shifts, can significantly
alter the evolution of nonlinear wave-wave couplings.

For example, the standard `θ = 2 diocotron mode exhibits a decay instability into the
`θ = 1 TPDM, if the TPDM frequency f1a is adjusted to be resonant, as f1a = f2d/2.
Here, the coupling is fundamentally due to the inherent nonlinearity of the convective
term in the fluid or Vlasov equations, which gives a simple nonlinear coupling coefficient
V . Further, one would reasonably expect that separatrix-induced TPDM damping γ1a
could significantly affect the time evolution of the decay instability.

Figure 10 shows the time evolution of mode amplitudes A2 and A1a when A2 is driven
to large amplitude and f1a is tuned for resonance [8]. The TPDM is observed to grow
from noise, then saturate and oscillate at an amplitude similar to the depleted A2. The
dashed line shows the evolution predicted from coupling coefficient V and damping γ1a
alone; clearly other effects are important.

Initial theory work (before chaotic transport was understood) suggested adding a
nonlinear dissipative coupling term K ; and this significantly improved the prediction of
late-time behavior (solid curves). It now appears that wave-induced separatrix ruffling
and chaotic dissipation must be included in order to fully model the decay instability
and late-time evolution, because dissipation and phase shifts are not symmetric between
the two waves. This analysis is being prepared for publication.

TOROIDAL SUPERBANANA TRANSPORT

Collisional neoclassical transport theory has been extensively developed in the context
of magnetic fusion energy in toroidal geometries [12, 13, 14], but few experimental
tests have challenged the various theory assumptions. Prior theory [Refs. 14–16 and
references therein] has considered the effect of asymmetric separatrices; however, the
effect of non-zero phase angle α has not to our knowledge been previously analyzed.
Moreover, some prior work treats the abrupt changes in the parallel adiabatic invariant
due to separatrix crossings; but our model of differing drift dynamics of trapped and
untrapped particles is quite distinct from parallel adiabatic invariant effects.

Overall, neoclassical transport has a similar structure in toroidal systems as in our
cylindrical plasmas. First, toroidal curvature provides the unavoidable “global field er-
ror” which causes particles to drift off flux surfaces; this is analogous to our magnetic tilt.
Second, separate populations of locally trapped and untrapped particles are created by
magnetic field ripples; this is our squeeze or magnetic ripple. Third, the ripple-induced



separatrix between trapped and untrapped particles generally varies with poloidal angle
around the flux surface; this is our controlled separatrix ruffle.

As shown in Fig. 11, prior collisional neoclassical transport theory predicts “super-
banana” transport scaling as ν1

c and ν
1/2
c in the regimes of low collisionality of interest

to MFE, and as ν−1
c for large collisionality [14]. The predicted ν1

c regime represents the
suppressed collisional transport analogous to Figs. 2 and 3 for the specific case of α = 0.
That is, ruffle-induced separatrix crossings do indeed reduce the collision-induced cross-
ings (Fig. 3); but the α = 0 assumption of dynamically reversible drifts is only rarely
justified.

νeeνee

“axi-‐symmetric”	  	  (no	  separatrix)

“super-‐bananna”	  	  (separatrix)

FIGURE 11. (Left) Collisional neoclassical diffusion coefficients for axisymmetric and superbanana
toroidal configurations. (Re-drawn from Ref. 14) Low collisionality regimes of ν1 and ν1/2 may be
superceded by chaotic transport effects.

FIGURE 12. (Right) Low collisionality chaotic transport due to mθ ruffles or due to temporal fluctua-
tions may increase transport well above collisional predictions in ν1 and ν1/2 regimes.

Similarly, the “collisional” theory assumption is that only micro-fluctuations are dy-
namically important in high-temperature regimes, thereby ignoring temporal fluctua-
tions in separatrix energies due to fluctuations in plasma potential.

In contrast, our experiments and theory suggest that chaotic neoclassical transport
due to ruffles or fluctuations scaling as ν0

c may well be dominant in regimes of low
collisionality (Fig. 12). Thus, considerable work may be required to bring theory into
correspondence with low-collisionality, separatrix-ruffled, fluctuating fusion plasmas.
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