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Equilibration of the planar modes of ultracold two-dimensional ion crystals in a Penning trap
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Planar thermal equilibration is studied using direct numerical simulations of ultracold two-dimensional ion
crystals in a Penning trap with a rotating wall. The large magnetic field of the trap splits the modes that describe
in-plane motion of the ions into two branches: high-frequency cyclotron modes dominated by kinetic energy
and low-frequency E × B modes dominated by potential energy associated with thermal position displacements.
Using an eigenmode analysis we extract the equilibration rate between these two branches as a function of the
ratio of the frequencies that characterize the two branches and observe this equilibration rate to be exponentially
suppressed as the ratio increases. Under experimental conditions relevant for current work at NIST, the predicted
equilibration time is orders of magnitude longer than any relevant experimental timescales. We also study the
coupling rate dependence on the initial energy of the planar modes and the number of ions. In addition, we show
how increasing the rotating wall strength improves crystal stability. These details of in-plane mode dynamics
help set the stage for developing strategies to efficiently cool the in-plane modes and improve the performance
of single plane ion crystals for quantum information processing.

DOI: 10.1103/PhysRevA.104.023325

I. INTRODUCTION

Single plane crystals of several hundred ions in Penning
traps provide an appealing platform for quantum informa-
tion processing and quantum sensing. The large number of
qubits in this system provides for the possibility of quan-
tum simulations of paradigmatic spin and spin-boson models
in a regime where classical simulation becomes intractable
[1–4]. Experimental work to date has focused on all-to-all
interactions between the ion qubits, studying the buildup of
qubit correlations in a regime where experiment can be bench-
marked with theory [5,6], but, with improved control and the
addition of techniques such as single-site addressability, more
complex simulations and general information processing will
be possible [7]. This promise has motivated recent efforts to
improve the Penning trap platform and increase the control
and tools available to the experimentalist. This includes ef-
forts to develop miniaturized permanent-magnet systems that
offer portability [8], traps with improved optical access [9],
the incorporation of sideband cooling [10], and proposals
for quantum computing and simulation in arrays of Penning
traps [11].

In trapped-ion quantum information processing, strong in-
teractions between the ion qubits (or spins) are generated by
coupling the ion crystal spin degrees of freedom with the
ion crystal motional (or mode) degrees of freedom through
the application of a spin-dependent force. For single plane
crystals in Penning traps, this is routinely accomplished by
coupling the ion spins to the drumhead modes that describe

ion motion perpendicular to the plane of the crystal (or parallel
to the magnetic field of the Penning trap) [12]. A single plane
crystal with N ions will support N drumhead modes, each of
which can be described as a simple harmonic oscillator. The
drumhead modes are efficiently cooled to near their ground
state by a combination of Doppler and electromagnetically
induced transparency cooling [13,14].

In contrast, the in-plane ion motion is complicated by
the presence of the strong magnetic field of the trap and
has not to date been employed for quantum information
processing tasks. The strong magnetic field splits the pla-
nar normal modes into a cyclotron branch containing N
high-frequency modes and an E × B branch containing N
low-frequency modes. These planar modes exhibit a more
complicated behavior than simple harmonic modes with av-
erage potential kinetic and potential energies that are not
equal. The E × B modes, so named because motion is princi-
pally due to E × B drift from displacements of the ions from
their equilibrium positions, are dominated by potential energy
associated with the positional displacements. On the other
hand, cyclotron modes are dominated by kinetic energy as-
sociated with cyclotron motion. The structure of these modes
is discussed in Ref. [3] along with a movie that illustrates
the character of the planar modes. In contrast to the drum-
head modes, efficient cooling of the in-plane modes has not
been demonstrated experimentally or even clearly discussed
theoretically for multi-ion crystals. Doppler cooling of the
cyclotron modes to millikelvin temperatures appears feasible
[15,16], but recent theoretical work indicates that observed
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frequency instabilities of the drumhead mode spectrum can
be attributed to an elevated temperature of order 10 mK for
the E × B modes [17]. A detailed understanding of the planar
mode dynamics and the energy exchange between the dif-
ferent planar mode branches, besides being of fundamental
importance [18–21], is an important first step in the design of
efficient cooling techniques as well as quantum information
protocols that utilize these modes.

In this paper, we investigate the exchange of energy be-
tween the cyclotron and E × B branches of single plane ion
crystals in Penning traps using an eigenmode analysis of a
first-principle molecular dynamics-type simulation [15]. We
characterize the energy exchange as a function of the ratio R
of the ion crystal cyclotron and E × B center-of-mass (c.m.)
mode frequencies [see Eq. (16)]. The center-of-mass frequen-
cies provide a convenient characterization for the frequency
ratio between the two branches. From simulations performed
with 5 < R < 10 we find that the exchange of energy between
the two branches is exponentially suppressed as a function
of R. A simplistic extrapolation to R ≈ 735, relevant for
the current NIST experimental setup, gives an equilibration
time many orders of magnitude longer than the age of the uni-
verse. In addition, we also study the less-sensitive dependence
of the rate of energy exchange between the branches on the
initial energy and the number of trapped ions.

Finally, for large R where the energy exchange between
branches is negligible, we study the exchange of energy
between modes within a given branch and observe a sig-
nificantly faster equilibration within the E × B branch than
the cyclotron branch. In the course of the above studies, we
also show that increasing the rotating wall strength leads to
improved crystal stability. These observations improve our un-
derstanding of the in-plane mode dynamics, setting the stage
for developing strategies for efficiently cooling the E × B
modes. The isolation of the cyclotron modes suggests their
potential use and efficacy in quantum information processing
protocols.

The organization of the paper is as follows. In Sec. II, we
review the governing equations for the rotating wall Penning
trap configuration at NIST. The model equations are the start-
ing point for both direct numerical simulation and the linear
eigenmode analysis. In Sec. III, we present both an eigenmode
and bandpass filter technique for determining the energies of
the two mode branches. The eigenmode technique is based
on linearizing the system, details of which are presented in
Appendix A. In Sec. IV we discuss Penning trap and ion
crystal parameters that affect the coupling rate and develop
a systematic procedure for obtaining different crystal config-
urations characterized by the desired parameters. In Sec. V,
we study the influence of the rotating wall strength on the ion
crystal stability. We find that a strong rotating wall improves
the crystal stability and the effectiveness of the eigenmode
measurement. In Sec. VI, we present the first-principles sim-
ulation results. We begin by showing a thermalization process
of the modes for R = 5, where equipartition of the mode
energies is reached after 10-ms evolution. We then study the
dependence of the equilibration rate between the cyclotron
and E × B modes on several parameters in Sec. VI B. For
large R, where the interbranch coupling is very weak, we
also examine coupling among the modes within each branch.

Finally, in Sec. VII, we summarize with a discussion and
concluding remarks.

II. THEORETICAL FORMULATION

We have developed an N-particle classical simulation of
ultracold ions in a Penning trap, including a rotating wall
and axial and planar Doppler cooling [15]. The code in-
cludes a fairly realistic implementation of the experimental
configuration employed at NIST [1,5,22]. Here we use this
code (without implementing the laser cooling) to simulate
the equilibration of the planar modes. We analyze the simu-
lation through an eigenmode decomposition. In this section,
we introduce the model and parameters relevant for single
plane crystals in Penning traps and describe the planar normal
modes of motion [17,23]. Details of the normal-mode analysis
are given in Appendix A.

We treat N ions, all with the same mass m and charge
q, as classical point particles confined in a rotating wall
Penning trap. The Penning trap confining fields consist of a
magnetic field B = Bẑ, a quadrupole electrostatic potential
ϕtrap(x) = 1

4 kz(2z2 − x2 − y2), and a time-dependent potential
ϕwall(x, t ) = 1

2 kzδ(x2 − y2) cos[2(θ + ωRt )] called the rotat-
ing wall. The dimensionless parameter δ characterizes the
relative strength of the rotating wall potential to that of ϕtrap.
The parameters θ and ωR are the azimuthal angle and the ro-
tating wall frequency. Further details of the simulation model
are given in Ref. [15].

Experimentally [1,5,22], the ions are cooled to a regime
where the ions are strongly correlated with a correlation
coefficient � = q2/(4πε0akBTp) � 1 [24] (a is the typical
inter-ion spacing and Tp is the temperature). The strongly cor-
related ions form a crystal that rigidly rotates at the frequency
ωr = ωR [15] as the rotating wall potential locks the ion crys-
tal rotation frequency. In the rotating frame of the crystal, the
potential energy of N ions with coordinates xi = (xi, yi, zi ) is
time independent and is given by [15]
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where we parametrize the trap strength with axial trapping
frequency ωz = √

qkz/m and bare cyclotron frequency 
 =
qB/m. A stationary equilibrium ion crystal state with posi-
tions x0i satisfying ∂	r/∂x0i = 0 for (i = 1, 2, . . . , N ) can be
found numerically by minimizing the potential energy 	r [3].

In this paper, we study single plane ion crystals that have
a two-dimensional structure. There are two requirements on
the radial confinement strength for an ion crystal to maintain
a single plane structure in a Penning trap. The strength of
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the radial confinement [second line in Eq. (1)] relative to
the strength of the axial confinement [first line in Eq. (1)] is
characterized by the parameter

β = ωr (
 − ωr )/ω2
z − 1/2. (2)

For a single plane crystal of N ions, the trap asymmetry β

must be less than a critical βc(N ) [24]:

β < βc(N ) ≈ 0.665/
√

N . (3)

Second, the radial confinement strength must be stronger than
the rotating wall strength. The force along the y axis is

Fy = −(β − δ)mω2
z y, (4)

which requires β > δ for trapping along the y direction.
At ultracold temperatures, ion displacements relative to

the equilibrium inter-ion spacing are small. This feature al-
lows us to linearize the ion motion and then solve for the
normal modes. In a two-dimensional crystal, the linearized
ion motion in the out-of-plane (z) direction decouples from
that in the planar (x and y) direction. In this paper, we solve
for the normal modes in the planar direction. As presented
in Appendix A, there are 2N normal modes in the planar
direction with eigenvectors un and mode frequencies ωn. In
terms of these eigenvectors, we can express any small position
and velocity displacements s⊥ = (x⊥, v⊥)T of the ions in the
planar direction as

s⊥ =
2N∑

n=1

ane−iωnt un +
2N∑

n=1

a∗
neiωnt u∗

n. (5)

Here, the symbol ⊥ refers to motion perpendicular to the
magnetic field. Because of the Lorentz force arising from the
magnetic field, the planar eigenvectors obey a generalized or-
thogonality relation with respect to a composite energy matrix
E [17]. As shown in Eq. (A8), E is constructed out of the
(diagonal) mass matrix of the ions and a stiffness matrix K⊥
that is obtained by linearizing the ion equations of motion.
As a result of the E orthogonality of the eigenvectors, the
complex amplitude an of each normal mode is given by

an = u∗
nEs⊥, (6)

where the eigenvectors un have been normalized according
to Eq. (A9).

Among the 2N normal modes, N modes correspond to the
low-frequency E × B branch and N modes correspond to the
high-frequency cyclotron branch (which we will, respectively,
denote by subscripts b and c in what follows). We arrange
the 2N modes (n from 1 to 2N) in ascending order according
to their frequencies. The E × B branch then contains modes
1 to N and the cyclotron branch contains modes N + 1 to
2N . A typical configuration of an ion crystal studied in this
paper is shown in Fig. 1(a). The associated distribution of
the mode frequencies is presented in Fig. 1(b). Here trap and
ion parameters are chosen so that the frequencies of the two
branches are separated by a small amount.

III. DIAGNOSTIC TOOLS FOR IN-PLANE MODES

In this section, we first describe the eigenmode analysis
method that we use to measure the kinetic and potential

FIG. 1. (a) Configuration of a crystal with N = 91 ions. Rele-
vant trap and ion parameters are ωz = 2π × 704 kHz, ωr = 2π ×
400 kHz, β = 0.05, δ = 0.0126, B = 4.4588 T, m = 63.3 u, and
q = e. These parameters give rise to R = 5 [defined in Eq. (16)].
(b) The 2N = 182 planar mode frequencies of the crystal in the
E × B (red dots under the dashed line) and cyclotron (blue dots above
the dashed line) branches. The dashed line shown is at 320 kHz.

energies of individual planar modes in the course of a
molecular-dynamics simulation. Under certain conditions, the
linearization assumption giving rise to the mode picture can
be marginal due to the significant potential energy (and dis-
placements of the ions) associated with the E × B modes.
Therefore, we subsequently also discuss a bandpass filter
method, based on the Fourier transform of a time series of
the ions’ velocities, which is applicable regardless of the lin-
earization assumption. We use the latter method to validate
the results from our eigenmode analysis.

A. Eigenmode measurement method

We start by separating eigenvectors into their coordinate
and velocity components as un = (rn, vn)T . Using Eqs. (A7)
and (5), we express the total in-plane thermal energy in terms
of the planar modes as

E =
2N∑

n=1

|an|2(r∗
nK⊥rn + mv∗

nvn)

=
2N∑

n=1

kBTn ≡ 2NkBTp. (7)

Here, Tp is defined as a mean planar temperature while Tn

describes the temperature of a single mode. In Eq. (7), terms
involving rn and vn, respectively, represent the potential (En

p )
and kinetic (En

k ) energies in a single mode. We replace an by
Eq. (6) to obtain the potential and kinetic energies in a single
mode as

En
p = |u∗

nEs⊥|2r∗
nK⊥rn,

En
k = |u∗

nEs⊥|2mv∗
nvn. (8)

Equation (8) allows measurement of the mode potential and
kinetic energies of any instantaneous state s⊥(t ) based on
the orthonormal eigenvectors set {un}. To evaluate the en-
ergy distribution during an evolution process, we simulate
the crystal evolution and record ion displacements si(ns�t ) =
(xi(ns�t ), vi(ns�t )) in the rotating frame with the sampling
period �t and total sample number Ns. Using the recorded
velocities and displacements, we calculate the kinetic energies
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in the two branches based on Eq. (8) as

Kb(ns�t ) =
∑
n∈b

|u∗
nEsi(ns�t )|2mv∗

nvn,

Kc(ns�t ) =
∑
n∈c

|u∗
nEsi(ns�t )|2mv∗

nvn.

(9)

Similar expressions are obtained for the potential energies in
the two branches by replacing mv∗

nvn with r∗
nK⊥rn in Eq. (9).

B. Bandpass filter method

A second method for measuring the kinetic energies in the
two mode branches is by bandpass filtering the velocities as
described below. For the same recorded velocities used in
Eq. (9), we perform a Fourier transform on the velocity of
ion j by means of

ṽ j (ω) = 1

τ

∫ τ

0
e−iωt v j (t ) dt, (10)

where τ = Ns × �t is the total recording time. Given the
discretely sampled velocities, we approximate the Fourier
transform by utilizing a discrete fast Fourier transform:

ṽ j (l�ω) = 1

τ

∫ τ

0
e−il�ωt v j (t ) dt

≈ 1

Ns

Ns∑
ns=1

e−i2π lns/Ns v j (ns�t ), (11)

where l ∈ {0, 1, . . . , Ns − 1} and �ω = 2π/τ is the fre-
quency resolution. In order to accommodate the full frequency
range of the planar modes, Ns�ω/2 = π/�t exceeds the
maximum mode frequency ωm.

We then apply a bandpass filter to separate ṽ j (l�ω) with
respect to mode frequency. We choose the bandpass filter
frequency l0�ω, with l0 a positive integer, to be located in
the frequency gap of the two mode branches, i.e.,

max{ωb} < l0�ω < min{ωc}. (12)

With the help of l0, we divide ṽ j (l�ω) into

ṽ j (l�ω) → ṽb
j (l < l0) + ṽc

j (l � l0). (13)

Next, we apply inverse Fourier transforms to transform ṽb
j

and ṽc
j back to v̄b

j (ns�t ) and v̄c
j (n�t ) in the time domain.

We repeat the above process for all ions ( j = 1, . . . , N) to
calculate the kinetic energies, Kb(ns�t ) and Kc(ns�t ), in the
two branches as

Kb(ns�t ) =m

2

N∑
j=1

∣∣v̄b
j (ns�t )

∣∣2
,

Kc(ns�t ) =m

2

N∑
j=1

∣∣v̄c
j (ns�t )

∣∣2
.

(14)

We can then compare the results from Eqs. (14) and (9) in
the simulation for validation purposes. In Sec. VI A, good
agreement between the two methods is achieved when the
displacements are small and no slippage or distortion of the
crystal is observed. We have also found good agreement be-
tween the total kinetic and potential thermal energies obtained

from the eigenmode analysis and those obtained from a direct
evaluation using the ion coordinates in the simulation, again
for small displacements.

It is worth noting that the eigenmodes method is not re-
stricted by the requirement of the sampling period and the size
of the data collection. The bandpass filter method, however,
requires an appropriate sampling period and enough data to
cover the frequencies of all planar modes. While the bandpass
filter method only measures the kinetic energy, it performs
better than the eigenmode measurement when displacements
are not extremely small.

IV. PARAMETERS CONTROLLING EQUILIBRATION

In this section, we identify important trap and crystal pa-
rameters that control the thermal equilibration of the planar
modes. We also describe a procedure to tune the parame-
ters and obtain similar crystal configurations the equilibration
rates of which can be meaningfully compared.

Normal modes of trapped ion crystals are only decoupled
in the limit of small-amplitude displacements. In reality, an-
harmonic terms in the Coulomb interaction couple different
modes and may eventually lead to equilibration [25]. Prior
work with one-dimensional ion chains in an rf Paul trap
showed that the equilibration rate between the high-frequency
radial modes and the low-frequency axial modes is exponen-
tially suppressed in the ratio of the characteristic frequencies
of motion along these two directions [26]. This result can
be understood via energy conservation in a phonon picture,
wherein for a large separation of frequencies several low-
frequency phonons must be created in order to annihilate a
single high-frequency phonon. Such multiple phonon pro-
cesses arise as high-order terms in the Coulomb interaction
with small effective rates.

A natural measure of the characteristic frequency of motion
for the cyclotron and E × B branches is provided by the c.m.
frequencies ω+, ω− of each branch. The c.m. frequencies are
independent of ion number and are the same as the single-ion
motional frequencies. In the weak rotating wall limit (δ � 1),
we can solve analytically for the two frequencies to obtain, in
a frame rotating at a frequency ωr ,

ω± =
√


2 − 2ω2
z ± (
 − 2ωr )

2
. (15)

Here ω+ is the c.m. mode for the cyclotron branch and ω− is
the center-of-mass mode for the E × B branch. We study the
dependence of the equilibration between the two branches on
the ratio

R = ω+
ω−

. (16)

Other important parameters that can impact the equilibra-
tion rate are the number N of trapped ions and the initial
energy in the planar direction. With larger numbers of ions,
one expects more available modes for satisfying the frequency
match required for phonon-phonon coupling. When the initial
energy of the planar modes is higher, the ion displacements
are larger and anharmonic Coulomb coupling is stronger [27].

To enable a study of the energy transfer between the planar
modes, we develop a systematic procedure by which we can
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FIG. 2. (a) The trap axial frequency ωz (lower blue line) and
ion cyclotron frequency 
 (upper red line) as functions of R with
B = 4.4588 T, ωr = 2π × 400 kHz, β = 0.05, and δ = 0.0126 held
fixed. (b) Frequency gap �ω (green dots) as a function of R. Other
parameters are the same as in Fig. 1. The gray line is a linear fit to
the numerical results.

obtain similar crystal configurations that can be meaningfully
compared while varying the frequency ratio parameter R. This
is not trivial due to the large number of trap parameters. We
obtain crystals with the same rotation frequency ωr , magnetic
field B, the relative rotating wall strength δ, and relative radial
confinement strength β. We study single plane crystals with
N � 127. The critical trap asymmetry parameter for N = 127
ions is βM (127) ≈ 0.059. We fix β = 0.05, δ = 0.0126, and
ωr = 2π × 400 kHz. The axial trapping frequency ωz and the
bare cyclotron frequency 
 can be expressed as functions of
R, β, and ωr in the following way:

ωz =
√

2

F (R)

ωr

2β + 1
[
√

2β + F (R) +
√

2β[1 − F (R)]],


 =
√

2ωz

√
2β + F (R)

F (R)
, (17)

where F (R) = 1 − ( R−1
R+1 )2. The relation between ωz, 
, and R,

with ωr/(2π ) = 400 kHz and β = 0.05, is plotted in Fig. 2(a).
By fixing the rotation frequency and magnetic field we ob-
tain crystals that have approximately the same ion density.
Physically, the cyclotron frequency determines the ion mass
through m = qB/
 and the axial frequency determines the
required trap voltage for that ion mass. In Fig. 2(b) we inves-
tigate the dependence of the frequency gap between the two
branches, �ω = ω{c,min} − ω{b,max}, on R for N = 91 ions. The
nearly linear relation indicates that R also provides a means of
parametrizing the gap between the two branches.

V. ROTATING WALL STRENGTH

A crystal with well localized ions is desirable for
both experimental and theoretical reasons. Experimentally,
a crystal with well-localized ions is beneficial for imple-
menting schemes for single site addressing. Theoretically,
well-localized ions enable the application of the eigenmode
measurement method with higher accuracy. In addition, a
crystal with well-localized ions has improved stability as typi-
cally only ions with significant displacements escape from the

FIG. 3. Mean-squared displacement δr2
n of 2N = 182 planar

modes with mode temperature Tn = 1 mK. Here the trap and ion
parameters are the same as used in Fig. 1 and discussed in Sec. VI A.
In particular R = 5 and δ = 0.0126.

vicinity of their equilibrium positions, resulting in a modified
crystal configuration.

To quantify the ion localization and crystal stability, we
consider the sum of the squared thermal displacements in the
planar direction of all the ions in the rotating frame. This
quantity can be written as a sum of mean-squared thermal
displacements δr2

n of the individual planar modes, which are
given by [17]

δr2
n = 2kBTn

(1 + R̃n)mω2
n

. (18)

Here R̃n = En
p/En

k is the ratio of the potential to kinetic energy
of the nth mode,1 ωn is the mode frequency, Tn is the mode
temperature, and δr2

n is obtained by summing the thermal
fluctuations in mode n over all the ions. In Fig. 3, we plot the
distribution of δr2

n for N = 91 and Tn = 1 mK. We observe

that δr2
1 of the rocking mode (with n = 1) is much larger than

for the other modes. When the rocking mode temperature gets
higher, (δr2

1/N )1/2 becomes comparable to the interparticle
spacing of d = 12.1 μm. Since the contribution to the total
crystal displacement is dominated by the rocking mode, we
use the mean-squared displacement δr2

1 of this mode to char-
acterize the ion localization.

We plot (δr2
1/N )1/2 versus rotating wall strength in Fig. 4.

The behavior seen in Fig. 4 can be explained qualitatively as
follows. A strong rotating wall causes a difference between
the trapping potential in the x and y directions in the rotating
frame:

ψx = 1
2 (β + δ)mω2

z x2,

ψy = 1
2 (β − δ)mω2

z y2. (19)

For δ = 0, the trapping potential is azimuthally symmetric,
resulting in a circular crystal with a zero-frequency rocking

1We note that R defined in Eq. (16) can be shown to be the ratio of
potential to kinetic energy for the E × B c.m. mode [17].
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FIG. 4. Relation between the root-mean-square displacement
(δr2

1/N )1/2 of the rocking mode and the relative rotating wall strength
δ. The smallest value considered here is δ = 3.5 × 10−4. Other pa-
rameters are the same as discussed in Sec. VI A.

mode. With increasing δ, the asymmetry in the trapping poten-
tial leads to an elliptic crystal that is squeezed along the axis
corresponding to the stronger trapping potential (in this case,
the x axis in the rotating frame). The breaking of the azimuthal
symmetry is accompanied by the rocking mode acquiring a
nonzero frequency that increases with δ. Correspondingly,
the mean-squared displacement δr2

1 associated with this mode
decreases, resulting in improved crystal stability.

For illustration, we show the time trace of two crystal con-
figurations with normalized wall strength of δ = 3.5 × 10−4

and 0.0126 in Fig. 5. We first generate two equilibrium crys-
tals with the respective rotating wall strengths and initialize
their E × B branches with Tp = 1 mK. We then track the
trajectories of the ions in the rotating frame once in thermal
equilibrium (after 50 ms). A stronger rotating wall leads to
well-localized ions and a more stable crystal configuration.
In Fig. 5, early times are represented by yellow dots and
later times are represented by blue dots. In Sec. VI, we set
δ = 0.0126.

In passing, we note that a strong wall may also improve
Doppler cooling of the planar modes, since torque from the

FIG. 5. Time trace of ion trajectories in the rotating frame for
crystals with N = 91 ions. Recording duration is 1 ms after the
crystals have fully thermalized. We use a color gradient from yel-
low (lighter) to blue (darker) to represent the chronological order.
The relative rotating wall strengths are (a) δ = 3.5 × 10−4 and
(b) δ = 0.0126. Yellow dots in panel (b) are almost covered due to
small displacements. Other parameters are the same as discussed in
Sec. VI A.

cooling laser [16] can be more effectively counterbalanced,
thereby ensuring that the crystal does not slip during the
cooling process.

VI. SIMULATION OF PLANAR MODES COUPLING

In this section, we perform molecular-dynamics-type sim-
ulations to study the coupling in the planar direction. During
the thermal equilibration process, we validate the eigenmode
measurement method by comparing the energy measurement
results with the bandpass filter method. We then investigate
the cyclotron–E × B coupling as we vary R, the planar initial
energy, and the number of ions. Finally, we study the coupling
within the E × B branch and the cyclotron branch when the
cyclotron–E × B coupling is prohibited by large R.

A. Equilibration of the two branches

Here, we present the thermal equilibration process using
both energy measurement methods presented in Sec. III. We
generate a crystal of N = 91 ions with charge q = e in a
Penning trap with parameters R = 5, β = 0.05, ωr = 2π ×
400 kHz, δ = 0.0126, and B = 4.4588 T. Accordingly, ωz =
2π × 0.704 MHz, 
 = 2π × 1.082 MHz, and m = 63.3 u.
We generate an initial state far from the thermal equilibrium
by initializing modes in only one of the two branches with
nonzero thermal energy. Details of the initialization are dis-
cussed in Appendix B. We initialize the 91 modes in the
E × B branch with a homogeneous energy of Tn = 1 mK(n ∈
b) and then let the system evolve for 50 ms.

In Figs. 6(a) and 6(b), we compare the kinetic energies in
the two branches based on Eqs. (9) and (14). From the fre-
quency ranges in Fig. 1, we use a filter with l0�ω = 320 kHz
for the bandpass filter method. In Figs. 6(c) and 6(d), we
compare the total kinetic and potential energies in the planar
direction based on the eigenmodes method and a direct mea-
surement using the position and velocity coordinates of the
ions. For the latter, we utilize Ek = ∑

m|vi|2/2 and Eq. (1)
to directly measure the total kinetic and potential energies in
the planar direction. The good agreement observed in Fig. 6
demonstrates that the eigenmode method is valid at the low
planar temperatures used in this paper.

Using the eigenmode method, we now plot the behavior
of the total energies in the two branches in Fig. 7(a). We
observe that the energies of the two branches approach Tp,
which indicates an equipartition between the two branches.
The dependence of the equipartition rate between the two
branches on the parameters discussed in Sec. IV is studied
in the next section. To present details of the equipartition
process, we compare the energy distribution in 2N = 182
modes at t = 0 and 50 ms, as shown in Figs. 7(b) and 7(c).
The total energy for each E × B mode is initialized at 1 mK.
At later times, e.g., at 50 ms as shown in Fig. 7(c), the system
approaches equipartition.

B. Dependencies of the cyclotron–E × B coupling

We now proceed to study the cyclotron–E × B equi-
libration rate dependence on R, the initial temperature,
and the number of ions. We average every measurement
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FIG. 6. Eigenmode (EM, thick smooth line), bandpass filter (BP, thin noisy line), and direct (DM, thin noisy line) energy measurements
during a 50-ms evolution process after the E × B branch is initialized with a homogeneous initial energy of 1 mK: (a) kinetic energy Kb in the
E × B branch, (b) kinetic energy Kc in the cyclotron branch, (c) total kinetic energy Ek in the planar direction, and (d) total potential energy
Ep in the planar direction. Other relevant parameters are reported in Sec. VI A.

over ten realizations with random-phase initial conditions
(Appendix B).

We measure the equilibration rate by fitting the time-
dependent behavior of the temperatures in the two branches,
Tb = Eb/NkB and Tc = Ec/NkB, to the following exponential
functions:

Tb(t ) = Tp[1 + e−αt ],

Tc(t ) = Tp[1 − e−αt ],
(20)

FIG. 7. Thermal equilibration process in the planar direction
with R = 5. (a) Energies in the two branches (Tb in upper green
line and Tc in lower purple line) during 50-ms evolution. (b) Energy
distribution of 2N = 182 modes at t = 0. (c) Energy distribution of
2N = 182 modes at t = 50 ms averaged over ten realizations with
random-phase initial conditions (see Appendix B). The bars in panels
(b) and (c) represent the kinetic (upper blue) and potential (lower red)
energies of single modes in units of millikelvin. We note that the blue
bars are stacked on top of the red bars and their total height gives the
total energy of a mode. The 91 modes on the left and right sides
of the gray dotted line belong to the E × B and cyclotron branches,
respectively. Other relevant parameters are reported in Sec. VI A.

where we define α as the cyclotron–E × B equilibration rate.
We will use this definition of α in what follows when we
investigate the dependence of the equilibration rate on var-
ious parameters. To allow for a well-defined frequency gap
between the two branches, we only investigate cases with
R � 5. The following parameters are held constant: β = 0.05,
ωr = 2π × 400 kHz, δ = 0.0126, and B = 4.4588 T.

With N = 91 we first vary R from 5 to 10 with the 91
modes in the E × B branch initialized with a homogeneous
temperature Tn ≡ 1 mK (n ∈ b). The time histories of the en-
ergies in the two branches are shown in Fig. 8. We observe
that, with increasing R, the time to equipartition increases.
The black lines are exponential fits based on Eq. (20) that
determine the equilibration rate α. In Fig. 9, we display
the relation between the fitted α and R. We find that α

is exponentially suppressed with increasing R with a fitted
exponential function (gray dashed line) dependence of α =
exp(−0.765R + 9.608) s−1. This exponential scaling, show-
ing suppression of the coupling rate with increasing ratio of
frequencies, is similar to what is seen in Ref. [24]. More-
over, the relevant parameters in current NIST experiments are
ωz = 2π × 1.585 MHz, ωr = 2π × 180 kHz, B = 4.4588 T,
and m(Be+) = 9.01 u, resulting in R = 735. For N = 91
and assuming Tp = 0.5 mK, we have α ∼ 10−242 s−1 ∼ 0 s−1.
Such a small prediction for α suggests extremely weak cou-
pling under current operating conditions of the NIST Penning
trap. Any coupling will probably be due to other mechanisms
such as mode interactions with error fields in the trap poten-
tial, which is not accounted for in our current model.

We now fix R = 5 and N = 91 and study the dependence
of α on Tp. We perform similar simulations and exponential
fitting as in Fig. 8 to obtain the coupling rate for different
Tp. As shown in Fig. 10(a), as the planar temperature, Tp, is
varied from 0.05 to 0.5 mK we observe an approximate linear
increase in α. Ions with higher temperature tend to have larger
displacement, which increases the coupling rate.

Finally, we vary the number of ions from 37 to 127, while
fixing Tp ≡ 0.5 mK, to determine the dependence of α on N .
Figure 10(b) shows that α increases with the number of ions.
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FIG. 8. Time history of total energy in the two branches (Tb in upper green lines and Tc in lower purple lines) during 50-ms evolution for
values of R varying from 5 to 10. Black thin lines are the exponential fitting function to determine the cyclotron–E × B coupling rate α. The
initial temperature Tb(0) = 1 mK.

C. In-branch coupling for large R

Figure 9 suggests an extremely weak cyclotron–E × B
coupling for a high value of R, which is consistent with the
slow multiphonon coupling process qualitatively discussed in
Sec. IV. The large frequency gap and relatively small fre-
quency ranges of the two branches make it impossible for a
low-temperature (Tp < 10 mK) state to reach thermal equili-
bration on experimentally relevant timescales. In the absence
of the equilibration of the two branches on the timescale
of 50 ms � 1/α, we can study the effect of in-branch cou-
pling. In this section, we set R = 100 while keeping other
parameters (β, δ, ωr , and B) the same as in Sec. VI A. To
study the coupling within either branch, we only initialize one
single mode ne for each initial state with mode temperature
Tne ≡ N × 1 mK in order that the mean temperature in the
planar direction is still Tp = 0.5 mK.

FIG. 9. Measured coupling rate α (red dots), obtained from
Fig. 8, as a function of R. The gray dashed line is an exponential
fit to the measurement results. Other parameters are the same as in
Figs. 7 and 8.

We first study the coupling among modes in the E × B
branch. During each evolution process we measure the tem-
perature of the single initialized mode. In Fig. 11(a) we
present cases where individual modes with ne = 2, 4, 6, 8, 10
are initialized. Except for the case when the initialized mode
is the center-of-mass mode [ne = 8, red line in Fig. 11(a)], the
temperature of the initialized mode decreases within 1 ms of
evolution. The relative displacements of ions do not change
under center-of-mass motion, making this mode immune to
the Coulomb interaction. To investigate how the energy of the
initialized mode is eventually distributed, we plot the energy
distribution for the ne = 4 case at t = 50 ms in Fig. 11(b). We
observe that the energy is approximately uniformly shared by
the E × B modes, but, as expected, the cyclotron modes are
well isolated and no energy transfer happens between the two
branches. The results in Fig. 11 indicate a strong coupling
between modes within the E × B branch.

We now proceed to study the coupling between modes
in the cyclotron branch. In contrast to the E × B branch,
we find that the intrabranch coupling proceeds much more
slowly. Figure 12 shows some characteristic examples. In
Fig. 12, we plot the energy distribution at t = 50 ms for the
cases where individual modes with ne = 94, 178, or 138
were initialized with an initial temperature of 91 mK. Some
non-center-of-mass modes like the ne = 94 case shown in
Fig. 12(a) are effectively decoupled from the other modes.
On the other hand, Fig. 12(b) shows one of the sim-
plest coupling mechanisms involving only three modes. In
the ne = 178 case, the primary coupling involves two cy-
clotron modes (n = 178, ω178 = 2π × 4.191 MHz and n =
125, ω125 = 2π × 4.076 MHz) and one E × B mode (n = 47,
ω47 = 2π × 0.115 MHz) that satisfy a resonance condition,
i.e., ω125 + ω47 = ω178. Although an E × B mode is involved,
this three-wave mixing process preserves the total phonon
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FIG. 10. Measured coupling rate α as a function of (a) planar temperature (here the ion number N = 91 is held fixed) and (b) the number
of ions N (here Tp = 0.5 mK is held fixed). Other parameters (δ, β, ωr, B) are the same as in Sec. VI.A and Fig. 7.

number in the cyclotron branch and hence cannot lead to
thermal equilibration between the two branches [26]. We also
present a multimode coupling in Fig. 12(c), in which several
cyclotron and E × B modes are excited.

To demonstrate that the coupling in the cyclotron branch is
very slow, we measure and display in Fig. 13(a) the temper-
ature of the single mode that was initialized in Figs. 12(a),
12(b) and 12(c). For ne = 178 and 138 the mode temper-
ature slowly changes during a 50-ms evolution time. From
such plots, we can measure the temperature range �Tne =
max[Tne (t )] − min[Tne (t )] sampled by the initialized mode ne

during an evolution of duration t . In Figs. 13(b) and 13(c),
we choose two time cutoffs (t = 10 and 50 ms) and plot
the distribution of �Tne when each cyclotron mode is sepa-
rately initialized and allowed to evolve. For t = 10 ms, most
excited cyclotron modes are still isolated with their energy,
not transferred to other modes. As t increases, more excited
modes begin to exchange energy with other modes, but the
intrabranch coupling is much slower compared to that within
the E × B branch.

In the case of the E × B modes, a single initialized mode
is typically observed to lose energy in an exponential manner.
The other modes in the E × B branch serve as an effective
thermal reservoir leading to damping of the initialized mode

on a timescale of a few tenths of a millisecond. However, in
the case of the cyclotron branch, the time evolution of the
energy in the initialized mode does not resemble exponential
damping and instead shows signatures of revivals. In this
case, the initialized cyclotron mode only couples to a few
spectator modes on the timescale of the simulation, which
is not sufficient to resemble an effective thermal reservoir
of modes. The vast difference in the timescale of damping
in the two branches may be attributed to the fact that the
anharmonic terms in the Coulomb interaction scale with po-
sition fluctuations. For large values of R, position fluctuations
are almost exclusively associated with the E × B branch, and
hence the in-branch equilibration is much faster here than in
the cyclotron branch.

VII. SUMMARY

We have carried out an investigation of thermal equilibra-
tion in the planar direction for two-dimensional crystals in a
Penning trap. We found that the equilibration rate between the
two planar mode branches, namely, the cyclotron and E × B
branches, is exponentially suppressed as a function of the ratio
R of the center-of-mass cyclotron to E × B mode frequencies.
The parameter R provides a measure of the effective strength

FIG. 11. Coupling within the E × B branch for R = 100. (a) Normalized mode temperature Tne/91 of excited modes ne = 2, 4, 6, 8, 10
during independent evolutions. (b) Mode temperature distribution for the ne = 4 case at t = 50 ms. The 91 modes on the left and right sides
of the gray vertical dotted line belong to the E × B and cyclotron branches, respectively. Other parameters (δ, β, ωr, B) are the same as in Sec.
VI.A and Fig. 7.

023325-9



CHEN TANG et al. PHYSICAL REVIEW A 104, 023325 (2021)

FIG. 12. Coupling within the cyclotron branch (R = 100) for the cases where individual modes with (a) ne = 94, (b) ne = 178, or (c)
ne = 138 are excited. Mode temperature distributions are measured at t = 50 ms. The 91 modes on the left and right sides of the gray dotted
lines belong to the E × B and cyclotron branches, respectively. In panel (b), the three modes with the highest temperatures are n = 47, 125,
and 178. Other parameters (δ, β, ωr, B) are the same as in Sec. IV.A and Fig. 7.

of the magnetic field on the dynamics of the in-plane motion
[18]. We also found that the cyclotron–E × B equilibration
rate increases approximately linearly with the initial energy in
the planar direction as well as with the number of ions.

In the regime of large R (R = 100), where the coupling
between cyclotron and E × B modes is very weak, we also in-
vestigated the internal coupling rate within the E × B branch
and within the cyclotron branch. The E × B branch was ob-
served to rapidly equilibrate on a timescale of a few tenths
of a millisecond. The cyclotron branch equilibration time
was more than two orders of magnitude longer and showed
revivals instead of exponential damping.

Our paper was enabled by combining first-principles
molecular-dynamics simulations with an eigenmode analysis
of the planar motion, wherein the modes are strongly modified
by the magnetic field. We first solved for the planar eigen-
vectors and mode frequencies by linearizing the dynamics
about the crystal equilibrium. We then used these modes to
numerically extract the potential and kinetic energies of in-
dividual planar modes from molecular-dynamics simulations.
We validated this method by comparing with kinetic energies

measured with a velocity filter technique and total energies
calculated directly using the ion positions and velocities ob-
tained from the simulations. In the process, we also discussed
how a strong rotating wall, by reducing the amplitude of the
rocking mode, ensures the validity of the eigenmode analy-
sis and more generally improves the stability of the crystal
structure.

Understanding planar equilibration and coupling between
planar modes provides a starting point for understanding
Doppler and sub-Doppler cooling in the planar direction.
Doppler cooling of the E × B modes is not well understood
[17]. Current NIST Penning trap experiments [1,5,22] have
R ∼ 735, indicating that the E × B branch is not cooled
through a coupling to the cyclotron branch, which is effi-
ciently cooled by Doppler laser cooling. The high-frequency
ratio R also results in unequal energy distributions [17], in
which energies in E × B and cyclotron branches are predomi-
nantly potential and kinetic, respectively. An efficient cooling
of the E × B branch requires a cooling technique that can
remove potential-energy fluctuations associated with the ion
positions. Axialization, which provides such a technique and

FIG. 13. Coupling within the cyclotron branch for R = 100. (a) Excited modes’ temperatures for ne = 94 (upper red), 178 (central blue),
and 138 (lower green) during the 50-ms evolution process. (b) Distribution of temperature range �Tne = max[Tne (t )] − min[Tne (t )] of N = 91
initialized modes after evolution for t = 10 ms. (c) �Tne distribution after t = 50 ms. Other parameters are the same as in Fig. 7.
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has been carefully studied for single and small numbers of
trapped ions [28,29], may also work with many-ion crystals
and will be the subject of future theoretical investigations.
Finally, the very weak thermalization of the cyclotron modes
motivates finding ways of employing these modes in quantum
information processing.
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APPENDIX A: LINEARIZATION AND
EIGENMODE ANALYSIS

Here we present the eigenmode analysis [17,23] of a two-
dimensional crystal in a Penning trap. Because fluctuations
are small for an ultracold ion crystal, one can linearize the ion
motion about equilibrium positions x0i = (x0i, y0i, z0i ) with
small displacements δxi = (δxi, δyi, δzi ). When the planar
confinement is weak compared to that in the axial direction,
the ion crystal is two dimensional [3]. The potential energy 	

is expanded at x0 using Taylor series to first order:

	 = 	(x0) + 1

2

∑
i j

δxi
∂2	

∂xi∂x j
δx j . (A1)

The out-of-plane (or axial) motion δz in such a two-
dimensional crystal is linearly decoupled from the planar
motion (δx, δy). The axial motion is described as a collection
of N simple harmonic normal modes [17]. The normal modes
in the planar direction, however, are not simple harmonic due
to the velocity-dependent form of the Lorentz force. In this
paper, we solve for the normal modes in the planar direc-
tion. We begin by writing down the linearized equations for
x⊥ = (δx1, . . . , δxN , δy1, . . . , δyN ) and v⊥=dx⊥/dt as

dv⊥
dt

= −K⊥
m

x⊥ + Lv⊥. (A2)

Here,

K⊥ = ∂2	

∂x2
|x=x0 (A3)

is a real symmetric matrix [3] and L is the antisymmetric
Lorentz force matrix (2N × 2N) given by

L = (
 − 2ωr )

[
0N −IN

IN 0N

]
. (A4)

We introduce the composite phase vector u⊥ = (x⊥, v⊥)T and
rewrite Eq. (A2) as

du⊥
dt

= D⊥u⊥, (A5)

where D⊥ is a composite matrix (4N × 4N):

D⊥ =
[

02N I2N

−K⊥
m L

]
. (A6)

We also combine the linearized potential energy and kinetic
energy to obtain the total thermal fluctuation energy in the
planar direction:

E = 1

2
uT

⊥Eu⊥ = 1

2
rT
⊥K⊥r⊥ + m

2
vT

⊥v⊥, (A7)

where

E = diag{K⊥, mI2N } (A8)

is the energy matrix in the planar direction.
Next, we solve Eq. (A5) as an eigenvalue problem. We ap-

ply ansatz u⊥ = uωe−iωt to transform Eq. (A5) into −iωuω =
D⊥uω. We then obtain 4N eigenvalues ωn by solving the
determinant equation det‖D⊥ + iωnI4N‖ = 0. The elements
of D⊥ and ωn are all real [23], which results in pairs of
complex conjugate eigenvectors, un and u∗

n , associated with
eigenvalues ωn and −ωn, respectively. Therefore, there are
2N positive and distinct eigenvalues ωn that represent the
frequencies of 2N normal modes.

The eigenvectors are E orthogonal according to
Ref. [17,23], which allows us to normalize the eigenvectors
by means of

un → un√
u∗

nEun
. (A9)

The orthonormal eigenvectors satisfy u∗
mEun = δmn, where

δmn is the Kronecker delta.

APPENDIX B: INITIALIZATION OF IONS

To generate an initial state that is far from thermal equi-
librium, we initialize one or several eigenmodes to create
an inhomogeneous distribution of eigenmode energies. We
perform the initialization in the laboratory frame, where a
two-dimensional crystal in equilibrium is described by the
coordinates X0 = (X1, . . . , XN ,Y1, . . . ,YN ), Zi = 0, and ve-
locities V0 = ωr × X0 corresponding to the collective rotation
of all the ions. We also utilize the corresponding orthonor-
mal eigenvectors {un, n = 1, . . . , 2N} that are determined in
the rotating frame. As an example of the procedure, sup-
pose we initialize one mode. We multiply the associated
eigenvector with a random phase eiψn . We then take the real
part as

Un = Re[exp(iψr )un] (B1)

and decompose into the position and velocity parts as

U⊥ = (R⊥, V⊥)T . (B2)

Next, we give each ion an extra displacement λR⊥, where λ

is a normalization factor producing a desired energy kBTn for
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mode n as

kBTn = λ2(R∗
⊥K⊥R⊥ + mV∗

⊥V⊥). (B3)

The resulting positions and velocities are X′ = X0 + λR⊥ and
V′ = ωr × X′ + λV⊥. The initialization introduces a rotation
λωr × R and produces an initial thermal distribution in the
chosen mode. In addition, if we initialize multiple modes,
we multiply each selected eigenvector with a random phase

eiψn and take the real part of the sum of the phase-multiplied
eigenvectors:

U⊥ = Re

[∑
n∈{b}

eiψn un

]
. (B4)

We then decompose U⊥ in order to give ions extra displace-
ment and velocities similar to Eqs. (B2) and (B3) in the one
mode case.
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