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This Letter describes a new parametric instability mechanism caused by a distribution fT of particles
trapped in the potential wells of a wave train. The mechanism explains a nonlinear instability in
Trivelpiece-Gould (TG) waves, and it could also be a destabilizing factor in a range of nearly collisionless
nonlinear plasma waves. The theory is compared to particle in cell simulations of TG waves.
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Many plasmas exhibit parametric instabilities, in which
longer-wavelength “daughter waves” grow on a shorter-
wavelength nonlinear “pump” wave. The instability has
been observed in laser-plasma experiments [1,2] in toka-
maks [3,4] and other magnetic confinement devices [5,6],
and in non-neutral plasmas [7–9], and it has been studied in
theory and simulation for many years in a range of
scenarios [10–15]. Here, we consider a novel instability
mechanism caused by particles trapped in, and carried
along by, the fields of the pump wave. The instability
mechanism is quite simple and fairly general and may
therefore be applicable to a range of nonlinear wave
phenomena in which particles are trapped in the wave.
The mechanism applies to waves with a nearly acoustic

dispersion relation, ωðkÞ ≈ ck, in which the pump wave
decays to daughter waves of the same type (i.e., on the same
branch of the dispersion relation). This case describes
experiments [7,8] involving large-amplitude Trivelpiece-
Gould (TG) plasma waves [16,17] traveling axially along
a non-neutral plasma column. Under these circumstances, it
has been previously shown that the classic three-wave theory
of parametric instability [10], based on ideal fluid equations,
is inapplicable; and that, in fact, ideal fluid theory predicts
that the pump wave is stable at all amplitudes [18]. We show
that parametric instability arises when “weakly trapped”
particles are included in the theory. We compare these results
to particle in cell (PIC) simulations, which observe para-
metric instability only when such weakly trapped particles
are present, at a growth rate consistent with the new theory.
The instability mechanism is as follows. Consider a

nonlinear pump wave with amplitude A, wave number k,
and phase speed u [19]. The growth of daughter waves with
wave number k=2 and speed close to u (the most unstable
case) corresponds to a slow relative motion of the pump
wave peaks; pairs of adjacent peaks approach one another
and recede from neighboring pairs. Any particles trapped
between the approaching peaks of the pump wave are
adiabatically heated, while any particles trapped between
receding peaks are cooled.

This heating and cooling would normally produce
restoring forces that stabilize the relative motion of the
peaks. However, some weakly trapped particles are heated
enough to become untrapped, and these particles are then
retrapped and cooled between receding peaks (an
untrapped particle moving toward a receding peak can
reflect from it and lose energy, becoming trapped). The net
effect of this detrapping and retrapping is to change the sign
of the restoring force, producing a trapped-particle force
that amplifies the modulations.
A simplified model for this process applies to pump

waves made up of a chain of solitonlike potential peaks,
each separated by a large wavelength L compared to their
width. Each potential well in the chain has a trapped-
particle distribution fTðvÞ [Fig. 1(a)]. Consider the trapped-
particle distributions f1ðvÞ and f2ðvÞ in adjacent wells.
Initially, both f1 and f2 equal fT . In the instability, the two
adjacent peaks that trap f1 slowly reduce their separation

(a)

(b)

FIG. 1. PIC simulation showing energy versus position in a
TG wave with trapped particles, at two times. (a) ωpt ¼ 0; (b)
ωpt ¼ 400.
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by δL. The next peaks recede from one another by the same
distance δL [Fig. 1(b)]. This motion is replicated along the
wave train, creating a periodic structure with period 2L (the
daughter waves, with twice the pump wavelength).
Trapped particles are adiabatically compressed in the

first well, and f1ðvÞ changes from fTðvÞ to fTðvL1=LÞ≡
ffinal1 ðvÞ, where L1 ¼ L − δL. The density change for these
particles is δn1 ¼ 2

R vs
0 dvðffinalT − fTÞ, where vs is the

separatrix speed, given in terms of the peak height Es by
mv2s=2 ¼ Es. Taylor expansion to first order in δL and
integration by parts gives the density change as

δn1 ¼ 2
δL
L

Z
vs

0

dv½fTðvÞ − fTðvsÞ�: ð1Þ

If fTðvsÞ ¼ 0, the density change in the compression is
positive. However, for weakly trapped particles with a
distribution satisfying fTðvsÞ ≥ fTðvÞ for jvj < vs, δn1 is
negative under compression. This occurs because particles
escape the potential well as they are heated [Fig. 1(b)].
The trapped-particle distribution f2ðvÞ between the

receding peaks can be analyzed the same way. This
distribution changes from fTðvÞ to

ffinal2 ðvÞ ¼
�
fTðvL2=LÞ; 0 < v < vsL=L2

fTð2vs − vL2=LÞ; vsL=L2 < v < vs
; ð2Þ

where L2 ¼ Lþ δL. The second form for f2 is from
particles retrapped from the other well.
The total kinetic energy change δET ¼ δE1 þ δE2 for

these trapped particles is

δET ¼ 2

Z
vs

0

dv
mv2

2
½L1ffinal1 þ L2ffinal2 − 2LfTðvÞ�; ð3Þ

After Taylor expansion and integration by parts, one finds
that δET is second order in δL (as expected since�δLmust
give the same energy change): δET ¼ −βδL2, where

β ¼ 6

L

Z
vs

0

dvmv2½fTðvsÞ − fTðvÞ�: ð4Þ

For a weakly trapped distribution with β > 0, the process
reduces the kinetic energy of the trapped particles. This
energy change can drive the instability.
An approximate expression for the decay instability

growth rate can now be found by treating the wave train
as a chain of solitons. A soliton’s energy E0 is a function
of its speed u. Adjacent solitons change velocities by
þδu and −δu, respectively, where δu ¼ ð1=2ÞdδL=dt.
Then the energy change per pair is δE0 ¼ αðδuÞ2, where
α ¼ ∂2E0=∂u2 > 0 is the “inertial mass” of a soliton. This
energy change is due to the work done by trapped particles,
and energy conservation δE0 þ δET ¼ 0 implies the ordi-
nary differential equation (ODE)

αðδ _L=2Þ2 − βðδLÞ2 ¼ 0: ð5Þ

This ODE yields an exponential growth rate Γ for δLðtÞ
given by Γ ¼ 2

ffiffiffiffiffiffiffiffi
β=α

p
. (There is also an exponentially

decaying solution with decay rate Γ.) The growth rate in
this model is proportional to the square root of the number
of trapped particles, and instability occurs for any number
of trapped particles, no matter how small (provided that
β > 0, i.e., that the distribution is weakly trapped).
This simple model can be made somewhat more realistic

by noting that, in the ideal fluid model of nonlinear TG
waves, interacting solitons repel (the solitons are elevated
density regions of like-sign charge) [18]. The repulsion
adds a restoring energy κðδLÞ2 per pair to the energy of the
chain of solitons, and hence to Eq. (5):

αðδ _L=2Þ2 þ κðδLÞ2 − βðδLÞ2 ¼ 0; ð6Þ

which implies the growth rate is modified to

Γ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ − κÞ=α

p
: ð7Þ

Now instability requires that the trapped-particle fraction
must be sufficiently large to overcome the natural repulsion
between wave density peaks.
A more general kinetic theory of the instability applies

to waves of any amplitude or wavelength, and treats the
system as a cold fluid plus a weak tail distribution that
includes trapped particles. Neglecting tail particles, the
nonlinear wave is assumed to be a steady solution of the
cold fluid equations [18] with density nðsÞ, fluid velocity
VðsÞ, and potential ϕðsÞ ¼ Ĝn, as seen in the wave frame,
where Ĝ is the Green’s function operator for Poisson’s
equation. The tail particles are treated as a perturbation.
The tail distribution function fT is assumed to evolve
adiabatically in the wave potential. The initial tail distri-
bution is a function of particle energy, fT ¼ fTðEÞ, where
E ¼ mv2=2þ ϕðsÞ, and v is particle velocity in the wave
frame. Collisionless adiabatic theory implies that changes
in the tail distribution, caused by changes δϕðs; tÞ in the
wave potential, are

δfTðs; v; tÞ ¼
∂fT
∂E ½δϕðs; tÞ − hδϕiðE; tÞ�; ð8Þ

where h·i is an average along a particle trajectory in phase
space holding energy E fixed [20].
The cold fluid evolves according to fluid equations

coupled to the tail particles via the wave potential. The
perturbed fluid velocity δVðs; tÞ and density δnðs; tÞ follow
linearized continuity and momentum equations,

∂
∂t
�
δn

δV

�
þ ∂
∂s

�
VδnþnδV

VδVþδϕF=m

�
¼−

∂
∂s

�
0

δϕT=m

�
: ð9Þ
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Here, we have broken the perturbed wave potential δϕ
into two pieces, a fluid portion δϕF ≡ Ĝδn and a portion
δϕT ≡ ĜδnT arising from the tail density δnT ¼ R

dvδfT,
using Eq. (8) for δfT.
To analyze the stability of solutions to Eq. (9), consider

the eigenmodes of the equation. Let ψ0ðsÞ≡ (δn0ðsÞ;
δV0ðsÞ) be a complex vector eigenfunction of Eq. (9) with
no tail particles (δϕT ¼ 0). That is, ψ0 satisfies

iω0ψ0 ¼ L̂ · ψ0; ð10Þ

with a linear matrix operator L̂≡ ð∂=∂sÞ
�

V
Ĝ=m

n
V

�
, where

ω0 is the eigenfrequency.
The operator L̂ is anti-Hermitian with respect to a matrix

inner product: for any two eigenfunctions ψ1 and ψ2,
½ψ1; L̂ · ψ2� ¼ −½ψ2; L̂ · ψ1��, where

½ψ1;ψ2� ¼
Z

dsψ�
1 ·

�
Ĝ† mV

mV mn

�
· ψ2; ð11Þ

and where Ĝ† is the left Green’s function operator
defined as δϕ ¼ δnĜ†. The anti-Hermitian property of L̂
implies that [21] (i) all eigenfrequencies are real; (ii) ψ�

0 is
also an eigenfunction with eigenfrequency −ω0; and
(iii) ½ψ0;ψ�

0� ¼ 0, provided ω0 ≠ 0. Result (i) implies that
steady traveling wave solutions to the cold fluid equations
are stable, from which it follows that three-wave theory for
parametric instability [10] cannot apply to this system,
conclusions found via a more circuitous route in Dubin and
Ashourvan [18,22].
Furthermore, Eq. (11) implies that ½ψ0;ψ0� is real and is

equal to 4 times the eigenmode energy δE0:

½ψ0;ψ0� ¼ 4δE0

¼
Z

dsfnmjδV0j2 þmVðδn0δV�
0 þ δV0δn�0Þ

þ δn0δϕ�
0g; ð12Þ

where δϕ0 ≡ Ĝδn0 is the eigenmode potential. (The
reality of δE0 follows from the symmetry

R
dsδn1Ĝδn2 ¼R

dsδn2Ĝδn1 for any δn1 and δn2.)
The effect of the tail particles can now be handled with

degenerate perturbation theory, assuming that the fraction
of tail particles is small. Including these particles, an
eigenmode ψ ≡ ðδn; δVÞ of Eq. (9), with frequency ω,
satisfies

iωψ ¼ L̂ · ψ þ Ĉ · ψ ; ð13Þ
where Ĉ · ψ ≡ ð∂=∂sÞð0; δϕT=mÞ is treated as a small
perturbation. Then the most unstable eigenmode will be
perturbed away from the unperturbed pair ðψ0;ψ�

0Þ that
has the smallest frequencies ðω0;−ω0Þ. In degenerate
perturbation theory, we write ψ ¼ aψ0 þ bψ�

0 þ Δψ ,

where ½ψ0;Δψ � ¼ ½ψ�
0;Δψ � ¼ 0, and where Δψ is small.

Substituting for ψ in Eq. (13), using Eq. (10) and its
complex conjugate, and dropping the small term Ĉ · Δψ
yields

iωðaψ0þbψ�
0þΔψÞ

¼ iω0ðaψ0−bψ�
0Þþ L̂ ·ΔψþaĈ ·ψ0þbĈ ·ψ�

0: ð14Þ

Taking inner products of this equation with respect to ψ0

and ψ�
0, the Δψ terms vanish and one obtains two coupled

homogeneous equations for the coefficients a and b, which
can be written in matrix form asM · ða; bÞ ¼ ð0; 0Þ. Setting
the determinant of the matrix M to zero determines the
eigenfrequency ω as ω2¼ω2

0−ðXþX�Þω0þjYj2− jXj2,
where X ¼ i½ψ0; Ĉ · ψ0�=½ψ0;ψ0� and Y ¼ i½ψ0; Ĉ · ψ�

0�=
½ψ0;ψ0�. Since X and Y are small, the jYj2 − jXj2 term
can be dropped, and to first order in the tail density the
eigenfrequency is

ω2 ¼ ω2
0 − 2Xω0; ð15Þ

where we take X to be real (this is shown later). Instability
occurs when X > ω0=2. The coefficient X can be directly
related to the tail distribution. Using Eqs. (11) and (12),

X ¼ i

R
dsðVδn�0 þ nδV�

0Þ∂δϕT=∂s
4δE0

¼ −ω0

R
dsδn�0δϕT

4δE0

¼ −ω0

R
dsδϕ�

0δnT
4δE0

; ð16Þ

where we integrated by parts and used the complex
conjugate of the continuity equation [the first element of
Eq. (10)], and the final form employed symmetry of the
Green’s function. The tail density δnT is obtained by
integrating over δfT given by Eq. (8):

δnTðsÞ ¼
Z

dv
∂fT
∂E ðEÞ½δϕ0ðsÞ − hδϕ0iðEÞ�; ð17Þ

where for simplicity we have dropped δϕT on the right-
hand side, keeping only the potential δϕ0 ¼ Ĝδn0 from the
fluid density δn0 in the eigenmode. We can do this because
δϕT ≪ δϕ0 since the tail particle density is assumed small.
Applying Eq. (17) to Eq. (16) yields

X ¼ ω0

4δE0

Z
dsdv

∂fT
∂E ½jhδϕ0ij2 − jδϕ0ðsÞj2�: ð18Þ

Thus, the coefficient X is real and proportional to the
fraction of tail particles.
We can now connect Eq. (15) to the previous expression

for the growth rate, Eq. (7). In that simplified model we
treated the wave train as a chain of weakly interacting
solitons. As one soliton moves by δL=2 and the next moves
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by −δL=2, the wave potential change in each soliton is
δϕ0ðsÞ ¼ �ð1=2ÞδL∂ϕðsÞ=∂s, where ϕðsÞ is the equilib-
rium soliton potential. This potential is mainly local to
each soliton, and therefore the jδϕ0ðsÞj2 term in Eq. (18)
is negligible compared to jhδϕ0ij2. As shown in Ref. [20],
the bounce average of δϕ0 is then given by hδϕ0i ¼
�mv2δL=L for trapped particles (those with speed
jvj < vs), and it is zero for untrapped particles, where
the upper (lower) sign is for compressing (expanding)
potential wells. Applying this to Eq. (18) and integrating in
v and in s over one pair of wells (of length 2L) yields
2ω0X ¼ ðω0δLÞ2β=δE0, where β is given by Eq. (4). Here,
we have used E ¼ mv2=2, ∂fT=∂E ¼ ð1=mvÞ∂fT=∂v,
and we have performed an integration by parts in v.
Substituting for 2ω0X in Eq. (15) and again taking δE0 ¼
αðδuÞ2, where jδuj ¼ ω0δL=2 is the change in soliton
speed, results in the growth rate Γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β=α − ω2

0

p
, which

is equivalent to Eq. (7).
We now compare this theory of parametric instability to

PIC simulations of a nonlinear TG wave. The simulations
are in the wave frame, using periodic boundary conditions
with period 2L, with N ¼ 106 particles of charge e and
mass m. The Poisson equation relating density to potential
in these 1D simulations is ∂2ϕ=∂s2 − k2⊥ϕ ¼ −4πe2n,
where k⊥ is the perpendicular wave number of the waves
[8,18], a free parameter in the simulations; in Fig. 1
k⊥L ¼ 10π. The initial particle distribution in the wave
frame (where particles are flowing to the left with mean
speed u) is nearly a δ function at energy Ew above the
potential minimum. The resulting density and fluid velocity
create a large-amplitude wave with A ¼ 0.078, stationary
in this frame. To this distribution NT ¼ 2000 tail particles
are added, distributed uniformly in phase space between
energies from Ew down to Em ¼ 0.9Es [Fig. 1(a)]. This
creates a population of about 400 trapped particles.
In Fig. 1(b) the distribution is shown at time ωpt ¼ 400,

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2n0=m

p
is the plasma frequency. The

wave peaks have moved spontaneously and trapped par-
ticles have been heated in the left well, causing them to
become untrapped and then retrapped in the right well,
where trapped particles are cooled to lower energy. The
change δLðtÞ in the distance between wave peaks increases
exponentially with time [23], and an exponential fit gives
the growth rate for the instability.
Figure 2 displays growth rates versus the number NT

of tail particles (with fT , the same functional form as
described above) for two amplitude and k⊥ values. The
solid dots are growth rates measured in simulations. The
lines are Eqs. (15) and (18). The fluid wave functions nðsÞ,
VðsÞ, ϕðsÞ, the eigenfunction ψ0 ¼ ðδn0; δV0Þ, and the
frequency ω0 are evaluated using the methods described in
Ref. [18]; see Fig. 3 for examples. For the more nonlinear
wave (red data) ω0 is quite small and the simple “chain-
of-solitons” model provides a growth rate estimate,

Γ ¼ 2
ffiffiffiffiffiffiffiffi
β=α

p
, with β given by Eq. (4). One can show

[18] that for large-amplitude TG solitons α≈16mn0=k⊥,
with n0¼N=ð2LÞ. For a uniform fT≈NT=½4Lðvw−vmÞ�≡
fT0 when vm < jvj < vw (where vw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ew=m
p ¼

1.22ωp=k⊥ and vm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Em=m

p ¼ 0.96ωp=k⊥), β=α≈
ð4=16ÞðfT0=NÞk⊥v3m. This gives Γ ¼ 0.16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NT=N

p
ωp,

within 30% of Eq. (15). For the weaker wave (blue data)
the open symbols are below the instability threshold. In
these cases δLðtÞ oscillated at the plotted rates, rather than
exponentially increasing. The blue dashed curve is the
frequency predicted by Eq. (15).
These simulations varied the number of tail particles NT

(proportional to the trapped-particle number) holding the
functional form of fT fixed, but in other simulations (not
shown) the tail distribution was modified, taking Em > Es,
so that there were no trapped particles. No instability was
observed for any NT, as the new theory predicts.
The parametric instability discussed in this Letter arises

from a novel effect: when compressed by growing daughter
waves, weakly trapped particles “change sides” by becom-
ing detrapped and then retrapped and thus amplify the
compression. The growth rate scales roughly as the square
root of the trapped-particle fraction. Two versions of the

FIG. 2. Growth rates in simulations (points) and from Eq. (15)
(lines) versus the number of tail particles, for two cases: red, a
very nonlinear wave (ϕ shown in Fig. 1) and blue, a less nonlinear
wave (see Fig. 3).

FIG. 3. (Top) Density, potential, and velocity in the cnoidal
wave used for the blue data in Fig. 2. (Bottom) Least-stable fluid
eigenmode. Solid lines, real; dashed lines, imaginary.
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theory were presented, a chain-of-solitons model and a
novel kinetic theory, and the theories were compared to PIC
simulations. The simulations and theory are for traveling
waves, but we have also observed similar growth rates for
standing waves of relevance to previous experiments [7,8].
Future work will extend the theory to standing waves and
compare to simulations and experiments. The new theory
may also be relevant to other plasma waves such as
Bernstein-Greene-Kruskal states [24] and electron acoustic
waves [9,25], where trapped particles play a central role in
the wave dynamics; ion acoustic waves, where trapped
particles have been observed to affect parametric decay
[14]; and waves in other systems such as 2D nearly inviscid
fluids, where the exchange of vorticity across moving
flow separatrices (for example, in nonlinear Kelvin waves
[26–28]) may have similar consequences to the effects
considered here.

The author thanks Professors T. M. O’Neil and C. F.
Driscoll and Drs. F. Anderegg and M. Affolter for useful
discussions. This work was supported by U.S. DOE Grants
No. DE-SC0018236 and No. DE-SC0008693.
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