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Plasma loss due to apparatus asymmetries is a ubiquitous phenomenon in magnetic plasma confine-

ment. When the plasma equilibrium has locally trapped particle populations partitioned by a separatrix

from one another and from passing particles, the asymmetry transport is enhanced. The trapped and

passing particle populations react differently to the asymmetries, leading to the standard 1=� and
ffiffiffi
�

p
transport regimes of superbanana orbit theory as particles collisionally scatter from one orbit type to

another. However, when the separatrix is itself asymmetric, particles can collisionlessly transit from

trapped to passing and back, leading to enhanced transport.
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Magnetically confined plasmas often have one or more
locally trapped particle populations, either by accident or
design, partitioned by separatrices from one another and
from passing particles. This paper examines the effect of
these trapped particles on neoclassical transport (transport
due to external field asymmetries). In the low collisionality
regimes associated with fusion plasmas, strong neoclassi-
cal transport is caused by particles that cross these separa-
trices in the presence of magnetic or electrostatic field
asymmetries [1–8].

Collisional scattering (at rate �) is often regarded as the
main mechanism driving the separatrix crossing [1–4],
leading to standard superbanana transport regimes scaling
as 1=� or

ffiffiffi
�

p
. However, in certain cases collisionless

particle orbits can cross the separatrices. We will show
that this results in enhanced transport that is independent
of � and can greatly exceed standard superbanana trans-
port [5].

The physics of the new mechanism and that of super-
banana transport are similar. Trapped and passing particles
typically experience different error fields because the fields
vary spatially and trapping isolates particles in certain
spatial regions. Drift orbits for particles trapped along B
in two separate regions are displaced from one another by a
distance �r, because the field errors acting in each region
differ, leading to transport as particles randomly transit
from trapped to passing and back.

For example, the
ffiffiffi
�

p
superbanana regime occurs for � <

!0 (where !0 is the frequency of the drift orbits), and is
due to a collisional boundary layer with energy width

�Wc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TV0�=!0

p
that forms around the separatrix en-

ergy V0 separating trapped and passing particles
[1,2,5,9,10]. Particles in this boundary layer diffuse be-
tween trapped and passing every orbital period, taking
steps of order �r, and leading to a

ffiffiffi
�

p
scaling for the radial

diffusion:

Dr �!0���r
2 / ð�=BÞ1=2; � & !0; (1)

where �� ��Wce
�V0=T=

ffiffiffiffiffiffiffiffiffi
V0T

p � ffiffiffiffiffiffiffiffiffiffiffiffi
�=!0

p
e�V0=T is the

fraction of particles in the boundary layer.
Now, however, consider the effect of an asymmetry on

the separatrix itself. Such an asymmetry allows particles to
cross the separatrix without needing collisions to do so. If
the separatrix energy varies along the drift surface from
V0 � �V to V0 þ �V, then particles with parallel energies
in this range transit between passing and trapped. Every
orbital period they are then randomly trapped on either side
of the separatrix, and since error fields differ on each side,
this leads to transport that scales as

Dr � ��V!0�r
2 / �0B�1; (2)

where ��V ��Ve�V0=T=
ffiffiffiffiffiffiffiffiffi
V0T

p
is the fraction of particles

in the energy range V0 ��V to V0 þ �V that can colli-
sionlessly transit from trapped to passing. This collision-
less diffusion is independent of collision frequency, and
hence dominates the transport when�V >�Wc, i.e., when
� < !0�V

2=V0T.
In what follows we sketch a more detailed analysis of

this collisionless transport mechanism and discuss the
effect of collisions. We then compare the theory to
simulations.
Consider a nominally cylindrical plasma column,

trapped axially by an electrostatic potential energy �0,
and trapped radially by a uniform axial magnetic field B.
Particles with charge q and massM bounce back and forth
along the magnetic field and rotate in the � direction due to
the E� B drift at frequency !0ðr; zÞ ¼ �ðc=qBrÞEr,
where Er ¼ �@�0=@r. A ‘‘squeeze’’ potential is applied
to a central electrode that creates two trapped particle
populations, labeled 1 and 2 (Fig. 1). The maximum height
of the squeeze potential Vs varies in azimuthal angle �,
because the central electrode is split into sectors that can be
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biased to different potentials. We assume Vsð�Þ ¼ V0 þ
�V cosm�. The squeeze is assumed to be very narrow in z
so that, by itself, it causes negligible radial transport. This
distinguishes this system from some previous work on
transport due to separatrix asymmetries [7,8].

Passing particles have axial kinetic energy K larger than
Vs and can access both sides of the trap. Trapped particles
are trapped on one side of Vs or the other. This double-well
potential is analogous to the magnetic wells that occur in
stellarators and bumpy tori.

Particles cross the separatrix when K satisfies

K ¼ Vsð�Þ ¼ V0 þ�V cosm�: (3)

According to Eq. (3) there are m values of �, �0n, n ¼
0; . . . ; m� 1, where the particles become trapped, and m
others, �1n, where they become passing particles:

� 0
ð1Þn

¼ ��K=mþ 2�n=m; n ¼ 0; . . . ; m� 1; (4)

where �K ¼ cos�1½ðK � V0Þ=�V�.
When particles become trapped, we assume that they are

trapped in region 1 or 2 with probability p1 and p2,
respectively, where p1 þ p2 ¼ 1. For the idealized trap
potential shown in Fig. 1, p1 ¼ L1=ðL1 þ L2Þ and p2 ¼
L2=ðL1 þ L2Þ.

Radial transport is dominated by a static asymmetry
potential ��ðr; �; zÞ that acts over the plasma column to
cause radial E� B drifts. We assume

��ðr; �; zÞ ¼ "ðr; zÞ cos‘ð�þ �Þ; (5)

where � is the phase angle between the asymmetry poten-
tial and the separatrix potential. We will see that the
collisionless transport depends on �.

The linearized bounce-averaged equations of motion are
d�=dt ¼ �!0, dr=dt ¼ ðc‘ �"i=qBrÞ sin‘ð�þ �Þ, where the
overbar denotes a bounce average: �"i is the bounce average
of " for i ¼ 1, 2 or p (i.e. trapped of type 1 or 2, or passing–
see Fig. 1). The value of the bounce average depends on
the type of orbit because " depends on z, and trapped
and passing particles average over different z positions.
We assume that the plasma ‘‘rigidity’’ � �v=ð �!0ðL1 þ
L2ÞÞ � 1, where �v � ffiffiffiffiffiffiffiffiffiffiffi

T=M
p

is the thermal speed, so that
bounce-averaged dynamics are a good approximation.
Otherwise, bounce-rotation resonances neglected here are
important [9].

The overall change in r in one rotation period can be
found by integration of dr=dt between separatrix crossings:

�r ¼ Xm�1

n¼0

�
�"n
�Er

ðcos‘ð�1n þ �Þ � cos‘ð�0n þ �ÞÞ

þ �"p
�Er

ðcos‘ð�0nþ1
þ �Þ � cos‘ð�1n þ �ÞÞ

�
; (6)

where �"n is a random variable that for each n takes the
values �"1 and �"2 with probability p1 and p2, respectively.
Then taking the average of Eq. (6) over �"n and noting �"p ¼
p1 �"1 þ p2 �"2, we get h�ri ¼ 0. The radial diffusion coef-
ficient Dr can be obtained from h�r2i by integrating over
the distribution of parallel kinetic energy, F0ðKÞ, which is
normalized so that

R
dKF0 ¼ 1:

Dr ¼ �!0

2�

Z �V

��V
dK

h�r2i
2

F0ðKÞ: (7)

By a change of variables from energy K to �K, the integral
can be performed analytically, assuming that�V � V0, so
that we may replace F0ðKÞ by F0ðV0Þ. The result is

Dr ¼ �!0�V

2�
F0ðV0Þ ð �"1 � �"2Þ2

�E2
r

p1p2D̂‘mð�Þ; (8)

where

D̂ ‘m ¼ m
4‘2 �m2sin2 �‘

m

4‘2 �m2

�
1 2‘

m =2 integers

2sin2‘� 2‘
m 2 integers:

(9)

The diffusion coefficient Dr is independent of collision
frequency and scales as Eq. (2).
For ‘ ¼ m ¼ 1, the case considered in Ref. [6], the

coefficient D̂11 is ð8=3Þsin2�, and hence vanishes for � ¼
0 or�, the only cases considered in Ref. [6]. The reason for
this can be understood from Eq. (6). For � ¼ 0 or �,
and ‘ ¼ m ¼ 1, �r ¼ 0 because �1 ¼ ��0 ¼ �K [see
Eq. (4)], so there is no net drift step. A sketch of these
orbits is shown in Fig. 2(a) (note the similarity to Fig. 2 of
Ref. [6]). For ‘ ¼ 1 the trapped portions of the orbit are
shifted circles. Trapped particles move radially, but up-
down symmetry implies particles transit from trapped to
passing and back at the same radius, so the drift orbit is
closed and there is no net radial step. However, when � �
0, symmetry is broken and particle orbits are trapped
and detrapped at different radii, leading to radial steps
[Fig. 2(b)]. Of course, for � ¼ 0 or � the diffusion does
not completely vanish; collisional effects not kept in the
above analysis yield finite diffusion consistent with
Ref. [6].
Equations (8) and (9) can be regarded as the collisionless

limit of a more general theory expression for the transport
that includes collisions. The perturbed particle distribution
is written as �f ¼ F0ðKÞð���þ!rgÞ=T, where !r is
the fluid (E� Bþ diamagnetic) rotation frequency, and
the nonadiabatic part g solves the bounce-averaged
Fokker-Planck equation

FIG. 1 (color online). Idealized double-well confinement ge-
ometry used in the theory and simulations.
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�! 0@g=@�� Ĉg ¼ @��=@�: (10)

Here Ĉg ¼ 2V0T�@
2g=@K2 is the collision operator, keep-

ing only the highest energy derivative and expanding near
K ¼ V0 [1,2,9]. The solution of this driven diffusion equa-
tion in the trapped and passing regions yields a radial

diffusion coefficient given by Eq. (8), except that D̂‘mð�Þ
is replaced by D̂‘mð�Wc=�V;�Þ. For 2‘=m 2 integers,

D̂‘m may be written as

�VD̂‘m ¼ �WcD̂c þ �VD̂�Vsin
2‘�; (11)

where D̂cð�Wc=�V; ‘;mÞ and D̂�Vð�Wc=�V; ‘;mÞ rep-
resent the �-independent and �-dependent contributions to
the transport.

These functions are plotted in Fig. 3 versus�Wc=�V. In
the collisionless limit�Wc � �V, they can be found from

Eq. (9): for ‘ ¼ 1 andm ¼ 2, D̂c ¼ 0 and D̂�V ¼ 4, while

for ‘ ¼ 1 and m ¼ 1, D̂c ¼ 0 and D̂�V ¼ 8=3.

Furthermore, we find that D̂c ! 0 as ð�Wc=�VÞp, with

p ’ 1 for ‘ ¼ m ¼ 1, consistent with the results of
Ref. [6], and p ’ 5=6 for ‘ ¼ 1 and m ¼ 2. In the colli-

sional limit �Wc � �V, D̂c ! �
ffiffiffi
‘

p
, and for ‘ ¼ 1 and

m ¼ 2, we get D̂�V ! �, while for ‘ ¼ 1 and m ¼ 1,

D̂�V ! ��V=ð4�WcÞ. In this collisional limit, the first
term in Eq. (11) dominates, so that transport is proportional
to the collisional width �Wc, in agreement with Eq. (1).
Simulations of the transport were performed to test the

theory, using the method described in Ref. [9]. Equations
of motion forN � 5000 particles were integrated in time in
prescribed potentials, including Langevin collisions mod-
eled by a drag force on vz and a fluctuation in vz every time
step. The confining potential was taken to be the idealized
square well shown in Fig. 1, with L1 ¼ L2 � L, and the
asymmetry potential was taken to be ��ðz; �Þ ¼
"sgnðzÞ cos‘ð�þ �Þ, so � �"1 ¼ �"2 ¼ " and p1 ¼ p2 ¼
1=2. Radial diffusion was measured by following the
mean square radius,

P
iðriðtÞ � rið0ÞÞ2 ¼ 2NDrt.

The diffusion coefficient Dr is plotted in Fig. 4 versus
phase angle � for simulation parameters ‘ ¼ m ¼ 1,
�v=!0L ¼ 20, "=T ¼ 10�3, V0=T ¼ 0:5, �V=T ¼ 0:1,
and �L= �v ¼ 10�5. The expected sin2� dependence is
observed, and the measured diffusion is well described
by the collisionless theory of Eq. (8) (solid line). In
Fig. 5 diffusion is plotted versus � for � ¼ 1 and two
values of "; other parameters are the same. Measured
diffusion matches Eq. (11), showing the expected

ffiffiffi
�

p
dependence at large �. At small �, Dr is independent of
�, provided � is not too small and " is not too large;
otherwise, effects not included in the theory become
important.
In the limit as � ! 0, Dr approaches 0 because the

particle distribution relaxes to a BGK equilibrium. In the

0.1

1

10

0.01 0.1 1 10

D
c

^

D
V

^

l = 1

m=1

m=2

W
c
 / V

D
c

^

D
V

^
m=1

m=2

FIG. 3 (color online). Scaled diffusion coefficients versus the
ratio of the collisional and collisionless widths, for m ¼ 1 (solid
line) and m ¼ 2 (dashed line), both with ‘ ¼ 1.

trapped

θK

−θK

2

passing

B

trapped2

passing

B

a) b)
θK

−θK

FIG. 2 (color online). Sketch of drift orbits for one drift period
beginning at � ¼ �K, for ‘ ¼ m ¼ 1. (a) � ¼ 0, and (b) � � 0.
Trapped orbit centers (displaced circles) are shown by small
dots. At � ¼ ��K the passing orbit becomes trapped in either
region 1 or 2.
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FIG. 4 (color online). Radial diffusion versus phase angle � in
simulations (dots) and from collisionless theory, Eqs. (8) and (9),
for ‘ ¼ m ¼ 1.
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collisionless limit, particle motion conserves energy and
this limits the total possible change in parallel kinetic
energy. Kinetic energies cannot change by more than
roughly �V since particles would otherwise enter inte-
grable regions of phase space that are either always trapped
or always passing. This requires crossing KAM surfaces,
which is not allowed in a four-dimensional (guiding center)
phase space [11]. Thus, without collisions, phase mixing of
the particle distribution eventually yields a stationary
(BGK) state. Although Eq. (9) is independent of �, colli-
sions are implicitly required in order to refresh the distri-
bution and keep it close to Maxwellian form.

To estimate Dr in the low collisionality regime, we first
estimate the time �r required for collisionless relaxation, as
the time needed for a particle to collisionlessly diffuse in
kinetic energy by order �V due to trapping and untrapping
that occurs every rotation period: �r � �V2= �!0"

2. This
time is analogous to the wave-trapping time in standard
banana-orbit theory; here, however, the orbits are chaotic.
Adding collisions drives the particle distribution, flattened
over an energy range �V around V0, back toward a
Maxwellian form. The collisional relaxation time �c re-
quired for this process is �c � �V2=�V0T.

When �c < �r, i.e., when � > �!0"
2=ðV0TÞ, collisions

prevent collisionless relaxation to a BGK state, and this is
the regime where the previous theory is valid. When
�c > �r, one can estimate Dr in the manner of banana-
orbit theory. Particles now take large radial chaotic

‘‘banana-orbit’’ steps �r��V= �Er associated with kinetic
energy change �V, due to multiple separatrix crossings.
After a time �c these particles are collisionally replaced,
leading to radial diffusion Dr � ð�r2=�cÞF0ðV0Þ�V,
where F0�V is the fraction of particles participating.
Substituting for �r and �c yields

Dr � 10�

�
�V
�Er

�
2

ffiffiffiffiffiffiffiffiffi
V0T

p
�V

e�V0=T; � <
�!0"

2

V0T
; (12)

where the prefactor of 10 is chosen to provide a reasonable
fit to the simulation data (Fig. 5).
We have seen that enhanced transport due to collision-

less scattering across a separatrix supercedes standard
ffiffiffi
�

p
superbanana transport, and is independent of � when "2 &
�V0T= �!0 & �V2 (assuming �v= �!0L � 1). For � smaller
than this range, a novel ‘‘chaotic banana’’ regime sets in
with transport roughly proportional to �. This transport
mechanism could be an important loss process in many
systems with asymmetric separatrices such as stellarators.
The mechanism also causes various other effects, such as
growth or damping of plasma modes. These effects will be
considered in several following papers [12]. The transport
depends on the relative phase of the field errors, which can
be a strong experimental signature of the effect if this phase
is controllable.
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FIG. 5 (color online). Radial diffusion versus collision fre-
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10�4 T. Simulations are dots, while the quasilinear theory is a
solid line, and the nonlinear ‘‘banana’’ estimate is shown with a
dashed line.
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