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Cyclotron waves in a non-neutral plasma column
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A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency
Xcs of a given plasma species s is developed for a multispecies non-neutral plasma column with
general radial density and electric field profiles. Terms in the perturbed distribution function up to
Oð1=X2

cs
Þ are kept, as are the effects of finite cyclotron radius rc up to Oðr2

c Þ. At this order, the
equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not
uniform. For rc ! 0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves
propagating azimuthally. For finite rc, the wave equation predicts that the surface wave couples to
radially and azimuthally propagating Bernstein waves, at locations where the wave frequency
equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein
waves that do not couple to the surface wave, and therefore have no effect on the external
potential. The wave equation is solved both numerically and analytically in the WKB
approximation, and analytic dispersion relations for the waves are obtained. The theory predicts
that both types of Bernstein wave are damped at resonances, which are locations where the
Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating
frame. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802101]

I. INTRODUCTION

This paper considers linear plasma waves near the cy-
clotron frequencies of a multispecies ion plasma column
with near-Maxwellian velocity distributions. We focus on
the z-independent component of the plasma response in the
electrostatic (non-relativistic) limit, in order to simplify the
analysis and make connections to experimental systems that
measure this component. A broad range of devices use the
electrical signal induced by this plasma response in order to
diagnose the charge to mass ratio and/or the relative concen-
tration of plasma species1 (via the technique of “ion-
cyclotron mass spectrometry”). While most of these devices
work in the low-density regime where plasma effects are
small, cyclotron frequency shifts universally arise from elec-
tric fields that can originate either from the plasma or poten-
tials applied to electrodes, as will be discussed here.

Previous papers2,3 have described theory of the electro-
static plasma response near the cyclotron frequency, in the
low temperature “cold-fluid” limit, where thermal effects are
not included. It was found that the cold fluid plasma response
is peaked at frequencies associated with surface cyclotron
waves–electrostatic plasma waves that propagate azimu-
thally along the surface of the plasma column as
expði‘h# ixtÞ, with azimuthal mode number ‘ and fre-
quency x near the cyclotron frequency Xcs ¼ qsB=msc for a
given species s. The difference between x and Xcs arises
from a Doppler shift and a Coriolis force effect due to
plasma rotation, and from plasma effects proportional to the
density ns of species s. The frequency x can then be used to
diagnose the plasma rotation frequency, the density of the
species, as well as the cyclotron frequency (which deter-
mines the charge to mass ratio of the species, the main inter-
est in mass spectrometry).

In other work,4–6 effects of finite temperature were also
considered. It was observed that electrostatic Bernstein
waves can be excited in addition to the cold fluid surface
waves. These waves propagate both radially and azimuthally
within the plasma, with frequencies that depend on the cy-
clotron frequency, as well as the plasma density and temper-
ature T, which enters through the cyclotron radius
rc ¼

ffiffiffiffiffiffiffiffiffiffiffi
T=ms

p
=Xcs . An approximate dispersion relation for

the Bernstein waves was derived in Refs. 5 and 6, based on
WKB analysis.

In this paper, we present a theory of the plasma response
near the cyclotron frequency, which describes both the sur-
face cyclotron waves and the Bernstein waves in the regime
xp=Xcs % 1, where xp is the plasma frequency. A wave
equation for the perturbed plasma potential is derived assum-
ing rc=L% 1 and krc % 1 (where k is the wavenumber of
the response and L is the radial scale length of the equilib-
rium plasma), which includes both the surface cyclotron and
Bernstein waves as solutions. This equation is solved
numerically, as well as through the WKB approximation,
which is valid provided kL& 1, and we extend this WKB
solution through to the regime krc ! 1.

The Bernstein waves are reflected at locations where
their frequency equals the plasma’s upper hybrid frequency
and can then set up normal modes inside the plasma column.
We find that the dispersion relation for the Bernstein normal
modes is modified from the qualitative result of Ref. 6 due to
linear mode coupling between these modes and the electro-
static surface cyclotron waves. This coupling also allows the
Bernstein modes to be observed via their effect on the exter-
nal electrostatic potential, which can be picked up using
electrodes. An expression is derived for the electrode signal,
which can exhibit peaks at the Bernstein mode frequencies,
consistent with experiments.5 (Previous theory could not
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explain this phenomenon.) This effect is similar to the linear
mode coupling between electromagnetic waves and
Bernstein waves that is known to occur at the upper hybrid
resonance in neutral plasmas, of importance to cyclotron
heating and current drive in magnetic fusion applications.7–10

We also find a second set of Bernstein modes that do not
couple to the surface cyclotron waves. These modes are in-
ternal to the plasma, having no effect on the external
potential.

To derive the wave equation, we must first derive sev-
eral new results for the cylindrical plasma equilibrium. First,
in Sec. II, we solve for charged particle motion in the equi-
librium radial electric field of the plasma, keeping finite cy-
clotron radius effects, which are necessary to describe the
finite-temperature Bernstein modes. In so doing, we obtain
finite electric field and finite cyclotron radius corrections to
the particle cyclotron frequency and the drift rotation fre-
quency. Next, in Sec. III, we obtain a closed-form expression
for the collisional quasi-equilibrium velocity distribution of
the rotating plasma, for given density, temperature, and ra-
dial electric field profiles, keeping finite-cyclotron radius
effects. The system evolves to this quasi-equilibrium distri-
bution due to collisions between the plasma charges. The
distribution deviates from Maxwellian due to radial varia-
tions in the plasma rotation frequency and temperature;
eventually on a longer “transport” timescale, these variations
are wiped out by viscosity and thermal conduction, but dur-
ing an intermediate timescale between the collision time and
the transport time, they are present and affect the velocity
distribution.

Next, in Sec. IV, we derive a general dispersion relation
for linear electrostatic waves on this near-Maxwellian quasi-
equilibrium by linearizing and solving the Vlasov equation
with an added Krooks collision operator. The solution is
obtained for general radial density, temperature, and electric
field profiles. In Sec. V, we focus on the plasma response for
z-independent perturbations near the cyclotron frequency of
a given species, deriving the aforementioned wave equation,
which keeps terms to first-order in k2r2

c . In Sec. VI, we
review the cold-fluid theory of solutions to this equation (the
rc ! 0 limit), discussing the surface cyclotron waves that
are predicted to appear under various scenarios. In Sec. VII,
we add finite temperature and in Sec. VIII, we consider
WKB solutions to the wave equation. In Sec. IX, we consider
the behavior of the WKB solutions for a few examples.

II. PARTICLE ORBITS

Consider the orbit of a particle with charge 6q and
mass m in a uniform magnetic field 7Bẑ and a cylindrically
symmetric potential /0ðrÞ. Here, q and B are positive-
definite quantities. For positive (negative) charges, we
assume a magnetic field in the #ðþÞz direction, so that vari-
ous frequencies (cyclotron, drift rotation) are positive for ei-
ther sign of charge; i.e., the resultant circular motions
associated with each frequency are counter-clockwise when
viewed from a location on the z axis above the orbit. The
Hamiltonian for this particle, expressed in cylindrical coordi-
nates ðr; h; zÞ, is

Hðr; pÞ ¼ p2
r

2m
þ

ph þ
qB

2c
r2

" #2

2mr2
þ p2

z

2m
þ /0ðrÞ; (1)

where pr ¼ m _r; ph ¼ mr2ð _h # Xc=2Þ; and pz ¼ m _z are the
momenta canonically conjugate to r, h, and z, respectively,
and Xc ¼ qB=mc is the “bare” cyclotron frequency of an iso-
lated particle. Note that /0 has units of potential energy; it is
q times the electrostatic potential. This potential can arise
from voltages applied to cylindrically symmetric electrodes or
from a cylindrically symmetric equilibrium distribution of
plasma charges, which produces a “mean-field” equilibrium
potential. In this case, H is the mean field Hamiltonian for the
motion of a charge in the static field produced by the other
charges. However, /0ðrÞ can also arise from the interaction of
a charge with its own image in the cylindrical electrodes of
the trap, even in the absence of other charges.11 This image
charge potential is typically weak compared to other poten-
tials and is often neglected, but it should be kept in high-
precision work.12 For example, for a point charge q at radius r
within a hollow cylindrical conductor of radius rw, this image
potential is most easily expressed as an integral:

/image
0 ðrÞ ¼ # q2

rw

X1

‘¼#1

2

p

ð1

0

dx I2
‘ x

r

rw

" #
K‘ðxÞ
I‘ðxÞ

; (2)

where I‘ and K‘ are modified Bessel functions. Expressions
for the image potential for other electrode geometries, both
cylindrically symmetric and asymmetric, can be found in
Ref. 11.

The Hamiltonian given in Eq. (1) is separable, with three
constants of the motion ph, pz, and H? ¼ H # p2

z=2m. We
will find it useful to replace the constant H? by the action
l ¼ 1

2p

Þ
prdr, where the line integral is performed along the

closed radial particle orbit. Since pr can be expressed as a
function of H?; ph, and r via Eq. (1), this implies
l ¼ lðH?; phÞ. Inverting this relation yields H? ¼ H?ðl; phÞ,
the perpendicular Hamiltonian written in terms of the action.

When the magnetic field is large, this transformation can
be accomplished perturbatively in an expansion in 1/B via
Hamiltonian perturbation theory. This expansion requires
that the cyclotron frequency associated with radial particle
oscillations is large compared to the other motional frequen-
cies, in particular the “drift” frequency associated with h
motion in the radial electric field. As a corollary, this also
requires that the spatial scale length of the electric field, L,
be large compared to the cyclotron radius, so that we can
perform Taylor expansions of the field around the guiding
center position. (This latter requirement is sometimes vio-
lated in cyclotron mass spectrometry, where large amplitude
cyclotron motion can be driven by external fields.) The
result, good to order 1=B4, is

H?ðl;phÞ ¼ lXðr0Þ þ/0ðr0Þ þ
e2E2ðr0Þ

2mX2
c

þ e4E3ðr0Þ
m2r0X4

c

þ l2e4

8m2X2
c

( 15

2

Eðr0Þ
r3

0

# 15

2

E0ðr0Þ
r2

0

# 5
E00ðr0Þ

r0
# 1

2
E000ðr0Þ

" #

þOðe6Þ; (3)
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where e is an ordering parameter used to keep track of the
order in 1/B of different terms, primes denote derivatives
with respect to r, EðrÞ ¼ #@/0=@r, and r0ðphÞ is the radial
location of the effective potential minimum, i.e., the mini-
mum of /0ðrÞ þ ðph þ qBr2=2cÞ2=2mr2, as given by the so-
lution to

R4 ¼ r4
0 # 4Eðr0Þ r3

0=mX2
c ; (4)

where R )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2ph c=ðqBÞ

p
, a constant of the motion (the

lowest-order guiding center radius). The shifted cyclotron
frequency Xðr0Þ is given by the (exact) expression

X2ðr0Þ ¼ X2
c #

3Eðr0Þ
mr0

# E0ðr0Þ
m

: (5)

Note that the action l appearing in Eq. (3) is of order e. In
fact, this equation implies that to lowest order in e,
l * e mv2

?=2Xc, the well-known expression for the cyclotron
action. Also, Eq. (5) shows that the cyclotron frequency is
shifted by the radial electric field. In experiments with low
plasma density or even single particles, the shift arises pre-
dominantly from applied trap potentials and/or image charges.
In this paper, we obtain frequency shifts to collective plasma
modes (as well as single particle frequencies), including
plasma effects, applied potentials, and image charges.

The transformation from ðr; pr; h; phÞ to the action-angle
variables ðw; l; !h; phÞ used in Eq. (3) can be carried out with
generating functions Wr and Wh where13

Wh ) phh; (6)

Wrðr; l; phÞ )
ðr

prðr;H?; phÞ; (7)

and we have used H? ¼ H?ðl; phÞ. These generating func-
tions relate the new and old coordinates via

w ¼ @

@l
ðWr þWhÞ ¼

@Wr

@l
ðr; l; phÞ: (8)

Inverting, this yields

r ¼ rðw; l; phÞ ) r0 þ drðw; l; phÞ; (9)

where the second form is actually a definition of dr, the devi-
ation of r from r0 due to finite cyclotron radius effects. Also,
we have

!h ¼ @

@ph
ðWr þWhÞ ¼ hþ @Wr

@ph
ðr; l; phÞ; (10)

which we can rearrange as

h ¼ !h þ dhðw; l; phÞ; (11)

where

dhðw; l; phÞ ¼ #
@Wr

@ph
ðrðw; l; phÞ; l; phÞ: (12)

Perturbation analysis, described in Appendix A, provides us
with explicit expressions for dr and dh:

dr ¼
X1

n¼0

enDrnðq; r0; eÞcos nw; (13)

dh ¼
X1

n¼1

enDhnðq; r0; eÞsin nw: (14)

Here, Drn and Dhn are given as power series in e up to Oðe4Þ
in Table I, and q2 ) 2l=mXc. The parameter q is, to lowest
order in 1/B, the radius of the cyclotron orbit. The coefficient
Dr0 is the radial change in guiding center position due to fi-
nite cyclotron radius effects. Note that for n + 1, both Drn

and Dhn enter dr and dh at OðenÞ.
The inverse of these transformations can also be written

as power series in e. In particular, lðr; vr; vhÞ is given by

l ¼ em
v2

r þ v2
h

2Xc
# e2vh

EðrÞ
X2

c

þ e3

(mv2
hðEðrÞ þ 3rE0ðrÞÞ þmv2

r ð3EðrÞ þ rE0ðrÞÞ þ 2rEðrÞ2

4mrX2
c

þOðe4Þ: (15)

The Hamiltonian of Eq. (3) implies that the angle varia-
bles !h and w, and the coordinate z evolve in time according
to

dw
dt
¼ @H?

@l
¼ !Xðr0; qÞ; (16)

d!h
dt
¼ @H?
@ph
¼ !x0ðr0; pÞ; (17)

dz

dt
¼ @H

@pz
¼ pz

m
; (18)

where the frequencies !X and !x0 are given by the series
expressions

TABLE I. Orbit coefficients in Eqs. (13) and (14).

n Drn

0 3
4

e2q2

4r0
# 15

64
e4q4

r3
0

þ e4q2

mX2
c

3
8

Eðr0Þ
r2

0

þ 9
8

E0ðr0Þ
r0
þ 1

4 E00ðr0Þ
& '

þ Oðe6Þ

1 qþ e2 #q3

8r2
0

þ q
mX2

c
ð34

Eðr0Þ
r0
þ 1

4 Eðr0ÞÞ
& '

þ Oðe4Þ

2 # q2

4r0
þ e2 3

16
q4

r3
0

# e2q2

mX2
c
ð18

Eðr0Þ
r2

0

þ 3
8

E0ðr0Þ
r0
þ 1

12 E00ðr0ÞÞ
& '

þ Oðe4Þ

3 q3

8r2
0

þ Oðe2Þ

4 # 5
64

q4

r3
0

þ Oðe2Þ

n Dhn

1 q
r0
þ e2 # 1

2
q3

r3
0

þ q
r0

Eðr0Þþ3r0E0ðr0Þ
4mr0X2

c

& '
þ Oðe4Þ

2 # q2

2r2
0

þ e2 1
2

q4

r4
0

# q2

8r2
0

3Eðr0Þþ5r0E0ðr0Þþr2
0 E00ðr0Þ=3

mr0X2
c

& '
þ Oðe4Þ

3 q3

3r3
0

þ Oðe2Þ

4 # q4

4r4
0

þ Oðe2Þ
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!Xðr0; qÞ ¼
Xðr0Þ

e
þ e3q2

8mXc

( 15

2

Eðr0Þ
r3

0

# 15

2

E0ðr0Þ
r2

0

# 5E00ðr0Þ
r0

# 1

2
E000ðr0Þ

" #

þ Oðe5Þ; (19)

!x0ðr0; qÞ ¼
dr0

dph

@H

@r0

((((
l;pz

¼ exEðr0Þ þ
e3xEðr0Þ2

Xc
# e3q2

4mXcr0

( 3Eðr0Þ
r2

0

# 3E0ðr0Þ
r0

# E00ðr0Þ
" #

þ Oðe5Þ;

(20)

and where

xEðr0Þ )
Eðr0Þ
mXcr0

: (21)

The drift rotation frequency !x0 is, to lowest order in
1/B, given by the E( B drift rotation frequency xE in the ra-
dial electric field. The second term in Eq. (20) is a correction
due to centrifugal force, which acts as an extra radial force
that causes an F( B drift in the h-direction. The terms pro-
portional to q2 are finite cyclotron radius corrections to the
rotation rate.

The cyclotron frequency !X also has finite cyclotron ra-
dius corrections. However, when comparing this expression
to previous expressions for the cyclotron frequency in the
presence of an electric field,14 it is important to remember
that here the frequency is derived as the rate of radial oscilla-
tions, which is not the same as the cyclotron rotation rate
with respect to fixed Cartesian axes since the direction of the
radial unit vector varies in time as the particle moves in h.
Thus, single particle resonances can be shifted from the cy-
clotron frequency !X by (multiples of) the rotation frequency
!x0. In fact, when subjected to external fields varying in r, h,
and t as d/ðrÞei‘h#ixt, we will see that particles can absorb
energy resonantly when the applied fields are at the frequen-
cies x ¼ n !X þ ‘!x0 for any integer n. The resonant interac-
tion with n¼ 1 at a frequency near !X is typically the
strongest resonance and is the main effect observed in ion-
cyclotron mass spectrometry for low density systems.
However, for higher densities, there are collective electro-
static plasma waves that can be excited. These collective
excitations are the subject of the next sections.

One type of system for which these frequency formulae
simplify is the harmonic trap where to a good approximation
(and neglecting z dependence, valid for particles moving in
the z¼ 0 plane), /0ðrÞ / r2. Then, the finite cyclotron radius
corrections to !X and !x0 vanish in Eqs. (19) and (20), and
these frequencies are independent of radial position, which
simplifies the analysis. This is one reason why harmonic
traps are often preferred in ion-cyclotron spectrometry appli-
cations. (For a harmonic trap, our frequencies !X and !x0 are
related to the standard harmonic trap frequencies xþ and
x#,15 via the formulae !x0 ¼ x# and !X ¼ xþ # x#.) Of

course, even in traps designed so that the vacuum field is har-
monic, effects such as plasma space charge and image
charges can add anharmonic corrections to /0, necessitating
inclusion of the frequency corrections described by Eqs. (19)
and (20).

III. EVOLUTION OF THE DISTRIBUTION FUNCTION

We assume that the particle distribution f ðr; v; tÞ for a
single species plasma evolves according to the Boltzmann
equation

@f

@t
þ v ,rf þ q

m
Eþ v( B

c

" #
, @f

@v
¼ Cðf ; f Þ; (22)

where C is the 2 particle Boltzmann collision operator.
We first consider the cylindrically symmetric quasi-

equilibrium distribution predicted by Eq. (22). Neglecting
collisions, the collisionless Boltzmann equation has time-
independent solutions of the general form

f ¼ f0ðl; ph; pzÞ (23)

since l, ph, and pz are constants of the collisionless motion
described by Eq. (1). Any function of these constants of the
motion is a collisionless (Vlasov) equilibrium. However,
when collisions are taken into account, this distribution
evolves on the timescale of the collision rate to a quasi-
equilibrium near-Maxwellian distribution whose dependence
on the constants of motion is determined by the collision op-
erator.16 However, the temperature, density, and rotation rate
of the equilibrium can have arbitrary radial dependence.
[This quasi-equilibrium then proceeds to evolve in time on a
slower “transport” timescale due to radial fluxes driven by
gradients in the plasma rotation frequency and the plasma
temperature, toward a thermal equilibrium state with no such
gradients. We neglect this slow evolution here.] The deriva-
tion of the quasi-equilibrium distribution function is outlined
in Appendix B. Assuming that the temperature gradient is of
order e2 while density and rotation frequency gradients are
of O(1), the quasi-equilibrium is, to Oðe4Þ,

fqeðl; ph; pzÞ ¼
NðRÞ

ð2pTðRÞ=mÞ3=2
exp #H=TðRÞf

# lXcð1=TlðRÞ # 1=TðRÞÞ þ Oðe4Þg; (24)

where R )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2ph=mXc

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 2rvh=Xc

p
is the lowest-

order guiding center radius [see Eq. (4)], the function N(R) is
related to equilibrium density n(r) and potential /0ðrÞ,

NðRÞ ) nðRÞ expf½/0ðRÞ # 1=2mR2e2x2
r ðRÞ.=TðRÞg; (25)

the cyclotron temperature TlðRÞ is related to the parallel
temperature T(R) through

TlðRÞ ) TðRÞ 1þ e2R

2Xc

@xr

@R

" #
; (26)

and xrðRÞ is the fluid rotation frequency, defined as
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r nðrÞxrðrÞ ¼
ð

d3v vhfqe: (27)

[Note that in these velocity integrals, r is held fixed, not R.
The expression for fqe given in Eq. (B25), while less elegant
than Eq. (24), is easier to integrate over velocities.]
Performing the velocity integrals yields the following
expression for xr up to Oðe3Þ:

xrðrÞ ¼
e

mXcr
# 1

n

@

@r
ðTðrÞnðrÞÞ þ EðrÞ

) *
þ e3

( x2
r

Xc
# T

2mX2
cr

r

n

@n

@r
þ 3

" #
@xr

@r
# T

2mX2
c

@2xr

@r2

" #

þOðe5Þ: (28)

The lowest order fluid rotation frequency in Eq. (28) is the
familiar expression for diamagnetic and E( B drifts.17 The
Oðe3Þ corrections are due to centrifugal force (the first term)
and thermally averaged finite cyclotron radius corrections
due to shear in the fluid rotation (the 2nd and 3rd terms).
Although xr appears on both sides of this expression, to
Oðe3Þ one can use the lowest-order drift expression for xr on
the right hand side to obtain an explicit expression for xr in
terms of density, potential, and temperature.

When T and xr are uniform (independent of r), Eq. (24)
reduces to the thermal-equilibrium form

fqe ¼
N0

ð2pT=mÞ3=2
e#H=Tþxrph=T ; (29)

where N0 is a constant. This can be seen by noting that,
when xr and T are constant, Eqs. (25) and (28) imply that

# T

mXcRN

@N

@R
¼ xr; (30)

which implies that in thermal equilibrium, NðRÞ ¼ N0exrph=T .
When applied to Eq. (24), this leads to Eq. (29).

However, when T and/or xr are not uniform, Eq. (24) is
not a Maxwellian distribution due to the dependence of R on
vh. Collisions drive the system “as close to a Maxwellian as
possible” when variations in xr and T are present. The non-
Maxwellian nature of fqe is responsible for the difference
between cyclotron temperature Tl and parallel temperature
T. With the definition of Tl given by Eq. (26), the mean ki-
netic energy per particle in each degree of freedom, as deter-
mined by velocity integration over fqe, is given by

hmv2
r i ¼ TðrÞ 1þ e2r

2Xc

@xr

@r
þ Oðe4Þ

" #
; (31)

hmðvh # xrrÞ2i ¼ TðrÞ 1# e2r

2Xc

@xr

@r
þ Oðe4Þ

" #
; (32)

and
hmv2

z i ¼ TðrÞ: (33)

Thus, the mean transverse thermal energy h1=4 mðv2
r

þðvh # xrrÞ2Þi is equal to the mean parallel thermal energy

hmv2
z=2i. This is required in quasi-equilibrium; otherwise there

will be equipartition of parallel and perpendicular thermal
energy on a collisional timescale. (Note that the differences in
mean radial, axial, and azimuthal thermal energy could, in
principle, be observed using, say, laser doppler diagnostics.)

IV. GENERAL DISPERSION RELATION FOR LINEAR
WAVES

We now consider small perturbations dfsðr; v; tÞ of
fsðr; v; tÞ away from the quasi-equilibrium fqes given by Eq.
(24). Here, we re-introduce a species label s for species with
mass ms and charge qs. The perturbations are described by
linearization of the multispecies version of the Boltzmann
equation, Eq. (22). For simplicity, we use a simple Krook
collision operator of the form C ¼ #!ðfs # fqesÞ. Substituting

fs ¼ fqes þ dfsðr; v; tÞ (34)

and

/ ¼ /0ðrÞ þ dUðr; tÞ (35)

into Eq. (22) and linearizing, we obtain

d

dt
dfs þ !dfs ¼

@fqes

@l
@dU
@w
þ @fqes

@ph

@dU
@!h
þ @fqes

@pz

@dU
@z

; (36)

where

d

dt
¼ @

@t
þ v ,rþ EðrÞ

m
r̂ # v( ẑXcs

" #
, @
@v

(37)

is a derivative taken along the orbit of the Hamiltonian of
Eq. (1). The right-hand side of Eq. (36) is written in terms of
action-angle variables.

Next, we Fourier analyze df and dU in h, z, and t, writ-
ing these functions as

dfsðr; v; tÞ ¼ dFsðr; vÞ ei‘hþikzz#ixt (38)

and

dUðr; tÞ ¼ d/ðrÞ ei‘hþikzz#ixt: (39)

Applying Eqs. (9) and (11), we define

d/ðr0 þ drÞ ei‘dh )
X1

n¼#1
D/‘nðph; lÞ einw; (40)

where the D/‘n are the Fourier coefficients of the left-hand
side, which is periodic in w [see Eqs. (13) and (14)]. We may
then integrate Eq. (36), obtaining

ei‘hþikzz#ixtdFsðr; vr; vh; vzÞ

¼
X1

n¼#1
D/‘nðph; lÞ in

@fqe

@l
þ i‘

@fqe

@ph
þ ikz

@fqe

@pz

" #

( e#!t

ðt

#1

dt0 einwðt0Þþi‘!hðt0Þþikzzðt0Þ#iðxþi!Þt0 ; (41)
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where wðt0Þ; !hðt0Þ, and zðt0Þ are determined by the equations
of motion (16)–(19)

wðt0Þ ¼ w0 þ !Xsðr0; qÞðt0 # tÞ; (42a)

!hðt0Þ ¼ h0 þ !x0sðr0; qÞðt0 # tÞ; (42b)

zðt0Þ ¼ zþ vzðt0 # tÞ: (42c)

Here, the constants of integration w0 and h0 and the constant
of motion l are determined in terms of r, h, vr, and vh by the
conditions

h0 þ dhðw0; r0; qÞ ¼ h; (43)

r0 þ drðw0; r0; qÞ ¼ r; (44)

d _rðw0; r0; qÞ ¼ vr: (45)

Equations (44) and (45) determine w0 and l using Eqs. (4)
and (13), and then Eq. (43) determines h0. Note that no equa-
tion for vh is necessary since vh is determined in terms of r
and ph by ph ¼ mvhr # qBr2=2c. Of course, l is also deter-
mined by r, vr , and vh via Eq. (15).

Using Eqs. (42) in Eq. (41), the time integral can be per-
formed, yielding

dFsðr;vr;vh;vzÞ ¼
X1

n¼#1
e#i‘dhðw0;r0;qÞþinw0D/‘nðph;lÞ

(
n
@fqes

@l
þ ‘@fqes

@ph
þ kz

@fqes

@pz

n !Xsðr0;qÞþ ‘!x0sðr0;qÞþ kzvz#x# i!
:

(46)

The resonant denominator in Eq. (46) provides an expression
for the frequency x at which there is a strong wave-particle
resonant interaction, as we discussed at the end of Sec. II.

Finally, the dispersion relation for d/ is obtained by
substituting Eqs. (38) and (39) into Poisson’s equation

1

r

@

@r
r
@d/ðrÞ
@r

# ‘2

r2
þ k2

z

" #
d/ðrÞ

¼ #4pe2
X

s

ð
d3v dFsðr; vr; vh; vzÞ: (47)

This integro-differential equation for d/ can be solved sub-
ject to the boundary conditions on d/. With regard to Eqs.
(46) and (47), we note that the derivatives with respect to l
and ph are easiest to evaluate using the form of fqes given in
Eq. (24), but the velocity integrals are easiest to evaluate
using the equivalent form given in Eq. (B25).

V. CYCLOTRON MODES FOR SPECIES s

We focus on z-independent cyclotron modes, assuming
kz ¼ 0. There are cyclotron modes near multiples n of the cy-
clotron frequency for each species. In this paper, we consider
only the modes for which n¼ 1, near the cyclotron frequency
Xcs of species s, with x ¼ Xcs þ OðeÞ. Substituting Eq. (24)
[or Eq. (B25)] for fqes into Eq. (47), expanding the integrand

in e, and carrying out the velocity integrals, we keep enough
terms in the series expressions so that finite temperature cor-
rections to the dispersion relation are obtained. These correc-
tions enter at Oðe2Þ, so, noting that !x0 ¼ OðeÞ and
D/‘n ¼ OðenÞ for n 6¼ 0, analysis of Eq. (47) implies that
terms in the sum over n in dFs can be dropped only for jnj > 2
that fqes must be evaluated including terms up to Oðe3Þ and
that D/‘n must be evaluated up to Oðe4Þ. The perturbed den-
sity for species s can then be evaluated by performing the ve-
locity integral over dFs

ð
d3vdFs ¼ dnFsðrÞ þ dnTsðrÞ; (48)

where dnFsðrÞ is the T¼ 0 “cold fluid” density response to
the perturbed potential d/, and dnTsðrÞ is the T > 0 thermal
correction. The cold fluid density perturbation can also be
derived directly to all orders in e from fluid equations6 and
has the form

4pq2
s dnFsðrÞ

¼ # ‘
r

x2
ps
ðrÞ

x̂

ðXvs # rx0Fs
ðrÞÞd/0ðrÞ þ ‘ðx̂ þ i!Þd/=r

XvsðXvs # rx0Fs
ðrÞÞ # ðx̂ þ i!Þ2

þ 1

x̂r

@

@r
rx2

ps
ðrÞ ‘Xvsd/=r þ ðx̂ þ i!Þd/0ðrÞ

XvsðXvs # rx0Fs
ðrÞÞ # ðx̂ þ i!Þ2

" #

;

(49)

where x̂ ) x# ‘xFsðrÞ is the Doppler-shifted frequency,
Xvs ) Xcs # 2xFs , x2

ps
ðrÞ ) 4pq2

s nsðrÞ=ms is the square of
the species s plasma frequency, and xFsðrÞ is the cold-fluid
rotation frequency given by the solution to the equation
2xFsðXcs # xFsÞ ¼

P
s x2

ps
ðrÞ. However, the velocity inte-

gral in Eq. (47) yields an expansion in e of this general
expression, including terms of Oðe2Þ:

4pq2
s dnFsðrÞ ¼

1

r

@

@r
ðrðD# 1ÞuðrÞÞ # ðD# 1Þ ‘u

r
þ Oðe2Þ;

(50)

where the field amplitude uðrÞ is defined as

uðrÞ ) d/0ðrÞ þ ‘d/=r; (51)

DðrÞ ) 1# bðrÞ
aðrÞ

(52)

is the dielectric constant for the species s cyclotron modes,

aðrÞ ) x# Xcs þ ð2# ‘ÞxE þ rx0EðrÞ=2þ i! (53)

is a frequency “offset”, and

bðrÞ )
x2

ps
ðrÞ

2Xcs

(54)

represents the local species density nsðrÞ, expressed as the
equivalent E( B rotation rate for a uniform ns. We do not
display the Oðe2Þ terms in the cold fluid density perturbation
as they are fairly complex and will not be needed in what fol-
lows. The frequency offset a is, in fact, (the negative of) the
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r

ps
22

r−2



resonant denominator that appears in Eq. (46) for X¼ 1,
expanded to lowest order in e with the assumption that
x ¼ Xcs þ OðeÞ. This implies that a is also of OðeÞ.

Next, we consider the thermal density correction for
species s, which takes the form

4pq2
s dnTsðrÞ ¼ #r2

c C1 þ
C2

a2
þ C3

a3
þ C4

a4

" #
; (55)

where

C1 ¼ r2
‘

b
a
r2
‘d/

" #
þ 2

‘# 1

r

@

@r
# ‘

r

" #
b0u
a
; (56)

C2 ¼
x0E
r
‘ð‘# 1Þ @

@r
þ ð‘# 5Þ

r

) *
bu

þa0
2‘2 # ‘

r2
buþ ‘# 2

r
b0u# bu0

r
# b0u0 # b00u

) *

#a00 2b0uþ bu0 # ð‘# 2Þ
r

bu

) *
# a000bu; (57)

C3 ¼ a02 bu0 þ 3b0uþ ð3# ‘Þ bu

r

) *

þ 2a0 2a00 # x0E
‘ð‘# 1Þ

r

) *
bu; (58)

C4 ¼ #3a03bu; (59)

where

r2
‘ )

1

r

@

@r
r
@

@r
# ‘

2

r2
: (60)

Finally, we note that Eq. (49) implies that for a different
species !s 6¼ s with Xc!s # Xcs ¼ Oð1=eÞ, dnF!s ¼ Oðe2Þ. Also,
we find the thermal corrections to dn!s are even higher order
in e. We, therefore, neglect dn!s when solving Eq. (47), so
only the density perturbation for species s need be kept for
species s cyclotron waves.

Furthermore, since Eqs. (60) and (51) imply

r2
‘d/ ¼ 1

r

@

@r
ðruÞ # ‘u

r
; (61)

the thermal density correction for species s can be written
entirely in terms of u and its derivatives up to third order.
Thus, Eq. (47) combined with Eqs. (48), (50) and (55) con-
stitute a third-order ordinary differential equation (ODE) for
u(r), which must be solved subject to the boundary condi-
tions for d/.

While the ODE is fairly complex, its form can be tested
in various ways. For instance, the thermal corrections, pro-
portional to r2

c , enter as expected from analysis for a homo-
geneous system, i.e., dnTs ¼ #ns k4r2

cd/=ð2msXcsaÞ.
18 Also

for the case ‘ ¼ 1 in a single species plasma, a simple ana-
lytic solution exists6

d/ðrÞ ¼ Ar½xþ i! # Xcs þ xEðrÞ.; (62)

due to the fact that this excitation is a center-of-mass oscilla-
tion in which the entire column is displaced, and thermal

effects on the density perturbation must vanish as a conse-
quence. Indeed, substitution of Eq. (51) and (62) into Eq.
(55) for ‘ ¼ 1, along with the Poisson equation relating total
charge density qtot ¼

P
s qsns to E( B rotation frequency,

qtotðrÞ ¼
B

4pcr

@

@r
ðr2xEÞ; (63)

yields dnTs ¼ 0 if there is only one species, so that
qtot ¼ qsns. Furthermore, the cold-fluid density perturbation
satisfies r2d/þ 4pq2

s dnFs ¼ 0, showing that Eq. (62) is a
solution of Eq. (47) for ‘ ¼ 1 in a single species plasma.

Furthermore, if x is chosen as x ¼ Xcs # xEðrwÞ # i!,
Eq. (62) implies that the perturbed potential at rw vanishes.
This is the frequency of the ‘ ¼ 1 “center of mass” cyclotron
eigenmode in a single species plasma column [correct to OðeÞ].
The frequency shift xEðrwÞ is caused by E( B rotation of the
center of mass in the plasma’s image charge electric field.

VI. COLD FLUID THEORY OF SURFACE CYCLOTRON
MODES

In the zero-temperature “cold-fluid” limit, the cyclotron
mode dispersion relation becomes

r2d/þ 4pq2
s dnFs ¼ 0; (64)

with dnFs given by Eq. (50). Following Gould,6 we will solve
this equation for d/ðrÞ using the related field amplitude u(r).
Using Eqs. (50) and (61), Eq. (64) can be written as a first-
order ODE for u(r),6

1

r

@

@r
ðrDuÞ # ‘

r
Du ¼ 0: (65)

The solution of this equation is

uðrÞ ¼ Ar‘#1=DðrÞ; (66)

where the constant A is determined by boundary conditions
on d/ðrÞ. We will consider the following boundary
conditions

d/ðrwÞ ¼ /w; d/ðrinÞ ¼ 0; 0 / rin < rw: (67)

For the special case ‘ / 0 and rin ¼ 0, the 2nd boundary con-
dition must be modified to d/ð0Þ ¼ finite:

The first boundary condition corresponds to a potential
of magnitude /w applied to an exterior electrode of radius
rw, oscillating in time at frequency x; and the second bound-
ary condition corresponds to an inner conductor of radius rin

at fixed voltage (see Fig. 1). Taking rin ¼ 0 (by which we
mean no interior conductor) is typical in many experiments.

The equilibrium density of a given species s, nsðrÞ, can
have arbitrary radial dependence, but in most experiments,
xEðrÞ is monotonically decreasing; otherwise, the plasma
can be unstable.26 The E( B rotation frequency is deter-
mined by the total charge density qtot through Eq. (63) (see
Fig. 1). The density of species s need not have the same pro-
file shape as qtotðrÞ since various forces act differently on
different species and can even produce centrifugal or charge
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separation of the species densities at sufficiently low temper-
ature and large xE.25 We will find that there are surface cy-
clotron waves that propagate along the edge(s) of each
species’ density profile, producing measurable electric fields
at the walls. When there is no inner conductor, there is also a
second set of internal upper hybrid waves that do not affect
the potential outside the plasma.

With the boundary condition d/ðrinÞ ¼ 0, Eq. (51)
implies

d/ðrÞ ¼ r#‘
ðr

rin

dr0r0‘uðr0Þ: (68)

For the special case rin ¼ 0 (no interior conductor), this must
be modified to

d/ðrÞ ¼ r#‘ Cþ
ðr

0

dr0r0‘uðr0Þ

2

4

3

5: (69)

For ‘ / 0, the constant C is undetermined, but for ‘ > 0, we
require that C ¼ 0 so that d/ remains finite at r¼ 0.

A. Upper hybrid cutoff

For any ‘, a possible solution of Eq. (65) is Du¼ 0. This
corresponds to a localized upper-hybrid oscillation with
u ¼ Bdðr # rUHÞ, at any location rUH for which DðrUHÞ ¼ 0,
which can be written as aðrUHÞ ¼ bðrUHÞ using Eq. (52). In
the theory of electromagnetic wave propagation, such locations
are referred to as upper hybrid resonances,18 but for the electro-
static Bernstein waves discussed in this paper, these locations
act as cutoffs, reflecting the waves. We, therefore, refer to a
location where a ¼ b as an upper hybrid cutoff. Using Eqs.
(53), (52), and (63), the frequency at cutoff can be written as

xþ i! # Xcs ¼ ð‘# 1ÞxEðrUHÞ #
X

!s 6¼s

xp!s
2ðrUHÞ

2Xcs

: (70)

This is the expression for the upper hybrid frequency in a
rotating plasma column, in the low density limit
xps=Xcs % 1. At rUH, u(r) is undefined, but it is zero every-
where else.

The potential corresponding to these upper hybrid oscil-
lations is, according to Eq. (69),

d/ ¼ Cr#‘ þ 0; r < rUH

BðrUH=rÞ‘; r > rUH;

+
(71)

where C¼ 0 if rin > 0 or ‘ > 0. In these instances, the choice
B ¼ /wðrw=rUHÞ‘ matches the boundary conditions at
r ¼ rw, so the oscillation amplitude is clamped by the value
at the wall. But, if rin ¼ 0 and ‘ / 0 either B or C is undeter-
mined, so any oscillation amplitude is allowed; these are sin-
gular upper hybrid eigenmodes. These modes make no
potential outside the plasma; they are internal modes. Note
that these occur only if there is no interior conductor
(rin ¼ 0). Finite temperature effects on these modes will be
discussed in Secs. VII–IX.

B. Surface cyclotron waves for no inner conductor

Turning to the surface cyclotron waves, we first examine
the case where there is no interior conductor. In this case, the
solution domain includes r¼ 0, and then Eq. (66) implies
that nontrivial solutions for u(r) exist only for ‘ + 1. These
waves have angular phase velocity x=‘ 0 Xcs=‘ in the same
direction as the cyclotron motion. Then, Eq. (66) along with
Eq. (69) implies that

d/ðrÞ ¼ Ar#‘
ðr

0

dr0
r0ð2‘#1Þ

Dðr0Þ
; ‘ > 0: (72)

The constant A is determined by the boundary condition
that d/ðrwÞ ¼ d/w,

A ¼ r‘wd/w

ðrw

0

dr0r0ð2‘#1Þ=Dðr0Þ

: (73)

A dimensionless measure of the system response to the
applied potential d/w is the admittance function Y, where

Y ) rw@d/=@rw

d/w
: (74)

This function is proportional to the surface charge on the
wall electrode for a given wall potential. The out-of-phase
(imaginary) component of Y is due only to the plasma and is
a useful measure of the amplitude of the plasma response to
the applied wall potential. Using Eq. (51), the admittance
can be expressed in terms of d/w and uðrwÞ as

Y ¼ #‘þ rw
uðrwÞ
d/w

;

¼ #‘þ r2‘
wðrw

0

dr0r02‘#1=Dðr0Þ
: (75)

FIG. 1. Schematic diagram of the charge densities and E( B rotation fre-
quency xE in a non-neutral plasma column consisting of three species.
Cylindrical conductors bound the plasma at rin and rw; in many experiments,
the inner conductor is not present. Centrifugal and/or charge separation25

can cause the species to separate radially, in order of largest to smallest
charge to mass ratio.
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The imaginary part of the admittance has peaks at frequen-
cies for which the denominator in Eq. (75) is small, i.e.,
where

ðrw

0

dr0 r0ð2‘#1Þ=Dðr0Þ! 0: (76)

For finite collisional damping and real x, this integral never
equals zero, but for weak damping, minima in its magnitude
approach zero at one or more frequencies corresponding to
the frequencies of weakly damped cyclotron modes in the
cold fluid limit. For the case of a uniform rotation frequency
xE and a uniform density (possibly hollow) plasma column
with outer radius r2 and inner radius r1 (similar to the species
2 profile shown in Fig. 1), the integral in Eq. (76) can be per-
formed analytically. There is a single mode frequency for
each (positive) value of ‘, given by

xþ i! # Xcs ¼ ð‘# 2ÞxE þ b 1# r2‘
2 # r2‘

1

r2‘
w

" #
; ‘ + 0:

(77)

The frequency shift ‘xE arises from the Doppler effect due
to plasma rotation. The term #2xE arises from a shift in the
cyclotron frequency caused by the Coriolis force. The term
proportional to b is the frequency shift due to the self-
consistent plasma electric field created by the perturbation.
The shift is reduced by the factor ðr2‘

2 # r2‘
1 Þ=r2‘

w due to the
effect of image charge electric fields.

For more general density and rotation profiles, the inte-
gral in Eq. (76) must be performed numerically. In the limit
of weak damping, ! ! 0, there is a singularity in the inte-
grand at radial locations rUH where DðrÞ! 0, corresponding
to the aforementioned upper hybrid cutoff. If there is only
one such location, at r ¼ rUH, application of the Plemelj for-
mula to Eq. (72) for ! ! 0þ allows one to write the admit-
tance as

Y ¼ #‘þ r2‘
w

ðrw

0

Pdr0
r0ð2‘#1Þ

Dðr0Þ
# pi r2‘#1

UH

jD0ðrUHÞj

2

4

3

5:

,

(78)

This expression shows that if the density or rotation fre-
quency gradient is large (which makes jD0j large), the
amount of enhanced absorption due to the upper hybrid cut-
off will be small. (This is why no effect of the cutoff appears
in Eq. (77)–the cutoff occurs on the plasma edge, which was
taken to be arbitrarily narrow.) An example with an edge of
finite width is shown in Fig. 2. Here, we plot the imaginary
part of Y versus the applied frequency for a single-species
plasma with a density profile of the form

nðrÞ ¼ n0

2
tanh

r2 # r

Dr

& '
þ 1

h i
; (79)

with associated equilibrium potential (and hence rotation fre-
quency) given by the solution to Poisson’s equation,
r2/0 ¼ #4pq2nðrÞ. Here, and throughout the paper, we
take r2 ¼ rw=2. For this profile, there is a range of

frequencies for which there is a single cutoff. For finite edge
width Dr, even if ! ! 0 the peak in Im Y has finite frequency
width caused by energy absorption at the upper hybrid cut-
off. The width in Im Y decreases as Dr decreases (Fig. 3).
Also, as Dr decreases, the location of the peak in the plasma
response approaches the analytic result given by Eq. (77),
shown by the arrow in the figure.

We will see in Secs. VIII and IX that this absorption is
due to the coupling of the surface cyclotron wave to Bernstein
waves. The Bernstein waves draw energy from the surface cy-
clotron wave, causing a broadened frequency response. This
damping mechanism is similar to the absorption of unmagne-
tized surface plasma wave energy that occurs at bulk plasma
resonances in an inhomogeneous unmagnetized plasma.19

C. Surface cyclotron waves for an inner conductor
with radius rin > 0

For the boundary conditions d/ðrinÞ ¼ 0; d/ðrwÞ ¼ /w,
the origin is not in the solution domain and, therefore, Eq.
(66) provides nontrivial surface cyclotron mode solutions for
all integers ‘. Now the perturbed potential is, from Eqs. (68)
and (66),

d/ðrÞ ¼ Ar#‘
ðrw

rin

dr0
r0ð2‘#1Þ

Dðr0Þ
; (80)

FIG. 2. Imaginary part of the admittance versus frequency for an ‘ ¼ 2 wall
perturbation, in the cold fluid limit, at different collision frequencies !
(measured in units of bmax ¼ Max ðbÞ for the density profile of Eq. (79) with
r2 ¼ rw=2;Dr ¼ rw=20, where rw is the wall radius).

FIG. 3. Same as Fig. 2 but for fixed ! ¼ bmax=100, at different profile widths
Dr (in units of rw). The arrow shows the frequency for a step profile, Eq. (77).
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and the constant A is again given by the condition that
d/ðrwÞ ¼ /w. The admittance is then given by Eq. (74)

Y ¼ r2‘
w

ðrw

rin

dr0r0ð2‘#1Þ=Dðr0Þ

# ‘: (81)

Peaks in the admittance function again appear where the de-
nominator approaches zero,

ðrw

rin

dr0
r0ð2‘#1Þ

Dðr0Þ
! 0: (82)

For example, for a uniform density hollow column with
inner and outer radii r1 and r2 and with uniform rotation fre-
quency xE, there is again one cyclotron mode per ‘ value, at
frequency

xþ i! # Xcs ¼ ð‘# 2ÞxE þ b 1# ðr2=rwÞ2‘ # ðr1=rwÞ2‘

1# ðrin=rwÞ2‘

 !

:

(83)

For ‘ > 0 and rin ! 0, this formula returns to the previous
result, Eq. (77). However, there are now also modes for
‘ / 0. For example, for ‘ ¼ 0, Eq. (83) reduces to

xþ i! # Xcs ¼ #2xE þ b
ln

rwr1

rinr2

" #

lnðrw=rinÞ
; ‘ ¼ 0: (84)

This is the frequency of a cyclotron “breathing” mode, where
the column oscillates radially without changing its density.

For more general density profiles with an inner conduc-
tor, for which Eq. (83) roughly applies, there are not neces-
sarily any locations where D(r)¼ 0 in the plasma (unlike the
previous example with no inner conductor), so in cold fluid
theory, these modes are then undamped “discrete” eigenmo-
des when ! ¼ 0.

An example is shown in Fig. 4 for ‘ ¼ 0 and the same
tanh density profile as we used for Figs. 2 and 3, taking
rin ¼ r1 ¼ 1=10 rw. The potential on the inner conductor is
chosen so that xE is uniform inside the plasma far from the
edges. Now, as ! decreases for any fixed value of Dr, peaks
in Im Y become narrower without limit, signifying a discrete
undamped mode in the ! ! 0 limit. For small Dr, the peak
in the plasma response occurs at the frequency predicted by
Eq. (84) (the arrow in Fig. 4).

The modes are undamped as ! ! 0 in this example
because, for the range of frequencies plotted in Fig. 4, there
is no longer an upper hybrid cutoff, although D changes sign
from a negative value inside the plasma to a positive value
(unity) outside it. This is because D changes sign by passing
through infinity, since aðrÞ ¼ 0 at a location inside the
plasma. This is the location of a wave-particle “resonance”
that has important implications for finite-temperature cyclo-
tron wave propagation.

Because the frequency of the surface cyclotron mode
depends on species density, measurement of the mode

frequency is a useful and nondestructive diagnostic for the
density of each species.2 The internal upper hybrid modes
have frequencies given by Eq. (70), which also depend on
density and rotation frequency, but these modes may be
harder to detect experimentally. There are no peaks in the ad-
mittance function Y, indicating that, within the model of an
infinitely long plasma column, these modes cannot be
observed by their effect on wall image charges. On the other
hand, it should be possible to detect these modes using a
wall electrode located at the end of a finite-length plasma
column.

VII. FINITE TEMPERATURE EFFECTS, BERNSTEIN
WAVES

When finite temperature terms are added to the analysis
of the surface cyclotron waves, new waves appear, referred
to as Bernstein waves. These waves were analyzed qualita-
tively by Gould.5,6 We will see that these waves couple to
the surface cyclotron waves. Also, when there is no inner
conductor, the ‘ / 0 singular upper hybrid continuum given
by Eq. (70) breaks into another set of finite temperature
Bernstein eigenmodes, which do not couple to the surface
cyclotron waves.

The perturbed potential now satisfies

r2
‘d/þ 4pq2ðdnFs þ dnTsÞ ¼ 0; (85)

where dnFs and dnTs are given by Eqs. (50) and (55). For
now, we consider only boundary conditions with no inner
conductor where r¼ 0 is included in the domain, and d/ is
specified on the outer wall. We also assume, for now, that
the species s density profile extends to the origin, and that
there is a vacuum region between the plasma and the wall.

Inside the plasma, Eq. (85) is a fourth order homogene-
ous equation for d/, or, alternately, a third order equation
for u when we apply Eq. (61), but outside the equation
reverts to Laplace’s equation, second order in d/ (first order
in u). The general solution of the third order equation for u is
a sum of three independent solutions, u1ðrÞ; u2ðrÞ; u3ðrÞ.

FIG. 4. Imaginary part of the admittance for an ‘ ¼ 0 cold-fluid cyclotron
mode in a plasma with an inner conductor of radius rin ¼ rw=10, for two val-
ues of the profile width Dr (in units of rw) and for !=bmax ¼ 1=20, 1/100 and
1/1000 (in order from broadest to sharpest admittance curves). The arrow
shows the frequency for a step profile, Eq. (84).
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For ‘ > 0, it can be shown that one of these solutions
(u3, say) blows up at the origin. The interior solution within
the plasma is then

uinðrÞ ¼ B1u1ðrÞ þ B2u2ðrÞ: (86)

This must be matched onto the outer Laplace solution at the
plasma edge. The outer Laplace solution is

uout ¼ Ar‘#1: (87)

The matching of inner and outer solutions is accomplished
by setting

uinðroutÞ ¼ uoutðroutÞ; (88)

where rout is a radius outside the plasma (typically chosen
close to the plasma edge), where Eq. (85) is first-order. A
WKB analysis (Sec. VIII) shows that only one of the two in-
terior solutions remains finite outside the plasma (u1, say);
the other blows up as nðrÞ! 0. Therefore, we set B2 ¼ 0, so
Eqs. (86)–(88) determine B1 in terms of A,

B1 ¼ A r‘#1
out =u1ðroutÞ: (89)

Finally the constant A is determined in terms of the applied
wall potential via Eq. (69),

/w ¼ B1r#‘w

ðrout

0

u1ðrÞr‘dr þ Ar#‘w

ðrw

rout

r2‘#1dr (90)

(taking C¼ 0 since ‘ > 0 is assumed).
Equation (90) determines the amplitude of the plasma

response to the applied wall potential /w. This amplitude is
unbounded wherever the rhs of Eq. (90) equals zero, i.e.,

0 ¼ r‘#1
out

ðrout

0

u1ðrÞr‘dr þ u1ðroutÞ
ðrw

rout

r2‘#1dr: (91)

These zeros correspond to a sequence of normal modes–the
aforementioned Bernstein modes. The behavior of these
modes is analyzed in the next sections.

For ‘ / 0, one can show that two of the three interior
solutions blow up at the origin (u2 and u3, say), so

uinðrÞ ¼ B1u1ðrÞ: (92)

This interior solution is not necessarily finite outside the
plasma; it generally blows up as density ns ! 0, so the only
solution is A ¼ B1 ¼ 0, i.e., u¼ 0. Then, Eq. (69) implies
that the solution for d/ is a vacuum potential:
d/ ¼ d/wðr=rwÞ#‘. However, there may be certain choices
of x for which the interior solution does not blow up. These
frequencies correspond to eigenfrequencies of ‘ / 0
Bernstein oscillations.

In the cold-fluid theory, the ‘ / 0 upper hybrid oscilla-
tions were excited over a continuum of frequencies associ-
ated with an upper hybrid cutoff and were localized to a
given radius for a given frequency in the continuum. With

finite temperature, these modes are not localized and may
occur only at discrete frequencies.

VIII. WKB ANALYSIS OF FINITE TEMPERATURE
CYCLOTRON MODES

The previous general ideas concerning the solution of
Eq. (85) can be illustrated and expanded using a WKB solu-
tion of the problem. We first make some general observa-
tions about the Bernstein wave solutions expected from this
analysis. For a uniform plasma in the low-density regime
xp=Xc % 1, the finite-T dielectric constant DTðx; kÞ near the
cyclotron frequency for species s is18,20

DTðx; kÞ ¼ 1# 2bXcs

xðx# XcsÞ
e#k2r2

c
I1ðk2r2

c Þ
k2r2

c

; (93)

where I1ðxÞ is a modified Bessel function. The zeros of the
dielectric constant yield the Bernstein mode dispersion
relation,

xðkÞ ¼ Xcs þ 2b e#k2r2
c

I1ðk2r2
c Þ

k2r2
c

þ O
1

X2
c

 !

¼ Xcs þ bð1# k2r2
c þ…Þ; k rc % 1: (94)

The time-averaged energy density in the waves is

Ew ¼
jEj2

16p
@

@x
ðxDTÞ ¼

jEj2

16p
Xc

x# Xc
; (95)

where E ¼ #rd/ is the wave electric field. The energy flux
is

S ¼ vg Ew; (96)

and

vg ¼
@x
@k
¼ #4brc

½k2r2
c ðI1 # I0Þ þ 2I1.

k3r3
c

e#k2r2
c k̂ (97)

is the group velocity.
Our wave Eq. (85) should produce results consistent

with the small k limit of these expressions. Outside the
plasma, the solution for u(r) is given by Eq. (87). Inside, we
assume a WKB form

uðrÞ ¼ eSðrÞ; (98)

where we expand the eikonal S(r) in a power series in the cy-
clotron radius rc,

SðrÞ ¼ S0ðrÞ
rc
þ S1ðrÞ þ rcS2ðrÞ þ , , , : (99)

This asymptotic expansion will be useful provided that
rc=L% 1, where L is the scale length of the equilibrium.
The only term in dnTðrÞ that enters the analysis to determine
S0 and S1 is the first term in Eq. (56).
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Substituting Eqs. (98) and (99) into Eq. (85) and keeping
the lowest order terms in rc yields the following equation
for S0:

D S00 #
b
a

S030 ¼ 0: (100)

This implies S00 ¼ 0 or S00 ¼ 6ikðrÞrc, where

kðrÞ )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#aD=ðbr2

c Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# a=b

p
=rc (101)

is the local radial wavenumber of the solution. For the case
S00 ¼ 0, the solution is slowly varying and is entirely deter-
mined at the next order.

Considering the next-order equation in rc yields the fol-
lowing expression for S1 when S00 ¼ 0:

S01 þ
D0

D
# ð‘# 1Þ

r
¼ 0: (102)

The solution is the cold fluid result S1 ¼ #log D
þð‘# 1Þ log r, or

u1ðrÞ ¼
r‘#1

DðrÞ
: (103)

An order r2
c correction to this solution could be found by

working to even higher order, but we will not use that correc-
tion here. This cold fluid solution is invalid if 1/D(r) varies
rapidly, which occurs near the upper hybrid cutoff where
D(r)¼ 0.

The amplitudes of the other two rapidly varying solu-
tions with S00 ¼ 6ikðrÞrc are also obtained by considering
the next-order equation in rc, which now yields

S01ðrÞ þ
1

2r
þ 1

r

D0

D
þ b0

b
# a0

a

" #
¼ 0: (104)

Thus, the second and third WKB solutions for u(r) are

u2;3ðrÞ ¼
1ffiffi
r
p a

bD

" #1
4

e
6i
Ðr

kðrÞdr

: (105)

These solutions are traveling waves moving radially
inward or outward, depending on the sign of x and Re(k).
Their wavenumber and amplitude (but not their frequency)
vary in radius as the plasma density and/or rotation rate
varies. The local dispersion relation of these waves follows
from Eq. (101):

a ¼ bð1# k2r2
cÞ: (106)

Equation (106) matches the long-wavelength limit of the
Bernstein-mode dispersion relation, Eq. (94), for the shear-
free case; noting that for a rotating system, there is a Doppler
shift to x and a shift to Xc from the Coriolis force that
appears in Eq. (106) through a [see Eq. (53)]. The radial
group velocity follows from the derivative with respect to k
of Eq. (106):

vg ¼ #2bkr2
c : (107)

The WKB amplitude factor for the Bernstein waves,

u / 1ffiffi
r
p a

bD

" #1=4

; (108)

is consistent with energy conservation. For WKB traveling
waves, the conserved quantity is the total radial energy flux
rS , r̂ given by Eq. (96). Identifying x# Xc with a and iden-
tifying jEj2 with u2 [using Eq. (52) and the WKB limit
kr & ‘] implies the following general WKB amplitude
factor:

u / # aðrÞ
rXcs vgðr; kÞ

" #1=2

: (109)

To compare this to Eq. (108), we substitute for vg from
Eq. (107), noting that the group velocity can be written as
vg ¼ #2brc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# a=b

p
using Eq. (106). Substituting this

expression into Eq. (109) and using Eq. (52) yields Eq.
(108), the krc % 1 form of the amplitude factor.

The two WKB solutions in Eq. (105) break down near
r¼ 0; near any upper hybrid cutoffs where DðrÞ! 0; and
near any “resonances” where aðrÞ ¼ 0 and DðrÞ!1, corre-
sponding to strong wave-particle resonant interactions. These
resonances, if they occur, cause damping of Bernstein waves.
Note that the slowly varying “cold fluid” solution u1 also
breaks down at the upper hybrid cutoff, but not at r¼ 0 or at
the a ¼ 0 resonance. Also, when bðrÞ! 0 at the plasma
edge, Eq. (101) implies that k ! i1, so one Bernstein solu-
tion blows up and the other decays to zero exponentially.

Connection formulae18 must be derived in order to con-
nect WKB solutions on either side of a cutoff or resonance.
We first consider the connection formula for a cutoff.

A. Connection formula for an upper hybrid cutoff

Consider a situation where ReðaðrÞÞ > 0 but Re(D(r))
changes sign at r ¼ rUH, with ReðDÞ > 0 for r > rUH (see
Fig. 5). Near r ¼ rUH, DðrÞ ’ ðr # rUHÞ=L, where L#1

) D0ðrUHÞ > 0 by assumption. On the left side of the cutoff,
we write the WKB solution as

uLðrÞ ¼
ALr‘#1

DðrÞ
þ BLffiffi

r
p #a

bD

" #1
4

cos

ðr

rUH

kdr þ v

2

4

3

5; (110)

FIG. 5. Schematic of a plasma for which there is a single upper hybrid cut-
off. Varying x moves the aðrÞ profile vertically and changes the location of
the cutoff.
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where AL and BL are the amplitudes of the solution and v is
the phase. [Throughout the remainder of the paper, we
assume a sign in the square root in Eq. (101) such that
Re k > 0. In this section, we use the krc % 1 form of the
WKB amplitude factor, Eq. (108), since near cutoff k ! 0.]
On the right side of the cutoff, the WKB solution is

uRðrÞ ¼
ARr‘#1

DðrÞ
þ 1ffiffi

r
p a

bD

" #1
4

BR1
e

Ðr
rUH

kdr

þ BR2
e
#
Ðr

rUH

kdr

2

64

3

75:

(111)

To connect these two solutions, we note that near r ¼ rUH,
Eq. (85) can be approximated as

#r2
c u000ðxÞ þ @

@x

x

L
u

& '
¼ 0; (112)

where x ¼ r # rUH, we have used the relation b=ajr¼rUH
¼ 1,

and we have kept only the dominant balance in Eq. (85),
assuming rc=L% 1. [This balance involves only the first
term in dnF (see Eq. (50)) and the first term in Eq. (56).] The
general solution can be written in terms of Airy functions
and integrals of Airy functions:

uðxÞ ¼ D1Aið!xÞ þ D2Bið!xÞ þ D3Cið!xÞ; (113)

where the function Ci is defined as

Cið!xÞ ) pAið!xÞ
ð!x

#1

dx0Biðx0Þ þ pBið!xÞ
ð1

!x

dx0Aiðx0Þ (114)

and !x ) x=ðLr2
c Þ

1=3. For !x % #1 but jxj=L% 1, we can
connect Eq. (110) to Eq. (113) using the asymptotic form of
Eq. (113). The asymptotic forms of the Airy functions Ai and
Bi are well known.21 The asymptotic forms for Cið!xÞ are

Cið!xÞ ¼
1

!x
þ 2

!x4
þ 40

!x7
þ , , , þ

ffiffiffi
p
p

ð#!xÞ1=4
cos

2

3
ð#!xÞ3=2 þ p

4

) *

( 1þ 385

4608!x3
, , ,

" #
þ 5

48

ffiffiffi
p
p

ð#!xÞ7=4
sin

2

3
ð#!xÞ3=2 þ p

4

) *

( 1þ 17017

13824!x3
þ , , ,

" #
; !x %#1

Cið!xÞ ¼
1

!x
þ 2

!x4
þ 40

!x7
…; !x & 1: (115)

Using the !x % #1 asymptotic form in Eq. (113) along with
the corresponding forms for the Airy functions yields the fol-
lowing lowest-order form for u:

lim
!x!#1

uðxÞ ¼ 1
ffiffiffi
p
p
ð#!xÞ1=4

D1sin
2

3
ð#!xÞ3=2 þ p

4

" #)

þ ðD2 þ pD3Þ cos
2

3
ð#!xÞ3=2 þ p

4

" #*
þ D3

!x
:

(116)

Comparing Eq. (116) to Eq. (110), and noting that for
0/ðrUH#rÞ=L%1, we can approximate 2

3 j!xj
3=2 ¼

Ð rUH

r kdr,

DðrÞ¼ x=L, and ð#a=ðbDÞÞ1=4¼ð#L=xÞ1=4, so we obtain

AL ¼ D3r1#‘
UH ðr

2
c=L

2Þ1=3; (117)

BL cos v ¼
ffiffiffiffiffiffiffi
rUH

2p

r
ðrc=LÞ1=6½D1 þ D2 þ pD3.; (118)

BL sin v ¼
ffiffiffiffiffiffiffi
rUH

2p

r
ðrc=LÞ1=6½D1 # D2 # pD3.: (119)

On the right side of the cutoff the lowest order asymptotic
form of Eq. (113) is

lim
!x!1

uðxÞ ¼ 1
ffiffiffi
p
p

!x1=4

1

2
e#2!x3=2=3D1 þ D2e2!x3=2=3

) *
þ D3=!x:

(120)

Connecting to Eq. (111) for !x & 1 but ðr # rUHÞ=L% 1
implies

AR ¼ D3r1#‘
UH ðrc=LÞ2=3; (121)

BR1
¼

ffiffiffiffiffiffiffi
rUH

p

r
ðrc=LÞ1=6D2; (122)

BR2
¼

ffiffiffiffiffiffiffi
rUH

p

r
ðrc=LÞ1=6 D1

2
: (123)

Eliminating D1, D2, and D3 from Eqs. (117)–(119) and
(121)–(123) yields the connection formulae at an upper
hybrid cutoff,

AL ¼ AR; (124)

BL cos v ¼ BR1ffiffiffi
2
p þ

ffiffiffi
2
p

BR2
þ

ffiffiffiffiffiffi
pL
2rc

s

r‘#1=2
UH AR; (125)

BL sin v ¼ #BR1ffiffiffi
2
p þ

ffiffiffi
2
p

BR2 #

ffiffiffiffiffiffi
pL
2rc

s

r‘#1=2
UH AR: (126)

These formulae indicate that, at a cutoff, the slowly varying
“cold fluid” solution, responsible for surface cyclotron
waves, and proportional to coefficients AR and AL, is mixed
with the rapidly varying “Bernstein” solutions, proportional
to BR and BL.

B. Behavior near a resonance

There may be locations in the plasma where aðrÞ ¼ 0,
due to shears in the E( B rotation frequency. At such loca-
tions, the WKB Bernstein mode solutions, Eq. (105), are
invalid. This is because Eq. (101) implies that krc ¼ 1 at
a ¼ 0, which breaks the assumption used to derive Eq. (85)
that krc % 1. Therefore, we modify the Bernstein WKB sol-
utions by using the exact Bernstein mode dispersion relation
for a uniform system, Eq. (94), writing the dispersion rela-
tion as

aðrÞ ¼ 2bðrÞ e#k2r2
c

I1ðk2r2
c Þ

k2r2
c

(127)

in order to account for Doppler and Coriolis force shifts due
to plasma rotation. This WKB dispersion relation agrees
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with the xp=Xc % 1 limit of the Bernstein dispersion rela-
tion for a rotating uniform density single species plasma col-
umn, derived in Ref. 22. This equation shows that at a
resonance, the radial wavenumber k approaches infinity, not
1=rc as our approximate dispersion relation, Eq. (106),
predicted.

Furthermore, the resonance does not act as a turning
point for rays, unlike the upper hybrid cutoff. The rays are
curves in the ðr; krÞ plane describing the trajectory of
Bernstein wave packets. The rays are obtained from Eq.
(127), as contours of constant x.23 When aðrÞ and bðrÞ have
the form shown in Fig. 6, these constant x contours have the
form shown schematically in Fig. 7(a). The rays are simply
diverted to large k without reflecting, as opposed to the case
of a upper hybrid cutoff (Fig. 5), for which the rays have a
turning point (Fig. 7(b)).

Furthermore, the WKB wave amplitude becomes large
at the resonance. As krc !1, Eq. (127) implies that

aðrÞ!
ffiffiffi
2

p

r
bðrÞ
k3r3

c

; (128)

so the radial group velocity approaches zero as

vg ! #3

ffiffiffi
2

p

r
bðrÞ
k4r3

c

: (129)

Using these equations in the expression for conservation of
energy flux, Eq. (96) implies that, near the resonance where
a! 0,

jEj2 / 1

½aðrÞ.1=3
: (130)

These large amplitude large k Bernstein waves will be
absorbed by the plasma at the resonance. The absorption
mechanism could be viscous damping due to large k, nonlin-
ear processes due to large amplitude such as wave-breaking,
or direct Landau damping at the resonance. [None of these
effects are included in Eq. (85), which does not apply at a
resonance.] Such damping is observed in experiments on
fusion plasmas.10

Since the Bernstein waves are absorbed at a resonance
rather than being reflected, there are generally no longer any
Bernstein normal modes in WKB theory, since normal
modes are standing waves that require interference between
waves propagating radially in both directions. However, a
reflection is still possible if there is an abrupt density change
in the plasma with kL < 1, which violates the WKB approxi-
mation. This case has been considered by Spencer et al. for
‘ ¼ 0 modes.24

On the other hand, the cold fluid solution to Eq. (85)
passes through the resonance, essentially unchanged. In cold
fluid theory, we have already observed that the solution for
u(r), Eq. (66), merely changes sign at locations where
aðrÞ ¼ 0. When finite temperature corrections are added, we
find that this is still the case provided that rc=L% 1. To
derive this result, we expand aðrÞ near the resonance, writing

a ¼ x0

rR
ðr # rRÞ; (131)

where

x0 ) rR
@a
@r

((((
r¼rR

: (132)

Defining f ) ðx0=rRÞu=a and x ) r # rR, so that u¼ xf,
the dominant balance for jx=rRj% 1 and rc=jrRj% 1 in Eq.
(85) is

FIG. 6. Schematic of a plasma with parameters chosen so that there is a sin-
gle resonance.

FIG. 7. (a) Rays (contours of constant x)
for Bernstein waves at a frequency corre-
sponding to the aðrÞ profile in Fig. 6. (b)
Analogous ray (contour of constant x)
for Bernstein waves at a frequency corre-
sponding to the aðrÞ profile in Fig. 5.
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r2
c f 000 þ @

@x

f 0

x

" #" #
þ f 0 ¼ 0: (133)

[This dominant balance involves the first term in Eqs. (50),
(56), and (58), and Eq. (59).] The solution is

f ¼ D1J0
x

rc

" #
þ D2Y0

x

rc

" #
þ D3: (134)

The Bessel functions J0 and Y0 are the two Bernstein
wave solutions near resonance, but with an incorrect (finite)
wavelength due to the aforementioned breakdown of Eq.
(85) as krc becomes of order unity. However, the fluid solu-
tion to Eq. (85) remains valid provided that it remains slowly
varying. In fact, for small rc, Eq. (134) shows this to be true:
near resonance the fluid solution for f is simply the constant
D3, which implies that u ¼ D3 aðrÞ. This solution can be
asymptotically matched onto the fluid solution away from
the resonance, Eq. (66), via the choice D3 ¼ #Ar‘#1

R =bðrRÞ.
Thus, the fluid solution is unaffected by the resonance

even when finite temperature effects are included (provided
that rc is small). This is illustrated in Fig. 8, which displays a
solution of Eq. (85) for a single-species plasma with the den-
sity profile of Eq. (79) and for ‘ ¼ 0. For this ‘ value, there is
a range of frequencies for which a single resonance occurs.
The figure shows uðrÞ for one such frequency and for
rc ¼ rw=100, compared to the fluid solution; the two solutions
are matched at r ¼ 0:6rw. A small collision frequency ! is
added to the frequency in order to regularize the poles in Eq.
(85) that occur at the resonance; but the results displayed are
in the limit of small !. One can see that for small but finite rc,
the fluid solution closely follows the numerical solution.

IX. WKB SOLUTIONS: EXAMPLES

The connection formulae derived in Sec. VIII B can be
used to solve for the potential response of a finite-
temperature plasma to an oscillatory wall signal. The behav-
ior of the solutions is influenced by the locations of cutoffs
and resonances. We consider several examples.

A. One upper-hybrid cutoff

The simplest example is the case of a single upper-
hybrid cutoff. For instance, this can occur for the lightest

species in a multi-component plasma with nearly uniform
total density that has undergone some centrifugal separation;
see Fig. 1.25 In this case, aðrÞ is nearly constant over the
range of radii for which bðrÞ is nonzero, and there is a range
of mode frequencies for which

0 < a < Max ðbÞ: (135)

There is then a single cutoff at the radial location rUH where
aðrUHÞ ¼ bðrUHÞ (see Fig. 5). For frequencies outside this
range, the real part of the dielectric constant D(r) does not
change sign and the plasma response is well-represented by
the fluid limit, Eq. (66). This fluid response was already dis-
cussed in Sec. V.

For frequencies within the range given by Eq. (135), the
upper hybrid cutoff causes reflection of the Bernstein waves
that sets up a strong resonant plasma response at a discrete
set of mode frequencies. Inside the plasma, to the left of the
cutoff, DðrÞ < 0 and a > 0, so the WKB solution for u(r) is
of the form given by Eq. (110)

u ¼ ALr‘#1

DðrÞ
þ BL #

2rca
rvgðr; kÞ

" #1=2

( cos

ðr

rUH

kðrÞdr þ v

0

@

1

A; r < rUH: (136)

Here, we have used the general form for the WKB amplitude
factor, Eq. (109), normalized so as to approach the krc % 1
form, Eq. (108), as krc becomes small. The phase v is deter-
mined by the r < rUH form of the solution near r¼ 0. For
r=Dr % 1, we can take nðrÞ * n0 and then the solution of
Eq. (85) that is finite at r¼ 0 is

uðrÞ ¼ ALr‘#1

DðrÞ
þ E J‘#1ðk0rÞ; r

L
% 1; (137)

where k0 ¼ kð0Þ, and J‘ðxÞ is a Bessel function. This solution
can be connected to Eq. (136) for r=rc & 1 using the large
argument form of the Bessel function.21 This implies

v ¼
ðrUH

0

kðrÞdr # ð‘# 1Þ p
2
# p

4
: (138)

To complete the solution for u, we match Eq. (136) to the
form for r > rUH, using Eqs. (124)–(126) adding the require-
ments that the solution remain finite as nðrÞ! 0, and the
outer solution match to Eq. (87). This implies that the coeffi-
cient BR1 must vanish, so the matching conditions are

AL ¼ A; (139)

BL cos v ¼
ffiffiffi
2
p

BR2 þ

ffiffiffiffiffiffi
pL
2rc

s

r#1=2
UH A; (140)

BL sin v ¼
ffiffiffi
2
p

BR2 #

ffiffiffiffiffiffi
pL
2rc

s

r#1=2
UH A; (141)

where L#1 ¼ D0ðrUHÞ.

FIG. 8. Comparison of cold fluid theory, Eq. (66), to a solution to Eq. (85)
when there is a resonance. Fluid solution and numerical solution are
matched at r=rw ¼ 0:6. The resonance is located at the arrow.
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Equations (140) and (141) can be used to determine BR2

and BL in terms of A

BL ¼

ffiffiffiffiffiffi
pL
rc

s
r‘#1=2

UH

cosðvþ p=4Þ
A; (142)

BR2 ¼

ffiffiffiffiffiffi
pL
rc

s
r‘#1=2

UH

2
tan vþ p

4

& '
L: (143)

Equation (69) then allows determination of the perturbed
potential d/. Near r¼ 0, substitution of Eq. (137) into Eq.
(69) yields

d/ðrÞ ¼ Cr#‘ þ Ar#‘
ðr

0

dr0
r02‘#1

Dðr0Þ
þ E

k0
J‘ðk0rÞ; r

L
% 1;

(144)

where we require C ¼ 0 for ‘ > 0 and A¼ 0 for ‘ / 0. This
can be connected onto the WKB form by using the following
integration identity, obtained using integration by parts:

lim
rc!0

ðb

a

dr gðrÞ eiUðrÞ=rc ’ rc

iU0ðrÞ
gðrÞ eiUðrÞ=rc

((((
b

a

þ Oðr2
c Þ;

(145)

provided that there are no locations in a / r / b, where
U0ðrÞ ¼ 0. We break Eq. (69) into two terms,

d/ ¼ d/ðNrcÞ þ r#‘
ðr

Nrc

dr0 r0‘uðr0Þ; (146)

where N & 1 but Nrc % Dr. This allows use of the WKB
form, Eq. (136) in the integral, and Eq. (144) in the first
term. After asymptotic-expansion of J‘ for large argument,
and cancellation of terms involving N, we obtain

d/ðrÞ ¼ Cr#‘ þ Ar#‘
ðr

0

dr0
r02‘#1

Dðr0Þ
þ BL

k
# 2rca

rvgðk; rÞ

" #1=2

( sin

ðr

rUH

kðrÞdr þ v

0

@

1

A; rc % r < rUH: (147)

This form for d/ is valid to the left of the upper hybrid cut-
off, but away from the origin.

To find d/ to the right of the cutoff, one must integrate
across the cutoff using the connecting form, Eq. (113). We
write Eq. (69) as

d/ðrÞ ¼ d/ðrUH # Na0Þ þ r#‘
ðrUHþNa0

rUH#Na0

dr0 r0‘uðr0Þ

þ r#‘
ðr

rUHþNa0

dr0r0‘uðr0Þ; (148)

where a0 ) ðLr2
c Þ

1=3;N & 1 but N a0=L% 1.

We can use the WKB form for d/, Eq. (147), in the first
term. In the last term, we can use u ¼ Ar‘#1=D, and in the
middle term, we can use Eq. (113). Noting that DðrÞ
’ L#1ðr # rUHÞ for r near rUH, and using Eq. (107) for vg

near the cutoff where krc ! 0, Eq. (142) for BL, Eqs. (139)
and (117)–(119), we find that terms involving N cancel, and
we are left with

d/ðrÞ ¼ Cr#‘ þ Ar#‘
ðr

0

Pdr0
r0ð2‘#1Þ

Dðr0Þ
þ D1a0r‘UHr#‘; (149)

where
Ð
P means the principal part of the integral, neglecting

the pole at r ¼ rUH. In deriving Eq. (149), we have also used
the identities

Ð1
#1 Aið!xÞ d!x ¼ 1 and limN!1

Ð N
#N Cið!xÞ d!x

¼ 0. The latter follows by applying
Ð1
#1 d!x to Eq. (114) and

integrating by parts.
Substituting for D1 from the solution of Eqs.

(118)–(119) and using Eq. (142) yields

r‘d/ðrÞ ¼ Cþ A

ðr

0

Pdr0
r0ð2‘#1Þ

Dðr0Þ
þ pL r2‘#1

UH tan

"
vþ p

4

#2

4

3

5;

r # rUH & a0: (150)

For ‘ > 0, C¼ 0 is required, so Eqs. (150), (75), and (51)
determine the admittance

Y ¼ r2‘
w

ðrw

0

Pdr0r0ð2‘#1Þ=Dðr0Þ þ pL r2‘#1
UH tan½vþ p=4.

# ‘ : (151)

Here, v is given by Eq. (138), and k by Eq. (101) when a=b
is close to unity (so that krc % 1). More generally, we can
extend the validity of Eq. (151) to all krc by using Eq. (127)
for k.

The first term in the denominator of Eq. (151) is the
same as for cold fluid theory, Eq. (78). The second term
leads to the Bernstein modes. These modes occur wherever
the denominator vanishes, i.e., where

ðrUH

0

kdr ¼ ð‘# 1Þp
2

þ np# arctan
r1#2‘

UH

pL

ðrw

0

P dr0
r0ð2‘#1Þ

Dðr0Þ

2

4

3

5

(152)

for any integer n [using Eq. (138)]. This is the dispersion
relation for the ‘ > 0 Bernstein modes in the WKB limit for
a single cutoff.

For a uniform density step profile of radius r2 and
assuming krc % 1, we can estimate the frequency predicted
by Eq. (152) by taking k constant, given by Eq. (101), and
rUH ’ r2, yielding

a ’ b 1# r2
c

r2
2

x2
n

" #
; (153)

where xn is the right hand side of Eq. (152). Note that in a step
profile, L ! 0 and arctanð1Þ ¼ p=2, so xn ¼ ð‘=2 þnÞp.
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As mode number n increases, the frequency decreases, with a
frequency spacing between modes proportional to plasma
temperature through the factor r2

c=r2
2. (This result is only an

estimate since a step profile has rapid variation that violates
the WKB approximation kL& 1. However, a solution of Eq.
(85) for a step profile does predict Bernstein mode frequencies
of the form given in Eq. (153), albeit with a different value for
xn.)

In Fig. 9, we display the admittance Y for the density
profile given by Eq. (79), versus cyclotron radius rc. The sin-
gularities of Y locate the frequencies of the Bernstein modes.
We assume aðrÞ is uniform and equal to 4 Max ðbÞ=5, and
for Dr ¼ rw=10, r2 ¼ rw=2, and ‘ ¼ 2 using Eq. (101) for k.
Equation (101) is correct only for small krc. We use this
form for k in order to compare to numerical solutions of Eq.
(85) (the dots in Fig. 6), which are valid only for krc % 1.
The WKB form for this function, Eq. (151), is an excellent
fit to the numerical solution of Eq. (85).

In Fig. 10, we show two of the potential eigenfunctions
for these modes, compared to the WKB forms, using the
krc % 1 expressions for the WKB wave number and ampli-
tude in order to better compare to solutions of Eq. (85).

When there is finite damping !, the admittance exhibits a
sequence of peaks at frequencies determined by the solution of
Eq. (152) (see Fig. 11, plotted for ‘ ¼ 1). In this figure, we use
the general form for k, from a solution of Eq. (127) for kða=bÞ,
rather than Eq. (101). The solution of Eq. (85) is compared to
the WKB prediction on the right side of the figure, where
krc % 1 for the Bernstein modes. The numerical solution dif-
fers from the WKB solution as a=bmax ! 1 because WKB
theory breaks down as kL becomes small. For sufficiently small
rc, there is a regime for which both krc % 1 and kL& 1,
where the WKB and numerical solutions of Eq. (85) match.

As the cyclotron radius rc decreases, the spacing
between the admittance peaks in Fig. 11, and the height of
the peaks, decreases until the result is indistinguishable from
the cold-fluid admittance given by Eq. (78). This happens
because, in Eq. (138), the imaginary part of v (due to finite
!) becomes large and negative as rc decreases, so that
tanðvþ p=4Þ! #i, implying that Eq. (151) becomes identi-
cal to Eq. (78). This will occur roughly when !rUH ! jvgj

FIG. 9. Admittance versus cyclotron radius at fixed frequency and uniform
aðrÞ profile, a ¼ 4bmax=5, ! ¼ 0, and density given by Eq. (79). Dots: nu-
merical solution of Eq. (85). Solid lines: WKB approximation, Eq. (151).
Singularities in Y occur at the frequencies of Bernstein modes.

FIG. 10. Perturbed potential of ‘ ¼ 2 Bernstein modes for two different tem-
peratures but the same frequency, and assuming uniform aðrÞ, with
a ¼ 4bmax=5, and density given by Eq. (79). Solid lines: numerical solution
of Eq. (85). Dashed lines: WKB approximation, Eqs. (147), (150), (138),
(101), and (107). The dashed vertical line shows the location of the upper
hybrid cutoff. (a) rc=rw ¼ 0:014 and (b) rc=rw ¼ 0:008: The WKB approxi-
mation improves for smaller rc, and breaks down as expected near r¼ 0 and
r ¼ rUH.

FIG. 11. Admittance versus frequency for uniform a, density given by Eq.
(79), and ! ¼ bmax=40 for ‘ ¼ 1, at three temperatures, with corresponding
cyclotron radii rc measured in units of rw. As rc decreases, the admittance
approaches cold fluid theory, Eq. (70). For larger rc, Bernstein mode peaks are
evident. Curves: WKB theory given by Eq. (151), (138), and (127). Dots: nu-
merical solution of Eq. (85), shown only in the regime of validity for
Bernstein solutions of Eq. (85), krc % 1. The arrow at a=bmax ¼ 0:75 shows
the prediction of Eq. (77) for the frequency of the surface cyclotron wave.
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[note that jvgj decreases as rc decreases; see Eq. (107)]. In
this regime, the Bernstein modes merge and disappear, and
the cold-fluid limit is valid. Physically, the Bernstein waves
are carrying energy away from the surface cyclotron wave
and then damping due to collisions before normal modes can
be set up.

1. Internal Bernstein modes with ‘£ 0

In addition to the Bernstein modes which occur for
‘ > 0, there is a second set of Bernstein modes with ‘ / 0,

related to the singular upper hybrid modes discussed in Sec.
VI A. When there is no inner conductor, the ‘ / 0 Bernstein
modes are purely internal modes, having no effect on the ad-
mittance. These Bernstein modes satisfy cosðvþ p=4Þ ¼ 0,
which implies v ¼ ðnþ 1=4Þp, for any integer n. Then, Eq.
(142) implies that AL ¼ A ¼ 0 and BL is undetermined.
Outside the plasma, u¼ 0.

Inside the plasma, d/ is given by Eq. (147) with
AL ¼ A ¼ 0. Outside, d/ is given by Eq. (149) with D1 given
in terms of BL by Eqs. (118) and (119). Thus,

d/ðrÞ ¼ Cr#‘ þ

BL

k
# 2rca

rvg

" #1=2

sin

ðr

rUH

kdr þ ðnþ 1=4Þp

2

4

3

5 ; r < rUH

#BL

ffiffiffiffiffiffiffiffiffiffi
pLrc

rUH

r
ð#1Þn rUH

r

& '‘
; r > rUH:

8
>>>>><

>>>>>:

(154)

For ‘ / 0, C can be chosen arbitrarily. By taking
C ¼ BL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pLrc=rUH

p
r‘UHð#1Þn, the perturbed potential out-

side the plasma vanishes. The result is an internal Bernstein
mode with arbitrary amplitude BL. The mode has no effect
on the admittance; it can neither be detected nor launched
using wall potentials. These modes have similar appearance
to the ‘ > 0 Bernstein modes, except that d/ ¼ 0 outside the
plasma. The dispersion relation is given by v ¼ ðnþ 1=4Þp,
which implies, using Eq. (138),

ðrUH

0

kdr ¼ ‘ p
2
þ np : (155)

The frequencies predicted by Eq. (155) [using the gen-
eral form for kða=bÞ found by solving Eq. (127)] are shown
in Fig. 12 for ‘ ¼ 0 and compared to the frequencies

obtained from numerical solution of Eq. (85), again taking
Eq. (79) as the species s density profile with Dr ¼ 1=10 rw,
and a uniform in r. There is good agreement with Eq. (85)
solutions when krc % 1 (the lowest-order modes), and fre-
quencies show the expected behavior given by Eq. (127) as
wavenumber increases. A few of the low-order modes are
displayed in Fig. 13.

B. Two upper hybrid cutoffs

There are circumstances where the a and b profiles have
the form shown in Fig. 14. For instance, in a centrifugally
separated plasma, the density of a species of intermediate
mass may have the form shown while the overall density is
uniform, so that a is roughly constant;25 see Fig. 1. There is
then a range of frequencies for which there are two upper
hybrid cutoffs, at radii rUH1

and rUH2
, rUH1

< rUH2
. The

Bernstein dispersion relations are modified by the second
cutoff.

In between the cutoffs, the WKB solution for u(r) can
be written in two equivalent ways,

FIG. 12. Frequency spectrum of internal ‘ ¼ 0 Bernstein modes for two val-
ues of the cyclotron radius (measured in units of rw). Plasma parameters are
chosen, so that there is a single cutoff: the aðrÞ profile is assumed to be uni-
form, and density is given by Eq. (79). Crosses: numerical solution of Eq.
(85), valid for the low order modes with krc % 1. Dots: WKB approxima-
tion, Eq. (155), valid for kL > 1.

FIG. 13. The five lowest order internal Bernstein potential eigenmodes for
‘ ¼ 0 for the same plasma parameters as in Fig. 12, taking rc ¼ 1=60.
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uðrÞ ¼ A
r‘#1

D
þ

r‘#1=2
UH2

cosðv2 þ p=4Þ

"

( # 2pL2a
rvg

" #1=2

cos

 ðr

rUH2

kdr þ v2

!#

(156)

or

uðrÞ ¼ A
r‘#1

D
þ

r‘#1=2
UH1

cosðv1 # p=4Þ

"

( #2pL1a
rvg

" #1=2

cos

 ðr

rUH1

kdr þ v1

!#
; (157)

where L#1
1 ¼ jD0ðrUH1

Þj and L#1
2 ¼ D0ðrUH2

Þ. These solu-
tions must match, and therefore we require that the phases v1

and v2 satisfy

v1 ¼ v2 #
ðrUH2

rUH1

k dr; (158)

and also

cosðv2 þ p=4Þ ¼ rUH2

rUH1

" #‘#1=2
ffiffiffiffiffiffi
L2

L1

s

cosðv1 # p=4Þ : (159)

The perturbed potential then follows from Eq. (69). We
must now integrate over the intermediate form, Eq. (113), at
both rUH1

and rUH2
, to obtain the following WKB result for

d/ðrÞ:

d/ ¼ Cr#‘ þ Ar#‘
ðr

0

P
dr0r02‘#1

Dðr0Þ
þ A

0 ; r < rUH1

#pL1r2‘#1
UH1

tan v1 #
p
4

& '
r#‘ þ

r‘#1=2
UH1

kcos v1 #
p
4

& '

( #2pL1a
rvg

" #1=2

cos

 ðr

rUH1

kdr þ v1

!

; rUH1
< r < rUH2

p L2r2‘#1
UH2

tan v2 þ
p
4

& '
# L1r2‘#1

UH1
tan v1 #

p
4

& 'h i
r#‘; r > rUH2

:

8
>>>>>>>>>>><

>>>>>>>>>>>:

(160)

The Bernstein modes with ‘ > 0 have C¼ 0 and satisfy
d/ðrwÞ ¼ 0, which implies the WKB dispersion relation

ðrw

0

Pdr0
r02‘#1

Dðr0Þ
þp L2r2‘#1

UH2
tan

"
v2þ

p
4

#
#L1r2‘#1

UH1
tan

"
v1#

p
4

#) *

¼0: (161)

The Bernstein modes with ‘ / 0 have C 6¼ 0 and satisfy
A¼ 0 and cosðv1 # p=4Þ ¼ 0 ¼ cosðv2 þ p=4Þ [but
A=cosðv1 # p=4Þ finite], which by Eq. (158) requires

ðrUH2

rUH1

k dr ¼ ðn# 1=2Þp (162)

for any integer n.

C. Admittance regimes for the ‘> 0 cyclotron
response in a single-species plasma

For a single species plasma with a monotonically
decreasing density profile, the driven response to a wall

potential with given mode number ‘ at a real frequency near
the cyclotron frequency exhibits several regimes that depend
on the locations of cutoffs and resonances. These in turn
depend on the a and b profiles.

For ‘ / 0, the only possible plasma excitations are in-
ternal Bernstein modes (unless there is an inner conductor
as in Sec. VI C). Furthermore, the aðrÞ profile for ‘ / 0 has
the form shown in Fig. 15(b): it is monotonically decreasing
in r. A cutoff, if one occurs, now traps the modes on the
outside of the plasma. In this case, there will also generally
be a resonance which will cause strong absorption unless
the plasma edge is sharp compared to k, so that a reflection
at the edge can occur. In any case, the ‘ / 0 excitations
have no effect on the admittance because they are internal
modes.

For ‘ > 1, the aðrÞ profile has a typical form shown in
Fig. 15(b); it may be non-monotonic, depending on the
sharpness of the edge in the density profile, and the value of
‘. Cutoffs and resonances occur in various locations depend-
ing on the frequency and mode number.

For ‘ > 1, the different regimes are

FIG. 14. a and b profiles for a case with two upper hybrid cutoffs.
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1. x 2 Xc > ð‘2 1Þbmax or x 2 Xc < ð‘2 1ÞxE ðrw Þ: Fluid
regime

In this regime there are no resonances or cutoffs, so
the admittance should be nearly that of a cold fluid plasma
(Sec. IV); see Eq. (75).

2. ð‘2 2Þbmax 1 Da < x 2 Xc < ð‘2 1Þbmax : Bernstein
mode regime

Here, Da is the depth of the minimum in aðrÞ (if a mini-
mum exists–see Fig. 15(b)). In this regime, there is a single
upper hybrid cutoff, so the admittance is as described in Sec.
IX A: it displays peaks at the Bernstein mode frequencies,
whose widths vanish as collisional damping ! vanishes; see
Eq. (151).

3. ð‘2 1ÞxE ðrw Þ< x 2 Xc < ð‘2 2Þbmax 1 Da: Resonance
regime

In this regime there are one or possibly two resonances,
along with a cutoff at larger radius. At the cutoff, the cold
fluid solution (driven by the wall potential) couples to a
Bernstein wave. This wave then carries energy to the nearest
resonance, where it is absorbed via one of the processes
mentioned in Sec. VIII B. Thus, the solution for u(r) to the

right of the cutoff is Eq. (66), and to the left (but away from
the resonance) it is

u ¼ Ar‘#1

D
þ B

#2rca
rvg

" #1=2

e
i
Ð r

rUH
kdr
: (163)

Here, the positive sign in the exponential is chosen because
the group velocity, given by Eq. (107), will then be negative,
carrying energy to smaller radii according to Eq. (96).
Furthermore, the coefficients B and A are related by the con-
nection formulae (124)–(126) where, comparing Eq. (163)
(calculated near the cutoff where krc ! 0) to (110), we find

BL cos v ¼ B;

BL sin v ¼ #iB;

AL ¼ A:

(164)

Then taking BR1
¼ 0 in Eqs. (125) and (126) and solving for

B yields

B ¼ ð1# iÞ

ffiffiffiffiffiffi
pL
2rc

s

r‘#1=2
UH A : (165)

The perturbed potential to the right of the cutoff is still given
by Eq. (149), where D1 is related to A through Eqs. (118),
(119), (164), and (165)

D1 ¼ ð1# iÞ
ffiffiffiffiffiffiffiffiffiffi

p
2rUH

r
L
rc

" #1=6

B ¼ #ip
L
rc

" #2=3

r‘#1
UH A :

(166)

When this expression for D1 is used in Eq. (149), and that
expression for d/ðrÞ is used to determine the admittance via
Eq. (75), the result is

Y ¼ #‘þ r2‘
w

ðrw

0

P dr0
r02‘#1

Dðr0Þ
# piL r2‘#1

UH

0

@

1

A ;

,

(167)

which is identical to the cold fluid result for a single cutoff,
Eq. (78). In both cases, Bernstein waves carry energy away
from the surface wave and damp before normal modes can be
set up. In Eq. (78), the damping is due to collisions, but here
the damping is also caused by absorption at the resonance.

Figure 16 plots the predicted admittance versus fre-
quency for a single-species density profile of the form shown
in Fig. 15, ‘ ¼ 4 and ! ¼ bmax=100. We use the general
form for kða=bÞ found by solving Eq. (127), and we use
Eq. (167) in the resonance regime, and Eq. (151) in the
Bernstein mode regime. For the parameters of the figure,
these regimes are delineated by 0:66 / ðx# XcÞ=bmax / 2
and 2 / ðx# XcÞ=bmax / 3, respectively. Numerical solu-
tions of Eq. (85) are also shown for values of x that satisfy
krc % 1. Peaks in the admittance due to weakly damped
Bernstein modes are apparent, but the peaks disappear in the
resonance regime where strong absorption of the Bernstein
waves is predicted.

FIG. 15. b and representative a profiles (in units of bmax) for a single species
plasma with monotonically decreasing density nðrÞ ¼ n0 expð#ð2r=rwÞ4Þ.
Frequencies are chosen so that there is one cutoff and one or more resonan-
ces. (a) ‘ / 0 and (b) ‘ > 1.
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X. CONCLUSIONS AND DISCUSSION

Two types of electrostatic cyclotron waves can propa-
gate perpendicular to the magnetic field in a non-neutral
plasma column: surface cyclotron waves and Bernstein
waves. The surface cyclotron wave propagates only in the h
direction, causing density perturbations on the edge(s) of the
column. These surface waves occur only for ‘ > 0 in systems
with no inner conductor, but can occur for any ‘ when there
is an inner conductor. The waves can be launched and
detected using electrodes at the wall, and are useful diagnos-
tics of the various properties of different species such as their
charge to mass ratio and concentration.

The Bernstein waves propagate both in r and h, and
their behavior is strongly influenced by resonances or cut-
offs. At cutoffs, where the wave frequency equals the local
upper hybrid frequency, the Bernstein waves are reflected,
enabling normal modes. At resonances where the Doppler
shifted wave frequency equals the cyclotron frequency as
seen in the rotating frame, the Bernstein waves are
absorbed.

In fusion plasmas, the method of cyclotron heating and
current drive uses this resonance to heat and drive current
the plasma, by absorbing applied electromagnetic wave
energy.27 However, in that case, the waves have finite kz,
which allows Landau damping via the “magnetic beach” pro-
cess.18 Here, where we consider waves with kz ¼ 0, spatial
Landau damping can still occur, caused by E( B drift
motion in the radial equilibrium electric field. However, as
far as we know this has not been studied for Bernstein
waves. More theory work is needed to elucidate this process.
In addition, while we showed that the surface wave is not
strongly affected by a resonance [because the field amplitude
u(r) passes through zero at resonance], there is probably
some absorption caused by energy broadening of the cyclo-
tron frequency !X: see Eq. (19). This process will also be
explored in future work.

Furthermore, we determined how Bernstein waves mode
couple to the surface cyclotron wave at cutoffs. This cou-
pling explains how the Bernstein waves can affect the admit-
tance function (the normalized electric field at the wall).
Energy from the surface cyclotron wave is coupled into the
Bernstein waves, which damps and broadens the frequency
response of the surface waves provided that the collision rate

! satisfies !rUH ! jvgj. On the other hand, when !rUH"jvgj,
the coupling produces a set of sharp resonant peaks in
the admittance due to Bernstein normal modes: see Figs. 11
and 16.

From the point of view of ion cyclotron mass spectrome-
try, the coupling of the surface wave to Bernstein modes and
concomitant broadening of the admittance curve adds
unwanted complexity to the plasma’s frequency response. It
may, therefore, be worthwhile to explore circumstances
where a resonance wipes out the Bernstein mode response,
while preserving a nearly undamped surface cyclotron wave.
This occurred in the example of Fig. 4, where there is an
inner conductor that allowed surface cyclotron waves to
propagate, with no upper hybrid cutoff in the plasma. The
use of an inner conductor allows this to occur in various
cases (including ‘ > 0 modes). This should be explored
further.

Bernstein modes can also occur when ‘ / 0 if there is a
cutoff to reflect the waves and set up normal modes, but we
found that (if there is no inner conductor) these waves are
purely internal modes that make no potential perturbation
outside the plasma (see Fig. 13, for example eigenfunctions).
Furthermore, we find that resonances can damp these internal
modes. Nevertheless, if there is a sufficiently sharp density
gradient at the plasma edge, it has been shown in other
work24 that some of the low-order ‘ ¼ 0 modes with kL < 1
can still occur. The damping process for these modes and its
dependence on the plasma edge scale length L will be
explored in future work.

Bernstein waves can also propagate at multiples of the
cyclotron frequency. The methods used in this paper can be
extended to investigate the behavior of these higher fre-
quency Bernstein waves in a non-neutral plasma column.
This issue will be pursued in future work.

Also, it is important to note that many experiments do
not employ long plasma columns, and the theory presented
here needs to be modified to account for finite length effects.
One such effect that requires further study is the coupling of
‘ / 0 internal modes to external electrodes at the end of the
plasma column. This coupling should allow such modes to
be detected and launched.
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APPENDIX A: GUIDING CENTER HAMILTONIAN VIA
CANONICAL LIE TRANSFORMATION

In this appendix, we outline the Lie transform perturba-
tion method14 used to derive Hamiltonian (3) from Eq. (1).
This method is more elegant than using a perturbation
method based on the mixed variable generating function Wr

discussed in Sec. I. To prepare the Hamiltonian, we Taylor
expand the effective potential /effðrÞ about the potential
minimum at r0ðphÞ,

FIG. 16. Admittance versus frequency for an ‘ ¼ 4 wall perturbation in a
single species plasma with the same plasma density as in Fig. 15, taking
rc ¼ rw=100 and ! ¼ bmax=100. Curve: WKB solution. Dots: solution to
Eq. (85).
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2
mX2ðr0Þdr2 þ emX2

c

r0
dr3

( # 1

2
þ 2e2Eðr0Þ

mX2
cr0

# 1

6
e2 E00ðr0Þ

mX2
c

r0

 !

þ e2mX2
cdr4

r2
0

5

8
# 5

2

e2Eðr0Þ
mX2

cr0

# 1

24
e2E000ðr0Þr2

0

 !

# 3

4

e3mX2
cdr5

r3
0

þ 7

8
e4 mX2

cdr6

r4
0

þ Oðe5Þ ; (A1)

where dr ¼ r # r0ðphÞ, and where we have used Eq. (4). A
canonical transformation from r to dr is accomplished with a
type-2 mixed generating function,

F2ðr;PÞ ¼ ðr # r0ðPhÞÞPr þ hPh; (A2)

where capitalized momenta are the new momenta. This gen-
erator implies pr ¼ Pr; ph ¼ Ph, and it yields a new canoni-
cal angle coordinate H defined as

H ¼ @F2

@Ph
¼ h# @r0

@ph
pr: (A3)

Next, we introduce lowest-order action-angle variables
ðw0; l0Þ [and corresponding new conjugate coordinates
ðH0; ph0

Þ] using the usual definitions for the action-angle
variables of a harmonic oscillator,

dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0

mXðr0Þ

s

cos w0; pr ¼ #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0mXðr0Þ

p
sin w0: (A4)

The canonical transformation to these variables can be
accomplished using a second generator !F2ðdr;H; l0; ph0

Þ
defined as

!F2 ¼ #
dr

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mXl0 # m2X2dr2

q

þ l0 cos#1 dr

ffiffiffiffiffiffiffi
mX
2l0

s !

þHph0
: (A5)

This generator implies that ph0
¼ ph and that

H0 ¼
@F2

@ph0

¼ H# @X=@ph

2X
l0 sin 2w0: (A6)

When written in these coordinates, the Hamiltonian has the
form

H?ðw0; l0; phÞ ¼ l0Xðr0Þ þ /0ðr0Þ þ
e2

2mX2
c

E2ðr0Þ

þ e4

m2r0X2
c

E3ðr0Þ þ eH1ðw0; l0; phÞ

þ e2H2ðw0; l0; phÞ þ , , ,; (A7)

where

H1 ¼ #
ffiffiffiffiffiffiffiffiffiffiffi
2l3

0X
m

r
cos3w0

r0
; (A8)

and H2, H3,… are not displayed due to their complexity.
The terms in H? involving w0 are transformed away

order-by-order using infinitesimal Lie transformations13,14

from coordinates z ¼ ðw0; l0;H0; phÞ to new conjugate coor-
dinates Z ¼ ðw; l; !h; !phÞ. The transformation is generated by
the following operator, defined by its action on a phase func-
tion f(z):

T̂ f ¼
XM

n¼0

ð#eÞn

n!
ŵnf : (A9)

The operators ŵn are defined recursively in terms of their
action on f,

ŵnf ¼ ½ŵn#1f ; g. ; ŵ0 ¼ 1; (A10)

where ½ ; . is the Poisson bracket for the phase space and g is
the generator of the transformation. Like T̂ , g is also written
as a series in e,

g ¼
XM

n¼1

en#1gnðzÞ: (A11)

A new Hamiltonian K(Z) is then obtained as a power series
in e via

K ¼ T̂ H?: (A12)

The generators gn are chosen to remove the w-dependence
from the Hamiltonian, order-by-order in e. Writing K
¼ K0 þ eK1 þ , , , and expanding Eq. (A12) in e implies

K0 ¼ lX ) H0;

K1 ¼ H1 # ½H0; g1.;

K2 ¼ H2 # ½H0; g2. # ½H1; g1. þ
1

2
½½H0; g1.; g1.

!

(A13)

Also, coordinates are transformed according to

z ¼ T̂ Z ¼ Z# e½Z; g1. þ Oðe2Þ: (A14)

Note that since Hn is independent of H0, so are gn and K.
Then, no derivatives of gn with respect to !h or !ph appear in
Eqs. (A13). Also, Eq. (A14) then implies that ph ¼ !ph.

At first order in e, Eq. (A13) implies that K1 ¼ 0 and

X
@g1

@w
¼ #H1ðw; l; phÞ; (A15)

which may be solved for g1 by integration. The constant of
integration is chosen so that g1 is periodic in w. Then, Eq.
(A14) implies that
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l0 ¼ lþ e
@g1

@w
þ Oðe2Þ;

w0 ¼ w# e
@g1

@l
þ Oðe2Þ;

H0 ¼ !h # e
@g1

@ph
þ Oðe2Þ:

(A16)

Working to Oðe4Þ, the result for the Hamiltonian is given in
Eq. (3). Also, application of the series expressions (A14)
[taken up to Oðe4Þ] to Eqs. (A6), (A4), and (A3) yields Eqs.
(13) and (14).

APPENDIX B: DERIVATION OF THE
QUASI-EQUILIBRIUM DISTRIBUTION

In this Appendix, we outline the derivation of Eq. (24), the
expression for the quasi-equilibrium distribution function fqe.
One elegant approach employs a novel gyro-averaged collision
operator that keeps both short-range (Boltzmann) and long-
range28 collisions. This approach will be discussed in a separate
publication.29 Here, we employ a perturbation approach,
adapted from Ref. 16. The collision operator is assumed to be a
Boltzmann operator. Equation (22) is transformed from coordi-
nates ðr; vÞ to new coordinates ðr; v?;w0; vzÞ, where

vr ¼ v? cos w0; !vh ¼ v? sin w0; vr ¼ v , r̂;
!vh ¼ v , ĥ # evdðr; tÞ (B1)

and the drift velocity vd is defined by the solution of the
quadratic equation

v2
d

r
þ E

m
# Xc

e
vd ¼ 0: (B2)

In these coordinates, Eq. (22) becomes

@f

@t
# e

@vd

@t
sin w0

@

@v?
þ cos w0

v?

@

@w0

" #
f þ v? cos w0

@f

@r

# erv? cos w0

@

@r

vd

r

& '
sin b

@

@v?
þ cos w0

v?

@

@w0

" #
f

þ Xc

e
# 2e

vd

r
# v?

r
sin w0

" #
@f

@w0

¼ Cðf ; f Þ: (B3)

The solution for f is obtained as a power series in e and
!̂ ) !e=Xc, where ! is the collision frequency [a frequency
scale factor on the order of C (f,f)/f]:

f ¼
X1

n ¼ 0
m ¼ 0

en!̂m fnm: (B4)

It was determined in Ref. 16 that @=@t is of order !̂e3, assum-
ing that @T=@r is of order e2 and @n=@r is O(1). For the
quasi-equilibrium, we therefore are concerned with terms of
order !̂0, i.e., fn0.

The lowest order equation is

Xc

e
@f00

@w0

¼ 0; (B5)

which implies that f00 ¼ f00ðr; v?; vz; tÞ. The equation of
order e0!̂1 is

!
@f01

@w0

¼ Cðf00; f00Þ: (B6)

Averaging both sides over w0 from 0 to 2p, and noting that
f01 is periodic in w0, implies that Cðf00; f00Þ ¼ 0, which
implies that f00 is a local Maxwellian,

f00 ¼ nðr; tÞ m

2pTðr; tÞ=m

" #3=2

e#mv2=2Tðr;tÞ: (B7)

Since Cðf00; f00Þ ¼ 0, Eq. (B6) then implies that
f01 ¼ f01ðr; v?; vz; tÞ. This function is determined at next
order in !̂

!
@f02

@w0

¼ !Cðf00; f01Þ; (B8)

where !Cðf ; gÞ ) Cðf ; gÞ þ Cðg; f Þ. A w0 average then
implies that !Cðf00; f01Þ ¼ 0. However, this implies that f01

¼ ðAðr; tÞ þ Bðr; tÞvz þ Cðr; tÞv2Þf00 (the collision operator
conserves particle number, parallel momentum, and kinetic
energy). When f01 is added to f00, this merely redefines
nðr; tÞ and T(r,t) (and allows a vz drift which we ignore), so
we can set f01 ¼ 0.

Next we consider f10, which must satisfy

Xc
@f10

@w0

þ v? cos w0

1

n

@n

@r
f00 ¼ 0 (B9)

[where we have used @T=@r ¼ Oðe2Þ]. The solution for f10 is

f10 ¼ h10ðr; v?; vz; tÞ #
v?
Xc

sin w0

1

n

@n

@r
f00: (B10)

The function h10 is determined using the equation of order e1!̂1,

!
@f11

@w0

¼ !Cðf00; h10Þ #
1

Xcn

@n

@r
!Cðf00; v?sin w0f00Þ: (B11)

In Ref. 16, it is shown that the second term on the rhs vanishes
due to conservation of momentum during collisions. Then, a
w0 average implies that !Cðf00; h10Þ ¼ 0, which implies, as
before, that we may set h10 ¼ 0, and we may set f11 ¼ 0.

In Ref. 16, working to higher order, similar arguments
were used to obtain f20,

f20 ¼ h20ðr; vz; v?; tÞ þ
Kðr; tÞ
4X2

c

v2
?cos 2w0f00; (B12)

where

h20 ¼
1

4X2
c

1

n

@n

@r

" #2

v2
? #

2T

m

" #
f00 (B13)

and

Kðr; tÞ ¼ # 1

n

@2n

@r2
þ 1

rn

@n

@r
þ mXc

T
r
@

@r

vd

r

& '
: (B14)

Also, f21 was determined to be
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!f21 ¼
Mðr; tÞ

8X2
c

!Cðf00; v
2
? sin 2w0f00Þ; (B15)

where

M ¼ #r
@

@r

1

rn

@n

@r
# mXc

T

vd

r

" #
: (B16)

Finally, an expression for f30 was also obtained,

f30 ¼ h30ðr; vz; v?; tÞ #
v?
Xc

sin w0f00
mv2

2T2

@T

@r
þ v2

?
4X2

cn

@

@r

1

n

@n

@r

" #2
" #

þ v2
?

8X2
cn

1

r2

@

@r
r2nK # v2

?
4Xc

m

T
r
@

@r

vd

r

& ' 1

n

@n

@r

( )

þ v?
Xc

sin w0f00
3

2T

@T

@r
þ T

2X2
cmn

@

@r

1

n

@n

@r

" #2
" #

# 2vd

Xcrn

@n

@r
# r

Xcn

@

@r

vd

r

& ' @n

@r

( )

# v3
?

Xcn
sin 3w0f00

1

24X2
c

@

@r
# 2

r

" #
ðnKÞ þ rm

12XcT

@

@r

vd

r

& ' @n

@r

" #

: (B17)

However, the function h30 was not determined. Since we
require f30, we continue the derivation, using the Oðe3!̂1Þ
equation

!
@f31

@w0

# v?
Xcr

sin w0

@f21

@w0

þ v?cos w0

Xc

@f21

@r

) *

¼ !Cðf00; f30Þ þ !Cðf10; f20Þ: (B18)

The function h30 is determined by integrating this equation
over w0. First, consider the terms involving f21. To evaluate
these, we note that the Boltzmann operator !Cðf ; gÞ has the
form

!Cðf ; gÞ ¼
ð

d3vsdXsrðXs; uÞ u½f ðv0Þgðv0sÞ þ f ðv0sÞgðv
0Þ

#f ðvÞgðvsÞ # f ðvsÞgðvÞ.; (B19)

where rðXs; uÞ is the cross-section for scattering angle Xs,
u ¼ jv# vsj and the prime denotes post-collision velocities.
For f21, the collision integral involved in Eq. (B15) is

!Cðf00; v
2
?sin 2wf00Þ ¼

ð
d3vsdXsrðXs; uÞ u f00ðvÞf00ðvsÞ

( ðv02?ssin 2w0s þ v02?sin 2w00
# v2

?ssin 2ws # v2
?sin 2w0Þ; (B20)

where ws is a variable of integration through vs, and w00 and
w0s are variables of integration through their dependence on
Xs. The operator has the following symmetry: if we define
new angles via ws ¼ w0 þ Dws;w

0
0 ¼ w0 þ Dw0 and

w0s ¼ w0 þ Dw0s, the operator

ð
d3vsdXs rðXs; uÞ u f00ðvÞf00ðvsÞ (B21)

is independent of w0, by the isotropy of the collision process
with respect to rotations about the z axis. This angle transfor-
mation transfers all w0 dependence to the four sin terms in
Eq. (B20), specifically sinð2w0 þ 2Dw0sÞ, sinð2w0 þ Dw0Þ,
sinð2w0 þ DwsÞ, and sin 2w0. Therefore, f21 is a sum of two
terms, one proportional to sin 2w0 and the other proportional
to cos 2w0. This implies that

ð2p

0

dw0

2p
sin w0

@f21

@w0

¼
ð2p

0

dw0

2p
cos w0

@f21

@r
¼ 0: (B22)

A similar argument implies that

ð2p

0

dw0

2p
!Cðf10; f20Þ ¼ 0 (B23)

and that

ð2p

0

dw0

2p
!Cðf00; f30Þ ¼ !Cðf00; h30Þ: (B24)

Thus, the w0 average of Eq. (B18) implies that
!Cðf00; h30Þ ¼ 0, so we can set h30 ¼ 0. Therefore, to Oðe3Þ,
the quasi-equilibrium distribution is

fqe ¼ f00 þ ef10 þ e2f20 þ e3f30 þ Oðe4Þ ¼ nðrÞ
ð2pT=mÞ3=2

exp½#mDv2=2TðrÞ. 1þ
e2rx0r0

4XcT
mðv2

r # Dv2
hÞþe3Dvh

(

( T0

2XcT
3# mDv2

T

" #
#

x0r0

4X2
cT

m v2
r þ

5

3
Dv2

h

" #
þ 2rT

n0

n

" #
#

rx00r0

4X2
cT

mðv2
r þ

1

3
Dv2

hÞ

" #)

þ Oðe4Þ; (B25)
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where Dv2 ¼ v2
r þ v2

z þ Dv2
h, Dvh ¼ v , ĥ # erxr0

, and xr0
is

the rotation frequency for a thermal equilibrium system,

xr0
ðrÞ ¼ 1

mXcr
EðrÞ # TðrÞ

nðrÞ
n0ðrÞ

" #
þ

x2
r0
ðrÞ

Xc
: (B26)

When Eq. (B25) is multiplied by Dvh, integrated over v, and
divided by nr, one obtains a correction to this rotation fre-
quency due to shears, given in Eq. (28).

This expression for fqe can be converted into a function
solely of the constants of motion, Eq. (24), by substituting
Eqs. (9) and (13) for r, their time derivative for vr [using Eq.
(16)], and the time-derivative of Eqs. (11) and (14) for vh=r
[using Eqs. (16) and (17)]. The result, in terms of r0, vz and
l, and independent of w, can be converted to Eq. (24) using
Eq. (4).
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