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Abstract.
Neoclassical transport is studied using idealized simulations that follow guiding centers in given

fields, neglecting collective effects on the plasma evolution, but including collisions at rate ν.
For simplicity the magnetic field is assumed to be uniform; transport is due to asymmetries in
applied electrostatic fields. Also, the Fokker-Planck equation describing the particle distribution is
solved, and the predicted transport is found to agree with the simulations. Banana, plateau, and fluid
regimes are identified and observed in the simulations. When separate trapped particle populations
are created by application of an axisymmetric squeeze potential, enhanced transport regimes are
observed, scaling as

√
ν when ν < ω0 < ωb and as 1/ν when ω0 < ν < ωb where ω0 and ωb are the

rotation and axial bounce frequencies, respectively. These regimes are similar to those predicted for
neoclassical transport in stellarators.
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Irreversible processes driven by the interaction of a plasma with static electric and/or
magnetic fields are of central importance in plasma theory and experiment. For exam-
ple, in the theory of neoclassical transport, a magnetically confined plasma interacts with
static electric and/or magnetic field asymmetries, causing irreversible flows of particles,
momentum, and energy across the magnetic field [1, 2, 3, 4]. While neoclassical the-
ory is well developed, experiments have never fully tested the theory. In neutral plasma
experiments, early work on quiescent discharges was broadly consistent with neoclassi-
cal theory [5]; but in many experiments neoclassical transport is masked by anomalous
transport caused by nonlinear saturation of collective plasma instabilities. In non-neutral
plasma experiments, where such instabilities are absent, detailed measurements of trans-
port over the course of several decades have still failed to make close contact with neo-
classical theory [6, 7, 8, 9]. Interpretation of experimental results is often complicated
by the interplay of multiple effects, even in the simplest experimental design.

In order to clarify the reasons behind observed discrepancies between neoclassical
theory and experiments in nonneutral plasmas, the theory has recently been recast to
consider electrostatic field errors of the type typically encountered in nonneutral exper-
iments, and simplified for cylindrical geometry and uniform magnetic field [10]. In this
recent work, specific examples were analyzed theoretically and compared to simula-
tions that measure the transport. To further simplify the theory and simulations, plasma
shielding effects on the asymmetry potentials were neglected. A local approximation
to the kinetic equation, valid in the transport limit where the field error potential is
much smaller than the plasma temperature, allowed the determination of local transport
coefficients that link dissipative cross- field particle, momentum and energy fluxes to



plasma rotation, parallel velocity, and temperature and velocity gradients. In particular,
temperature-gradient-driven particle flux can be important if the gradient is sufficiently
large. In non-neutral plasma experiments such large temperature gradients often develop
naturally during the transport process itself, as the plasma expands radially and converts
some of its electrostatic potential energy into heat.

In each example considered, the transport simulations agreed with the theory. How-
ever, such detailed comparisons require rather precise knowledge of the plasma po-
tential, both of the zeroth-order equilibrium and the asymmetry. For instance it was
observed that if, in the zeroth order equilibrium, there exists separate trapped particle
populations caused by an azimuthally symmetric squeeze potential, and if the rotation
frequency is small compared to the bounce frequency, the transport is strongly modified
from the banana and plateau regime predictions. New 1/ν and

√
ν regimes were found

similar to those predicted in neoclassical transport theory for toroidal plasmas [11, 8].
Even a small population of such trapped particles completely changes the magnitude and
scaling of the transport from theory predictions in the absence of trapping. Furthermore,
theory presently under development suggests that small θ-asymmetries in the squeeze
potential can further increase the transport due to chaotic separatrix crossing.

This paper briefly describes the theory and simulations presented in Ref. [10]. The
transport theory assumes that a guiding center description of the particle motion is
sufficient. In the absence of collisions, the guiding center position is described by
cylindrical coordinates (r,θ,z), and only the momentum parallel to the magnetic field
pz is followed; the kinetic energy perpendicular to the field is an adiabatic invariant and
is not required. Equations of motion for the guiding center are of Hamiltonian form:

dθ

dt
=

∂H
∂pθ

,
d pθ

dt
=−∂H

∂θ
,

dz
dt

=
∂H
∂pz

,
d pz

dt
=−∂H

∂z
(1)

where we follow
pθ = eBr2/2c (2)

rather than r because pθ is canonically conjugate to θ, and where the Hamiltonian H is
given by

H(θ, pθ,z, pz) =
p2

z

2m
+φ(θ, pθ,z), (3)

where φ is the electrostatic potential energy. We assume that this potential is time
independent and of the form

φ(pz,θ,z) = φ0(pθ,z)+δφ(pθ,θ,z) (4)

where φ0 is the equilibrium potential of the plasma, including cylindrically-symmetric
external confinement fields, and δφ is an applied asymmetry potential that is responsible
for the transport. The theory assumes that δφ� T , where T is the plasma temperature,
in order that the plasma expansion is a slow transport process.

The single particle orbits described by Eq. (1) are by themselves insufficient to
describe neoclassical transport processes; the potentials in typical experiments are such



that these orbits remain confined. Collisions are needed to describe plasma loss, and are
added to the theory by way of the Fokker-Planck equation for the particle distribution
function f (θ, pθ,z, pz, t):

∂ f
∂t

+ θ̇
∂ f
∂θ

+ ṗθ

∂ f
∂pθ

+ ż
∂ f
∂z

+ ṗz
∂ f
∂pz

= Ĉ f (5)

where here we assume a collision operator of the form

Ĉ f = D
∂

∂pz

(
∂ f
∂pz

+
pz−mVb

mTb
f
)

(6)

and where D is the diffusion coefficient for parallel momentum, Vb is the parallel velocity
of a background species with which the plasma is colliding (usually taken to be zero),
and Tb is the temperature of the background. Other forms of the collision operator could
be used (see Ref. [10] for some examples), but Eq. (6) is particularly easy to simulate.

Equation (5) can be solved in the limit δφ� T to obtain expressions for the fluxes of
particles, energy, and momentum across the magnetic field due to the asymmetry. The
fluxes are linearly related to Vb, to gradients (if any) in Vb and Tb, and to the fluid plasma
rotation frequency ωr, defined as

ωr =− ∂φ̄

∂pθ

− Tb

n̄
∂n̄

∂pθ

, (7)

where φ̄ is the θ and z-averaged potential (weighted by the plasma density) and n̄ is the
θ and z-averaged density. The first term is the average E×B drift and the second term is
related to the plasma diamagnetic drift; here we note that when δφ� T , Tb is nearly the
same as T because plasma heating due to the asymmetry is weak, so we could replace
Tb by T in Eq. (7) [this was done in Ref. [10] in the sections of the paper that employed
the collision operator given by Eq. (6) ]. In particular, radial particle flux Γr is linearly
related to rotation via a transport coefficient µ11:

Γr =
c

eBr
µ11ωr =−

( c
eBr

)2
µ11

(
∂φ̄

∂r
+

Tb

n̄
∂n̄
∂r

)
(8)

where we have used Eqs. (3) and (7) to connect the flux to the mobility (the first term)
and diffusive (the second term) fluxes. Many (15) other transport coefficients occur in
the theory but will not be discussed here.

Solutions for µ11 were compared to particle simulations in various cases. The simu-
lations directly measured the diffusion and mobility fluxes to provide independent mea-
sures of µ11. In these simulations the Hamiltonian equations of motion given by Eq. (1)
are numerically integrated forward in time, but the parallel force law is modified in order
to include a nonconservative collisional drag term,

d pz/dt =−∂H/∂z−ν pz (9)

where ν is the collision frequency, related to the momentum diffusion coefficient D
in Eq. (6) by D = mTbν. The equations of motion are integrated numerically using a



4th order Runge-Kutta method with constant time stepsize ∆t. After every time step, a
random momentum is added to pz taken from the range [−p0, p0] in order to simulate
the effect of random forcing due to the collisions. The theory of Brownian motion then
implies a relation between the background temperature and the simulation parameters,
assuming that ν∆t� 1:

Tb =
p2

0
6mν∆t

. (10)

The simulations follow N � 1 particles starting at the same radius with random z, pz
and θ taken from a Boltzmann distribution exp(−H/Tb). The following two quantities
are evaluated in order to measure mobility and diffusion:

〈δr〉=
N

∑
i=1

[ri(t)− ri(0)] (11)

and

〈δr2〉=
N

∑
i=1

[ri(t)− ri(0)]2. (12)

The radial mobility coefficient µr = (c/eBr)2µ11 is related to the rate of change of the
mean radial position change through

n̄
d
dt
〈δr〉= µrĒr (13)

and the radial diffusion coefficient Dr = (c/eBr)2(Tb/n̄)µ11 is related to the mean square
change of radial position:

d
dt

[
〈δr2〉−〈δr〉2

]
= 2Dr. (14)

An example of such an evaluation of µ11 is shown in Fig. 1. The Hamiltonian used
here is

H =−ω0 pθ +
p2

z

2m
+ εcos(`θ+ kz) (15)

where ω0 is the E×B rotation frequency and the field asymmetry is taken to be a single
wave with amplitude ε. In this example, ω0 = kv̄ so the mobility flux is relatively easy
to measure; in other cases with smaller values of ω0 it is easier to measure diffusion in
the simulations. Measuring the mobility and diffusive fluxes for different values of the
collision frequency allow one to map out the standard banana, plateau and fluid regimes,
as shown in Fig. 2 . Also shown in the figure are the theory predictions for the transport
in these regimes. One can see that the simulations follow the theory closely.

The scaling of the transport with experimental parameters in each regime can be
understood from fairly simple arguments. For large collision frequencies, ν > kv̄, where
v̄ ≡

√
T/m, an analysis based on fluid equations provides the transport coefficients

[10]. In this fluid regime, radial particle transport is primarily caused by dissipation
associated with compression and expansion of the plasma as it rotates through the field
error. Temperature and velocity gradients can also lead to irreversible fluxes of particles,
energy and momentum as the field error transports particles across the magnetic field.
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FIGURE 1. Mean and mean square change in radius for a simulation of N = 3000 particles following
Hamiltonian (15) with ω0/kv̄ = 1, ε/Tb = 0.1, ` = 1, and ν/kv̄ = 0.002. Distances are in units of k.

FIGURE 2. Transport coefficient µ11 versus collision frequency for Hamiltonian (15), obtained by
mobility measurements (squares) and diffusion measurements (dots). Lines are theory in different limits.
Solid line is a full nonlinear solution of Eq. (5) for µ11; thick dashed line linearizes the solution for f in
δφ; thin dashed line is the banana limit; dotted line is the plateau limit; and dot-dashed line (barely visible)
is the fluid limit.

For small collision frequencies, ν < (ε/T )3/2kv̄, transport coefficients are linear func-
tions of ν [12, 13]. The scaling of the radial diffusion coefficient Dr in this “banana
regime” may be understood from the following argument. Particles become trapped in
the field asymmetry when they have an axial velocity vz that satisfies

m
2

(vz− `ω0/k)2 < ε. (16)

The trapped particles execute axial oscillations in the field error at roughly the trapping
frequency ωT =

√
k2ε/m. In these axial trapping oscillations, the particles also drift

radially, with a radial “banana orbit” width ∆r ∼ `
√

2ε/m/krΩc where Ωc = eB/mc.
This estimate follows from the product of the radial drift velocity `cε/eBr and the period
ω
−1
T of the oscillation. Transport occurs as particles become collisionally detrapped and

then retrapped.
The size of the step in this process is ∆r. The time between steps is the time ∆t required

to be detrapped from the banana orbit, ∆t ∼ ε/(νT ) (the time needed to diffuse in energy
by order ε). The radial particle diffusion coefficient Dr is therefore roughly

Dr ∼ f
∆r2

∆t
(17)

where f is the fraction of particles that take part in the banana orbits, of order f ∼
e−`2ω2

0/2k2v̄2√
ε/T for a Maxwellian distribution. Putting these estimates together yields

Dr ∼ ν

√
ε

T
`2v̄2

k2r2Ω2
c

e−`2ω2
0/2k2v̄2

(18)



in the banana regime. A more rigorous derivation [10] yields Eq. (18) with a numerical
coefficient of 1.1. This is plotted in Fig. 2 as a thin dashed line. This banana regime
estimate is sensible only when the particles are able to execute a full trapping oscillation
before they are collisionally detrapped: this requires ωT ∆t >∼ 1, which implies

(ε/T )3/2kv̄ > ν (19)

for the banana regime.
For kv̄(ε/T )3/2 < ν < kv̄, the transport is in the plateau regime. Trapped particles

no longer complete an entire banana orbit, so the size of the radial step is reduced to
∆r ωT ∆t. The diffusion coefficient is now given by

Dr ∼ fν

(∆rωT ∆t)2

∆t
(20)

where fν is the fraction of particles in resonance with the error,

fν ∼ e−`2ω2
0/2k2v̄2

/(kv̄∆t). (21)

This estimate yields the plateau regime diffusion coefficient

Dr ∼
(

ε

T

)2 `2v̄3

kr2Ω2
c

e−`2ω2
0/2k2v̄2

. (22)

A rigorous derivation of plateau regime transport for Hamiltonian (15) yields Eq. (22)
with coefficient

√
π/8. This is plotted in Fig. 2 as a dotted line, and in Fig. 4 as a dashed

line.
In this example, the particle motion is unconstrained in the z direction. More typical of

many nonneutral plasma experiments are finite length plasmas confined in z by applied
potentials. In the next example the transport in such a plasma is simulated using the
following Hamiltonian:

H =
p2

z

2m
−ω0 pθ +Tb

( z
L

)8
+ εcosθsinkz (23)

where L is the plasma length, taken to be kL = 4.217.
The particle transport is measured in the same way as before, and shows similar

behavior compared to the previous example, with banana, plateau, and fluid regimes
apparent, and theory and simulations are again in agreement (see Fig. 3). It is important
to note however that the transport in the banana and plateau regimes is a fairly sensitive
function of the plasma parameters. For instance, a plot of the plateau regime value for
µ11 is displayed in Fig. 4, evaluated for both the infinite length example of Eq. (15) and
the finite length example of Eq. (23). Although the field asymmetries are very similar
in the two examples, the transport displays considerably more structure in the second
case due to the complex interplay between different bounce harmonics. In interpreting
experiments, this shows that the plasma parameters such as rotation frequency and axial
potential must be very well characterized in order for theory to be able to make useful
predictions of the transport.
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FIGURE 3. Transport coefficient µ11 versus collision frequency for finite length Hamiltonian (23),
using simulations of diffusion for ε/Tb = 0.02 (dots) and ε/Tb = 0.002 (crosses). Thick dashed line is
the theory solution of Eq. (5) for µ11 when f is linearized in δφ; the dotted line is the plateau regime limit.

FIGURE 4. Plateau regime limits versus rotation frequency for the infinite length case of Hamiltonian
(15) (dashed) and the finite length case of Hamiltonian (23) (solid).

Sensitive dependence of the transport on the applied potentials is also exemplified in
the next case considered, in which the addition of an axisymmetric squeeze potential
that creates trapped particle populations that are separated by a separatrix is found to
completely change the magnitude and scaling of the transport, even when the fraction of
trapped particles is small. The Hamiltonian in this case is taken to be

H =
p2

z

2m
−ω0 pθ +Tb

( z
L

)8
+Vsqe−50(kz)4

+ ε cosθsinkz (24)

where Vsq is the magnitude of the applied squeeze potential. When the plasma rotation
frequency ω0 is small compared to kv̄, two new transport regimes occur, scaling with
collision frequency as 1/ν and

√
ν .

The 1/ν regime occurs when ω0 < ν < kv̄, and the transport can be understood from
the following scaling argument: Since the field error potential happens to be an odd
function of z, low-energy particles trapped in the z < 0 well created by the squeeze
potential experience the opposite field error potential from those trapped in the z > 0
well. As a result, the E×B drift orbits of particles in these two wells are displaced
relative to one another, and relative to untrapped particles. The magnitude ∆r of the
radial displacement is of order

∆r ∼ ε

mΩcω0r
. (25)

As particles wander in energy due to collisions they become detrapped and then
retrapped on a timescale of order ν−1, assuming that Vs is of order Tb. Since particles
only complete a fraction of a drift orbit in this time, the magnitude of the radial drift step
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FIGURE 5. Transport coefficient µ11 versus collision frequency for a plasma with added squeeze given
by Hamiltonian (24), with Vsq/T = 0.5, at four rotation frequencies. Symbols display simulation results.
The dashed line is the 1/ν regime result of Eq. (27); the dotted lines are the

√
ν regime results. Solid lines

are solutions of Eq. (5) for µ11, linearizing f in δφ.

that they make is of order ∆r ω0/ν. The radial diffusion coefficient is then

Dr ∼ ν

(
∆rω0

ν

)2

∼ 1
ν

(
ε

mΩcr

)2

. (26)

In the 1/ν regime, the particle diffusion increases as ν decreases,[14, 15] up to the point
where ν < ω0.

A more rigorous derivation of the transport in the 1/ν regime yields, for Hamiltonian
(24) with squeeze potential Vsq = 0.5Tb,

µ11 = 0.0444
n̄ε2

νTb
. (27)

This result is displayed in Fig. 5 and matches the simulations when ω0 is sufficiently
small.

However, when ν falls below ω0, transport begins to decrease with decreasing ν, as
the transport enters the

√
ν regime. The transport in this regime can be understood in

the following way. Particles trapped by the squeeze potential feel a different bounce-
averaged field error than particles that are untrapped. The untrapped particles, bouncing
rapidly from one end of the plasma to the other, average out the asymmetry potential so
that, on average, they feel no net effect from the asymmetry. However, trapped particles
on either side of the squeeze feel opposite asymmetry potentials, δφ̄ ∼ ±ε cosθ. This
difference between trapped and untrapped particles creates, in the absence of collisions,
a discontinuity in the distribution function f at the separatrix. In the frame of the plasma,
the discontinuity oscillates in time as the plasma rotates through the asymmetry. If
collisions are now taken into account, the oscillating discontinuity is smoothed out by
diffusion of particles in energy, over a boundary layer around the separatix of width



√
T Vsqν/ω0. This sort of boundary layer is common in driven diffusion problems,

where an oscillating source at frequency ω0 creates an oscillating particle distribution
that spreads from the source a distance of order

√
D/ω0, where D is the diffusion

coefficient.
This oscillating distribution creates radial particle transport in the following way.

Every rotation period, particles in the boundary layer diffuse back and forth across the
separatrix, going from trapped to untrapped orbits. When the particles are trapped, they
take a radial step of approximate magnitude given by Eq. (25). However, the sign of this
step is random because particles are equally likely to be trapped on either side of the
squeeze potential. The diffusion coefficient is the rate at which these random steps are
taken, given in this case by the rotation frequency, multiplied by the square of the step,
and finally multiplied by the fraction of particle participating, ie. the fraction of particles
in the boundary layer:

Dr ∼ ω0∆r2×
√

ν/ω0 e−Vsq/T ∼
√

νω0 e−Vsq/T
(

ε

mΩcω0r

)2

. (28)

The scaling of this estimate for the radial diffusion coefficient agrees with a rigorous
transport calculation shown in Fig. 5 as the dashed lines for two different values of the
rotation frequency. Note that this transport remains finite even when Vsq� T , provided
that the energy width of the boundary layer is small compared to Vsq, i.e. ν/ω0 < Vsq/T .
Thus, even small squeeze potentials can have a significant impact on the transport.

Finally, we note that the transport can be further enhanced if the squeeze potential is
itself asymmetric in θ. In this case as particles near the separatix energy rotate in θ, they
can become trapped and untrapped along collisionless orbits. This collisionless transport
mechanism will be explored further in future work.
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