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Recent experiments quantify the strong centrifugal separation effects in e-/H- plasmas,
here cylindrical columns with ne~10^7/cm3, Bz~10.kG, T~25.meV, and H- fractions from 1% to 10%.

-- Most striking is the outward transport of H- on the sub-second timescale, substantially faster than 
the 10^4 sec predicted for collisional drag between species. [1]  Here, the H- ions couple to the 
collective diocotron mode, causing algebraic damping of the mode at a rate proportional to the H-
creation and outward transport

-- The thermalization of axially hot H- ions onto cold electrons is observed to be 20-40 times slower 
than expected for radially-overlapping species.  In contrast, H- ions perp-heated by ICRH couple 
energy rapidly into parallel e- motion, suggesting a collective process.  Similarly, the "inter-species" 
drag" damping of excited TG waves depends strongly on their radial mode number.

-- The recently developed "plasma modes thermometer" comparing diocotron and TG mode 
frequencies provides quantitative non-destructive information on the plasma temperature and H-
fraction evolutions;  but quantitative analysis of collisional and collective species couplings 
necessitates a MCP dump diagnostic for imaging H-.

[1]  A.A. Kabantsev et al, AIP Conf. Proc 1928, 020008 (2018)
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e- / H- Plasmas:  Enhanced Centrifugal Separation
and Other Disparate Mass Effects



central density:                    n0 » 107 cm-3

central potential:           j0 » – 30 V
plasma radius:                     RP » 1.2 cm (RW = 3.5 cm)
plasma length: L » 34 cm   ( H3-H9 )
equilibrium temperature:    T = 0.025→1 eV
magnetic field:                    B = 8→16 kG
collision frequency             nc = 20→0.1 kHz
E´B rotation frequency: fE ~ 10 kHz
axial bounce frequency:  fbe ~100→600 kHz
electron plasma frequency: fpe ~30MHz, fTG1 »2.9MHz
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"Pure" electron plasmas:  excellent confinement properties, 

t (B) ~ 104→ 106 sec
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CAMV is a Penning-Malmberg trap with a phosphor 
and CCD camera downstream of G10 for 
quantitative dump diagnostic of electrons.

Electrons are emitted from a hot tungsten filament 
adjacent to G1.

Cyclotron radiation causes the un-neutralized 
electron plasma to cool to ~25.meV within 10.sec.

This temperature evolution can be quantitatively 
diagnosed by simultaneously measuring the 
frequencies of several diocotron (drift) modes and 
Trivelpiece-Gould (plasma) modes.

Hydrogen-minus ions are observed to form within 
the electron column, by electron 
attachment/replacement reactions on excited H2
molecules transiting the column.  The H- has 
binding energy Ebind ~ 0.74eV .

That is, each (well-confined) electron may become 
a (less-well-confined) heavy H- ion at a rate 
~1./ksec .
This rate is about 10x lower when the apparatus 
walls are "cold", so experiments can be done at 
various "controlled"  e- to H- conversion rates.

Vacuum Pressure
P ~ 10-10 Torr
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e- +  H2
* →  H- +  H
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Frequency of the primary (mq = 1) diocotron mode represents
the total (net) charge line density of the plasma, NL(t), as

Frequency of the primary (mq = 0, kz = 1) eTG-mode represents
the electron charge line density of the plasma, Ne(t), as
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2 10eVeNe !

The  mq=1,  kz=0  diocotron (drift) mode 
frequency f1d depends equally on the 
electron and H- charge densities.
This mode shows weak exponential growth
exp( G t )  due to "wall resistance".

The mq=0, kz=1 Trivellpiece-Gould (plasma) 
mode frequency feTG1 depends only on the 
electron density, since the heavier H- ions 
would oscillate at a 45x lesser frequency.

These mode frequencies depend 
differently on line-charge denity NL, plasma 
radius Rp, plasma length L, and 
temperature T. 
The plasma temperature can thus be 
obtained from comparison of these and 
other (mq, kz) modes
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eTG1 mode frequencies decrease as electrons "convert" to H-.
Shown are 2 "controlled" conversion rates  pH- = 0.19 and 1.2 /ksec,

giving H- accumulation of 1.9% and 12% in 100.sec 
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The mq=0, kz=1 Trivellpiece-Gould
(electron plasma) mode frequency feTG1
decreases as electrons convert to H-,
since the H- do not respond at the
electron oscillation frequency.

Here, thermally-excited TG modes are
observed in 0.1msec time slices every
few seconds, under "slow" and "fast"
pH- conversion conditions.

The central plot shows the observed
fTG1 decreasing proportional to H-
accumulation.
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The injected electron plasma cools 
from T~1eV to T~25.meV in 10.sec.

When cold, plasma electrons become
heavy H- ions at (controlled) rates: 
1/ksec (green) or 0.2/ksec (cyan),
accumulating to 2% or 8% in 100.sec.

The TG mode frequency varies strongly
during cooling, and further decreases
proportion to H- accumulation rate 
(cyan vs green). 

The diocotron mode frequency is 
insensitive to H- mass accumulation,
but the mode is weakly unstable due to
finite wall resistance.

>> We observe algebraic damping of 
the diocotron mode proportional to the
number of accumulated H- ions,
and this damping may overcome the 
weak wall instability.

Cleaning the H- ions from the system 
by ion-TG-frequency "shaking" 
immediately decreases f1d and 
restores the weak exponential growth.
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Exponential growth is sustained  
by continuous cleaning of  H -
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Right Plot : The slow exponential
diocotron growth (due to the resistive 
wall) is negated by outward H-
transport and algebraic mode damping 
when sufficient H- is accumulated. 

Exciting a 2x larger mode establishes 2x 
larger (algebraic) damping.

Heating the plasma to T~0.2eV restores 
the weak exponential growth, by
killing the H- induced damping.

Left Plot : Similarly, cleaning" the H-
axially out of the plasma prevents the 
H- algebraic damping.
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H - fraction up to 10%  is accumulated in a cold electron plasma during ~ 100 sec.
Then, an excited diocotron mode shows algebraic damping at rate gH,

equilibrating to ~2x the H - production (and loss) rate
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Left Plot : A diocotron mode is excited
after 150.sec of H- accumulation and
outward expansion.  d(t) clearly 
shows algebraic rather than 
exponential damping.

Then, "cleaning" the H- ions by axial
ejection causes a 9% decreace in total
charge, as indicated by f1d.  It also 
reduces the H- damping to near zero.

Right Plot : Performing the "cleaning"
at various times establishes the H-
production rate  pH- .
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Algebraic damping rate gH is compatible with the concurrent plasma transport rate
as

,  as measured by (d/dt)f1d / f1d
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Summary
• In the first e - / H - plasma experiments we have found that accumulation 

(production) of  H - ions causes algebraic damping of diocotron modes, with a 

corresponding accelerated radial transport (mass separation) of the H - ions.

The observed centrifugal separation time (< 1sec) is much faster than expected 

from  inter-species collisional drag (~104sec), and independent of B. 

Some other interesting effects observed in the first e - / H - experiments:

• Enhanced cooling of electrons in collisions with H - ions (cooled by neutrals)

• Enhanced damping of plasma waves due to e - / H - collisional (viscous) drag

• Effective resonant acceleration (cleaning) of H - ions at the iTG frequency

• Strong exponential damping of diocotron modes in a "floppy" H - plasmas

(after ejecting axially the electron component)
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