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Structure of two-dimensional plasma crystals in anharmonic Penning traps
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This paper derives an analytic expression for the density per unit area of charges confined in a two-dimensional
configuration in a Penning trap with an anharmonic applied trap potential that is expressed as a multipole
expansion. This expression is used to find the optimum potential, with a given number of multipoles, for trapping
a plasma with the most uniform possible density per unit area. Minimum energy states in such an optimized trap
potential are evaluated numerically and the resulting crystal structures are shown to be defect-free over the central
region of the plasma where the density is most nearly uniform. The paper also briefly considers the possibility of
using an � = 3 rotating wall trap potential in order to confine minimum energy states with triangular symmetry
and no defects.
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I. INTRODUCTION

In several recent experiments charged particles have been
trapped and cooled in two-dimensional configurations using
a Penning trap. These configurations have been used to study
structural phase transitions [1], plasma waves and wakes [2],
qubit error correction in quantum computing [3], and quantum
simulations of the hexagonal two-dimensional (2D) Ising
model with long-range interactions [4]. In the experiments the
external trap potential, produced by voltages on cylindrically
symmetric electrodes, is carefully crafted to be a nearly pure
quadrupole:

φtrap(ρ,z) = 1

2

mω2
z

q

(
z2 − 1

2
ρ2

)
, (1)

where ρ and z are cylindrical coordinates and ωz is the axial
trap frequency. Such traps produce harmonic oscillations for
a single particle in the trap and so are often referred to as
harmonic traps. In this paper we consider the effect on the 2D
plasma equilibrium of adding higher-order multiple moments
to the trap potential. We find that these higher-order multipoles
can be employed to manipulate the areal (2D) density of the
plasma crystal so as to produce a more uniform and defect-free
2D crystalline structure than is possible in a harmonic trap. In
linear RF traps, it has been shown that adding anharmonic
terms to the trap potential could generate uniformly spaced
strings of ions, which have some potential benefits for quantum
computation [5]. Two-dimesional lattices with fewer defects
could make closer contact to the hexagonal 2D Ising model
and may also provide a more stable crystal structure that allows
better imaging and addressing of individual ions in quantum-
computing applications [6,7].

Equilibria for N � 1 charges confined in a harmonic trap
have been carefully studied previously [8]. The charges form
a uniform density spheroid whose density is set by the plasma
rotation frequency and cyclotron frequency, and whose aspect
ratio (i.e., length/diameter) depends on the relative strength
of the trap potential (parametrized by ωz) compared to the
potential produced by the plasma charges (as parametrized
by the plasma frequency ωp). As ωz/ωp tends toward the
maximum value of unity, the aspect ratio tends to zero, and the
charges form a 2D equilibrium in the z = 0 plane. For N � 1,

the value of ωz/ωp must satisfy

1 − ω2
z

ω2
p

<
1.33

N1/2
, N � 1, (2)

to achieve the 2D equilibrium; otherwise the self electric
field of the plasma pushes ions out of the z = 0 plane. The
number of charges per unit area in the equilibrium, σ , is the
projection of the uniform spheroid onto z = 0 and hence is
roughly proportional to

√
1 − ρ2/r2

p, where rp is the plasma
radius. This nonuniform density per unit area produces 2D
laser-cooled crystal structures with many dislocations, because
the interparticle spacing in the 2D crystal increases with radius
ρ [9]. However, we show that higher-order multipole moments
added to the trap potential can make σ more uniform with
radius, producing more symmetric crystals.

II. TRAP POTENTIAL

In this paper we are concerned with Penning trap plasma
equilibria wherein the total force on each particle is zero, as
seen in a frame rotating with the plasma. This force can be
written as the gradient of a potential,

F(ri) = −∇qφeff(ri), (3)

where the effective potential qφeff of charge a q with mass m

at position ri , as seen in a frame rotating at frequency ω with
the plasma, is a sum of three terms [8]:

qφeff(ri) = qφtrap(ρi,zi) + 1
4m ω2

pρ2
i + qφp(ri) . (4)

Here qφp(ri) is the electrostatic potential energy of charge i

due to the other plasma charges (as well as image charges in
the trap electrodes), the term proportional to ρ2 is the effective
potential well from plasma rotation at frequency ω, the plasma
frequency ωp is related to ω by ω2

p = 2ω(�c − ω), and �c is
the cyclotron frequency.

For a plasma whose radius rp is small compared to the
electrode radius rw, it is useful to express qφtrap(ρ,z) as a
multipole expansion:

qφtrap(ρ,z) =
∞∑

n=0

V2n

(
r

rw

)2n

P2n

(
z

r

)
, (5)
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where Pn(x) is a Legendre polynomial, r =
√

ρ2 + z2 is
spherical radius, and the multipole coefficients V2n are deter-
mined by the applied electrode voltages. [We assume the trap
potential is an even function of z, so that only even multipoles
enter Eq. (5).] For an ideal harmonic trap, multipoles with
2n > 2 are zero by choice of the electrode geometry and
applied voltages. Then V2 = (1/2) mω2

z r
2
w and qφtrap has the

quadrupolar (harmonic) form of Eq. (1). Here, however, we
consider plasmas in anharmonic traps, where the trap potential
includes the higher multipole moments V2n. We find it useful to
express these moments in terms of dimensionless coefficients
C2n = r2n−2

p V2n/(r2n−2
w V2), writing Eq. (5) as

qφtrap(ρ,z) = V0 + 1

2
mω2

z r
2
p

∞∑
n=1

C2n

(
r

rp

)2n

P2n

(
z

r

)

= V0 + 1

2
mω2

z r
2
p

[
z2 − 1

2
ρ2

+C4

(
z4 − 3z2ρ2 + 3

8
ρ4

)

+C6

(
z6− 15

2
z4ρ2+ 45

8
z2ρ4− 5

16
ρ6

)
+ · · ·

]
,

(6)

where z = z/rp and ρ = ρ/rp.

III. 2D FLUID EQUILIBRIUM

We focus on equilibria in this trap potential produced by a
sufficiently large value of ωz so that the plasma is a thin plane
of charge trapped in the z = 0 plane, with number per area
σ (ρ,θ ). For N identical charges at positions (ρi,θi), σ is given
by

σ (ρ,θ ) =
N∑

i=1

δ(ρ − ρi)δ(θ − θi)

ρ
. (7)

The potential energy qφp(ρi,θi) for a charge located at (ρi,θi)
due to other charges can then be obtained from σ using a
Green’s function solution of Poisson’s equation,

qφp(ρi,θi) = q2
∑
j �=i

G(ρi,ρj ,θi − θj )

+ lim
ε→0

[q2G(ρi,ρi + ε,0) − q2/ε]

= lim
ε→0

q2
∫

ρo dρ0 dθ0G(ρi,ρ0 + ε,θi − θ0)

× σ (ρ0,θ0) − q2/ε, (8)

where the Green’s function G satisfies

∇2G = −4πδ(z)
δ(ρ − ρ0)

ρ
δ(θ − θ0) (9)

with the boundary condition that G = 0 on the electrodes. (The
last term and the ε → 0 limit in Eq. (8) are employed in order
to account for the interaction energy of a charge with its own
image, lim

ε→0
[q2G(ρi,ρi + ε,0) − q2/ε] [10].)

If rw � rp, so that image charges can be neglected when
determining φp, one can use the free-space Green’s function,

which has the following useful form:

lim
rw→∞ G(ρ,ρ0,�θ ) =

∞∑
�=−∞

ei��θ

∞∫
0

dk J�(kρ)J�(kρ0), (10)

where J�(x) is a Bessel function of the first kind.
For a trap potential with given multipole coefficients C2n, σ

is determined by finding a charge configuration with F(ri) = 0
for each charge.

For N point charges, this procedure can be carried out
numerically, and the results of such calculations are presented
in Sec. VI. However, if we approximate σ (ρ,θ ) as a smooth
function of position σ (ρ) (a mean-field or fluid theory, useful in
the N � 1 limit), then analytic expressions for the equilibrium
form of σ (ρ) can be obtained. These expressions rely on the
following integral identities:

I2n ≡ 2π

∫ 1

0
ρ0dρ0

∫ ∞

0
dk J0(kρ)J0(kρ0)

√
1 − ρ2

0 ρ2n
0

=
n+1∑
k=0

φ2n,kρ
2k, (11)

where 0 < ρ < 1 is assumed.
A list of the coefficients φ2n,k is given in Table I. Using

these identities, we obtain the following expression for the
equilibrium mean-field density per unit area σ (ρ):

σ (ρ) =
√

1 − ρ2
∞∑

n=0

σ2nρ
2n, (12)

where the coefficients σ2n are chosen so that the force on the
plasma vanishes. Using Eqs. (8) and (10)–(12), and neglecting
the self-image charge potential, the plasma potential inside the
plasma can be written as a power series in ρ:

qφp(ρ) = q2rp

∞∑
n=0

σ2n

n+1∑
k=0

φ2n,kρ
2k . (13)

The mean-field equilibrium condition is qφeff(ρ,z = 0) =
constant inside the planar plasma. Using Eqs. (4), (6), and (13),
this equilibrium requirement can be written as

1

2
mω2

⊥r2
p

(
ρ2 +

∞∑
n=2

C2nP2n(0)ρ2n

)

+ q2rp

∞∑
n=0

σ2n

n+1∑
k=0

φ2n,kρ
2k = constant, (14)

where ω2
⊥ ≡ βω2

z is the perpendicular trap frequency, C2n ≡
C2n/β, and we have introduced the trap parameter β via the

TABLE I. The integral I2n(ρ).

2n I2n(ρ)

0 π2

4 (2 − ρ2)
2 π2

64 (8 + 8ρ2 − 9ρ4)
4 π2

256 (16 + 8ρ2 + 18ρ4 − 25ρ6)
6 π2

16 384 (640 + 256ρ2 + 288ρ4 + 800ρ6 − 1225ρ8)
8 π2

65 536 (1792 + 640ρ2 + 576ρ4 + 800ρ6 + 2450ρ8 − 3969ρ10)
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definition [8]

β ≡ ω2
p

2ω2
z

− 1

2
= ω(�c − ω)

ω2
z

− 1

2
. (15)

For a harmonic trap, the trap parameter must be greater than
zero in order for there to be a radial potential well that confines
the plasma charges.

Equation (14) can be solved for the density coefficients σ2n

by collecting powers of ρ. Noting that P2n(0) = √
π/[�(n +

1)�(1/2 − n)], and using Table I, we obtain, after some
algebra,

σ0 = 2

π2

rp

a3
0

(
1 + 1

3
C4 − 3

10
C6 + 2

7
C8 − 5

18
C10 + · · ·

)
,

(16)

σ2 = 4

3π2

rp

a3
0

(
C4 − 3

5
C6 + 18

35
C8 − 10

21
C10 + · · ·

)
, (17)

σ4 = − 8

5π2

rp

a3
0

(
C6 − 4

7
C8 + 10

21
C10 + · · ·

)
, (18)

σ6 = 64

35π2

rp

a3
0

(
C8 − 5

9
C10 · · ·

)
, (19)

σ8 = − 128

63π2

rp

a3
0

(C10 + · · · ), (20)

and so on, where the scale length a0 ≡ (q2/mω2
⊥)1/3 is on the

order of the interparticle spacing. Note that for rp/rw 
 1,
the scaled multipole coefficients C2n of the trap potential fall
off rapidly with increasing n, as (rp/rw)2n−2, so these series
expressions tend to converge rapidly. Also, note that if C2n = 0
for n > M , then σ2n = 0 for n � M . For instance, in a pure
harmonic trap with C4 = C6 = · · · = 0 only σ0 is nonzero,
and the mean-field density is [11]

σ (ρ) = 2rp

π2a3
0

√
1 − ρ2 . (21)

The plasma radius rp is determined by the total particle
number N and the multipole coefficients via the expression

N = 2πr2
p

∫ 1

0
ρ dρ σ (ρ) = π3/2

2
r2
p

∞∑
n=0

σ2n

�(n + 1)

�(n + 5/2)
,

(22)

where we have used Eq. (12).
Substituting from Eqs. (16)–(20) and collecting terms

yields

N = 4

3π

r3
p

a3
0

(
1 + 3

5
C4 − 9

14
C6 + 2

3
C8 − 15

22
C10 + · · ·

)
.

(23)

Note that for given multipole moments, this implies that
the plasma radius scales as N1/3. One might have naively
expected that the plasma radius would scale as N1/2, but this
scaling assumes a mean areal density that is independent of
N . However, for fixed external potentials Eqs. (16)–(20) imply
that the mean areal density increases as N increases (as N1/3),
so that the radius increases more slowly than N1/2.

For anharmonic traps, the criterion for stability of a 2D
equilibrium, Eq. (2), must be modified. This equation is
based on the stability criterion for a uniform 2D crystal, that
σ (4πq2/mω2

zh
)2/3 < w1 ≡ 1.11 . . ., where σ is the density

per unit area and ωzh
is the harmonic trap frequency [11].

In an anharmonic trap the effective harmonic frequency
depends on radius; according to Eq. (6), it is given by
ω2

zh
= ω2

z [1 − 3C4ρ
2 + (45/8) C6ρ

4 + · · · ]. However, if C4,
C6, . . . are of order unity, then C4, C6, . . . are small (of order
β 
 1), so this radial variation in the harmonic frequency can
be neglected, and one can take ω2

zh
= ω2

z . The areal density
σ also varies with radius, but for simplicity we assume that
anharmonic terms are such that the maximum, σ0, occurs
at ρ = 0. Using Eq. (16) for σ0 and Eq. (23) for rp then
yields the following stability criterion for a 2D equilibrium
with N � 1:

β <

(
π3ω3

1

96N

)1/2 [1 + (3/5)C4 − (9/14)C6 + (2/3)C8 − (15/22)C10 . . .]1/2

[1 + (1/3)C4 − (3/10)C6 + (2/7)C8 − (5/18)C10 . . .]3/2
. (24)

Using Eq. (15) to relate β to ω2
p/ω2

z , this criterion reduces to

Eq. (2) in the harmonic limit C4 = C6 = · · · = 0.

IV. IMAGE CHARGES

So far, the effect of images charges on the equilibrium
has been neglected. To lowest order in rp/rw, this effect can
be evaluated by approximating the plasma as a monopole with
charge Nq located at the origin, which produces image charges
on the wall that create an extra multipole image potential of
the form given in Eq. (5). Hence, there is a correction to the
coefficients V2n in Eq. (5) due to the image charge, with an
order of magnitude of Nq2/rw [12]. For example, for a trap

with cylindrical electrodes, the image charge potential created
by a charge Nq located at the origin is

qφimage(ρ,z)=− Nq2

rw

∫ ∞

−∞

dk

π

K0(|k|)
I0(|k|) I0

(
|k| ρ

rw

)
eikz/rw .

(25)

Taylor expansion of φimage for ρ and z near the origin yields a
multipole expansion of φimage with the same form as Eq. (5),
with coefficients V

image
2n given by

V
image

2n = −Nq2

rw

(−1)n

(2n)!

∫ ∞

−∞

dk

π
k2n K0(|k|)

I0(|k|) . (26)
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TABLE II. Image charge multipole coefficients for a cylindrical
wall.

2n V
image

2n /(Nq2/rw)

2 0.205 91
4 −0.054 905
6 0.014 296
8 −0.003 658 2
10 9.2745 × 10−4

The coefficients V
image

2n are given in Table II.

V. UNIFORM DENSITY MEAN-FIELD EQUILIBRIUM

For a harmonic trap, the charge density σ (ρ), given by
Eq. (21), is strongly nonuniform. For studies that involve
2D plasma crystals the nonuniformity of σ (ρ) produces
inhomogeneous crystal structures with many dislocations
throughout the crystal. By choosing appropriate multipole
coefficients C4, C6, . . ., the charge density can be made more
uniform, which allows a more symmetric crystal structure.

For instance, if we assume C4 �= 0 but C2n = 0 for 2n > 4,
then according to Eqs. (12) and (16) and (17),

σ (ρ) =
√

1 − ρ2 (σ0 + σ2ρ
2) . (27)

If we choose C4 so that σ2 = σ0/2, then σ ′′(0) = 0, making the
charge density as uniform as possible in this case. According
to Eqs. (16) and (17), σ2 = σ0/2 provided that C4 = 1, or
C4 = β and V4 = V2βr2

w/r2
p. (Since β 
 1 for a 2D planar

crystal with N � 1 [see Eq. (24)], this implies that V4 need
not be much larger than V2 even if rw � rp.) For C4 = 1
the plasma radius rp is determined by the number of charges
through Eq. (23):

r3
p = 15π

32
Na3

0 . (28)

By adding a C6 moment, the areal density can be made
even more uniform. Equations (12) and (16)–(18) imply that
now

σ (ρ) =
√

1 − ρ2(σ0 + σ2ρ
2 + σ4ρ

4). (29)

Choosing σ2 = σ0/2 and σ4 = 3σ0/8 sets both σ ′′(0) and
σ iv(0) equal to zero. According to Eqs. (16)–(18), these
values for σ2 and σ4 are obtained when C4 = −C6 = 2/3,
which implies V4 = 2/3V2β r2

w/r2
p and V6 = −2/3V2β r4

w/r4
p.

(Unless V2 is fairly small this large value for V6 may be difficult
to achieve in a realistic geometry with rw � rp.) For these
values of C4 and C6 the plasma radius is determined in terms
of N by Eq. (23):

r3
p = 105π

256
Na3

0 . (30)

Keeping even higher multipoles allows even more uniform
σ (ρ), but this is probably impractical due to the large electrode
potentials required. Nevertheless, for completeness, we note
that the “best case” (in some sense) would be perfectly uniform
charge density, σ (ρ) = σ 0, out to radius rp. According to

Eq. (8) this produces a plasma potential given by

φplasma(ρ) = 4q2σ 0rp E(ρ2), ρ < 1, (31)

where E(x) is an elliptic integral. The required trap potential
is the negative of this (up to an additive constant), requiring
multipoles of all orders. Taylor expansion of Eq. (31) to second
order in ρ implies that mω2

⊥rp = πq2σ 0. Also, since the
areal density is uniform, N = πr2

pσ 0, so r3
p = Na3

0 . Note that
E′(x) → ∞ as x → 1, implying that impossibly large trap
electric fields would be needed at the plasma edge to achieve
this uniform charge density configuration.

VI. CRYSTAL STRUCTURE FOR PLANAR PLASMAS

In this section we examine the crystal structure of a
collection of N identical point charges cooled to a minimum
energy state in the z = 0 plane of an anharmonic trap,
as compared to the structure in a harmonic trap. For the
anharmonic trap, we choose the case where only C4 �= 0 and

(a)

(b)

FIG. 1. (Color online) Local minimum energy state for N =
500 identical charges in (a) a harmonic trap (C4 = 0) and (b) an
anharmonic trap with C4 = 1.
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(a)

(b)

FIG. 2. (Color online) Local minimum energy state for N =
1000 identical charges in (a) a harmonic trap (C4 = 0) and (b) an
anharmonic trap with C4 = 1.

minimize the following energy function:

ε =
N∑

i=1

1

2
mω2

⊥

(
ρ2

i + 3

8
C4

ρ4
i

r2
p

)
+

N∑
i=2

i−1∑
j=1

q2

|ri − rj | . (32)

We take C4 = 0 for a harmonic trap and C4 = 1 for the
anharmonic trap with the most uniform density, with rp

given by Eq. (28). For N � 1 there are many local energy
minima. We attempt to find minima that are close to the
absolute minimum by artificially cooling the charges very
slowly via a Rosenbluth-Metropolis Monte-Carlo method [13].
We start with random initial positions at a coupling parameter
� ≡ q2/a0T of 5 (where T is the plasma temperature) and
allow the system to equilibrate at this � value for 104N Monte
Carlo steps, with step size chosen so that the acceptance ratio
is in the range of 50%–70%. The � value is then lowered in
ten stages from 5 to 500, reducing the step size at each stage to
keep the acceptance ratio roughly fixed, and equilibrating for
104N steps at each stage. The value � = 500 is large enough
so that particle positions vary from the local minimum by only

a small fraction of an interparticle spacing. Finally, an energy
minimization is performed via a conjugate gradient algorithm.
The resulting 2D crystal structures are displayed in Fig. 1 for
N = 500 and in Fig. 2 for N = 1000. In Figs. 1(a) and 2(a),
C4 = 0, while in Figs. 1(b) and 2(b), C4 = 1. Lines are drawn
between nearest neighbors using Voroni construction. Points
shown in black have six nearest neighbors while those shown
in red (gray) have either fewer or more than six, indicating
dislocations in the crystal structure. For the harmonic trap,
there are six sets of dislocations, roughly equally spaced in
angle around the crystal. One of the six sets forms a seam
running toward the center of the crystal. The seam is necessary
in order to relieve stress in the crystal due to its nonuniformity.
The nonuniformity is most easily observed in Figs. 3(a) and
4(a), which show the distance to the nearest neighbors for
each charge plotted versus the radial position of the charge.
This nearest-neighbor distance is smallest near the center
and roughly follows the expected distance d(ρ) based on a
hexagonal lattice with mean-field density per unit area σ (ρ):

d(ρ) =
√

2/(
√

3σ (ρ)) (33)

(the solid curve in the figures).
On the other hand, when C4 = 1 the crystal structure

is considerably more uniform. There are still six sets of
dislocations spaced evenly around the crystal, but they are
closer to the edge, and there is no longer a radial seam of

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ρ � a0

d
�

a 0

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ρ � a0

d
�

a 0

(a)

(b)

FIG. 3. (Color online) Nearest-neighbor distances versus radius
for N = 500. The solid line represents the fluid theory. (a) C4 = 0.
(b) C4 = 1.
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0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ρ � a0

d
�

a 0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ρ � a0

d
�

a 0

(a)

(b)

FIG. 4. (Color online) Nearest-neighbor distances versus radius
for N = 1000. The solid line representes the fluid theory. (a) C4 = 0.
(b) C4 = 1.

dislocations. The distance between nearest neighbors is also
more uniform [Figs. 3(b) and 4(b)], as expected from Eq. (33),
and displays far less scatter in the central region.

VII. HIGHLY SYMMETRIC 2D CRYSTALS USING
A ROTATING WALL POTENTIAL

In Penning trap experiments “rotating wall” potentials
proportional to cos[�(θ − ωt)] are often applied via sectored
external electrodes [14], in order to fix the plasma rotation
frequency ω. Typically, � = 1 or 2 rotating potentials are used
for this purpose. However, an � = 3 potential has triangular
symmetry that can be used to match the triangular symmetry of
2D hexagonal plasma crystals. With a properly chosen rotating
wall strength, nearly perfect 2D hexagonal crystal structures
can be obtained for particular values of N .

The energy function is now

ε =
N∑

i=1

[
1

2
mω2

⊥

(
ρ2

i + 3

8

ρ4
i

r2
p

)
+ Vwall

r3
p

ρ3
i cos 3θi

]

+
N∑

i=2

i−1∑
j=1

q2

|ri − rj | , (34)

where we assume for simplicity that the rotating wall potential
is produced by long sectored electrodes so as to have negligible
z dependence. Two examples of the resulting minimum energy

FIG. 5. (Color) 2D plasma crystal (blue dots) with N = 21
particles in an � = 3 rotating wall potential. Green dots are a perfect
triangular lattice.

structures are displayed. In Fig. 5 with N = 21 particles, the
displayed structure is attained for Vwall = 2.945q2/a0. Blue
dots show the equilibrium particle positions, while green dots
show the positions for an exact triangular lattice. The second
case with N = 63 particles, shown in Fig. 6, has the three
vertex particles removed in order to improve the symmetry
of the remaining charges. Here, Vwall = 5.154 q2/a0. Similar
results can be obtained for even larger values of N , although
for larger N the crystal symmetry is not as well preserved.

For larger values of Vwall, particles near the vertices are not
confined due to a triangular separatrix in the external potential,
caused by the rotating wall potential. Particles that cross the
separatrix are lost. Such large rotating wall fields could be

FIG. 6. (Color) Same as Fig. 5 but for N = 63 particles.
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employed to remove particles from the plasma in a controlled
fashion.

VIII. DISCUSSION

This paper explores the utility of adding anharmonic terms
to the external potential of a Penning trap in order to create
2D Coulomb crystals with more uniform structure than can
be achieved in harmonic (quadrupole) Penning traps. When
the trap potential is expressed as a cylindrically and axially
symmetric multipole expansion, an analytic form for the
mean-field density per unit area can be found. This analytic
solution allows one to determine the optimum choice of
multipole coefficients in order to obtain the most uniform
possible mean-field density for a given set of multipoles.
We find that numerically determined 2D crystal structures
for N � 1 in such an optimized trap are dislocation-free 2D
hexagonal lattices over the entire central region of the crystal,
where the mean-field density is nearly uniform. However,
there are still lattice dislocations in the edge region, in large
part due to the circular crystal boundary that frustrates the
hexagonal lattice. This can be alleviated by applying an � = 3
rotating wall potential which gives the boundary the necessary

triangular symmetry to match the hexagonal lattice. In this
case nearly perfect hexagonal lattices with no dislocations can
be obtained.

Some open questions remain to be addressed in future work.
For example, the linear normal modes of oscillation of the 2D
crystals should be evaluated, as these modes can be utilized
to diagnose and manipulate the plasma. The modes have been
carefully studied for harmonic Penning traps [7,15], but will
be modified by the additional multipole terms considered
here. In addition, the stability of the crystal structure at finite
temperature, the evolution of defects, and the 2D melting
behavior all merit study as a function of trap anharmonicity. For
Coulomb crystals in the � = 3 rotating wall fields discussed
in Sec. VII, molecular dynamics simulations of particle loss
across the separatrix could test the feasibility of using the
separatrix to control particle number.
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