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2I.N.F.N. Sez. di Milano and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy,
rome@mi.infn.it

3Physics Department, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0319, USA,
aakpla@physics.ucsd.edu

The effect of weak axisymmetric magnetic and/or elec-
trostatic perturbations on the equilibrium of a non-neutral
plasma in a Malmberg-Penning trap is analyzed. A semi-
analytic solution for the potential variations inside the trap
is found in a paraxial limit of the perturbations for the case
of global thermal equilibrium. The fraction of magnetically
and electrostatically trapped particles is calculated for a bi-
Maxwellian distribution function.

I. INTRODUCTION
A model of a long pure electron plasma column con-

tained in a cylindrical conducting chamber of radius R and

immersed in an axisymmetric magnetic field B is adopted,

with z being the coordinate along the symmetry axis, as

shown in Fig. 1. Column-end effects are neglected and the

attention is focused on the central part of the confining cham-

ber, with a grounded conducting wall. In the unperturbed

state, characterized by a uniform magnetic field B0 and a

constant wall radius R0, the plasma density is constant along

field lines. The goal of this paper is to fully characterize the

electric potential in the plasma in those regions of the device

where the magnetic field B = B0 + B1(z) and the wall radius

R = R0 +R1(z) are perturbed by small quantities B1(z) � B0

and R1(z) � R0, respectively (the latter can model a poten-

tial variation along the chamber wall).

II. PARAXIAL APPROXIMATION
In a long-thin (paraxial) approximation, i.e., when the

variations of B and R are both: (i) axisymmetric; and (ii)

smooth, so that their characteristic axial length, �, substan-

tially exceeds the wall radius, � � R, Poisson’s equation

takes the form
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where φ = eϕ/T is the dimensionless potential, ρ ≈ r
√

B/B0

is the flux radius labelling a magnetic field line starting at a

radius r outside of the perturbation region, λD =
√

T/4πe2n∗,

Figure 1: The variations of B and R are assumed to be: (i)

axisymmetric; and (ii) smooth.

and n/n∗ = N(ρ) exp(−φ) is the plasma density normalized

over its value n∗ at a reference point r = 0, z = z∗; note that

a Maxwell-Boltzmann distribution of plasma particles with

a given temperature T is assumed here. Applying a standard

perturbation analysis yields the equation

1

ρ

∂

∂ρ
ρ
∂φ0

∂ρ
= −N0(ρ)

λ2
D

(2)

for the unperturbed part of the potential φ0, and
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for the perturbation φ1 induced by the variation δB ≡ B1/B0

of the magnetic field. Here and below N0(ρ) = N(ρ)×
exp[−φ0(ρ)], n∗ = N(0) exp(−φ0(0)). The unperturbed po-

tential φ0 satisfies φ0(R0) = 0, while Eq. (3) is supplemented

with the boundary condition φ1(R0) = −R0 φ
′
0(R0) (δR + δB/2) ,

which represents the linearized form of the boundary con-

dition φ0 + φ1 = 0 for the total potential at the perturbed
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Figure 2: Perturbed potential and density for different ra-

tios a1/2/λD (indicated directly on the plots): a) magneti-

cally induced perturbations as a function of ρ, b) the same

as a function of r, c) electrostatically induced perturbations

(in this case ρ = r).

flux radius of the wall, ρW = R0 (1 + δR + δB/2), where

δR ≡ R1/R0.

A straightforward analysis of Eq. (3) reveals that the po-

tential perturbation induced by magnetic field ripples qual-

itatively differs from that induced by chamber wall ripples.

The former has opposite signs in the inner and outer parts of

the plasma column, while the latter has always the same sign

at all radii as shown in Fig. 2 relevant to a plasma in a state of

global thermal equilibrium1, 2 with fixed plasma radius a1/2

(computed at the level of 1/2 of the maximum density) and

three different values of λD such that a1/2/λD = 3, 6, 12. For

magnetically induced perturbations, both the perturbation φ1

in flux coordinates and the variation of electric potential in

ordinary coordinates

φ∗1(r, z) = φ′0(r) r δB/2 + φ1(r, z) (4)

tend to −δB at r = 0, if a1/2/λD → ∞ (Figs. 2a and 2b). On

the contrary, electrostatically induced perturbations, charac-

terized by the relative amplitude δR of the variation of the

conducting wall radius, are shielded by the perturbed elec-

tric charge at the column edge, so that φ1 → 0 at r = 0 as

a1/2/λD → ∞ (Fig. 2c).

Since φ1/δB < 0 in the bulk of the plasma, the global

thermal equilibrium state of a non-neutral plasma confined

in a magnetic mirror field exhibits a curious feature, quali-

tatively discussed previously.3 If a1/2/λD � 3, the plasma

density increases linearly with the mirror ratio, so that the

plasma is denser in the high magnetic field region since the

magnetic squeeze forms a potential trap for low energy par-

ticles.

The comparison of Fig. 2a and Fig. 2b shows that the

perturbation of the electric potential in ordinary cylindrical

coordinates is much greater than that expressed in flux co-

ordinates; however, the dominant first term in Eq. (4) does

not affect the particle motion along a magnetic field line.

The function φ1 nowhere exceeds the value of δB within

the plasma column whereas φ∗1 reaches a much greater value

near the column edge, where φ∗1 ∼ (a1/2/λD)2δB. As a con-

sequence, within the range of validity of the 1D approxi-

mation the evaluation of the small quantity φ1(ρ, z) from re-

alistic 2D simulations of the potential φ(r, z) requires a very

high accuracy of computation. 2D plasma equilibrium simu-

lations are addressed elsewhere4 to evaluate the accuracy of

the above described 1D paraxial theory. These 2D simula-

tions show reasonable agreement with 1D theory for plasma

parameters relevant to the CamV experiment.5

III. ANISOTROPIC PLASMA
Experimentally, a non-neutral plasma may remain an-

isotropic for a relatively long time, with the longitudinal

temperature typically strongly exceeding the perpendicular

temperature, T‖ � T⊥.6 The opposite case, T‖ � T⊥, may

also have its own peculiarities. The previous discussion can

readily be extended to the case of a bi-Maxwellian distribu-

tion function

f (ε, μ, ρ) =
m3/2n∗N(ρ)

(2π)3/2T 1/2
‖ T⊥

exp
[
−ε − μB0

T‖
− μB0

T⊥

]
, (5)

where ε and μ denote energy and magnetic moment, respec-

tively. In this case

n/n∗ = N(ρ) exp(−eϕ/T‖)
[

T‖B
(T‖ − T⊥)B0 + T⊥B

]
. (6)

Poisson’s equation (2) for unperturbed electric potential re-

mains formally valid for a redefined function φ0 = eϕ0/T‖
and a Debye length λD =

√
T‖/4πe2n∗. Eq. (3) for the per-

turbed potential φ1 = eϕ1/T‖ is only slightly modified,
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while the boundary condition at the conducting wall remains

unchanged. Thus, the magnetic perturbation δB enters the

boundary-value problem multiplied by the factor T⊥/T‖, but

through the boundary conditions at the wall without this fac-

tor. The effect of these boundary conditions is effectively

shielded at the plasma edge, if λD � a1/2. One can there-

fore expect that φ1 ≈ −(T⊥/T‖) δB in the bulk of the plasma,

and a magnetic perturbation induces a potential perturbation

ϕ1 ≈ (T⊥/e)δB near the column axis, which is proportional

to T⊥.
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Figure 3: Phase space for anisotropic plasma. a) δB >
0 (magnetic squeeze); ET—electrostatically trapped parti-

cles, located within a magnetic squeeze; MT—magnetically

trapped particles, reflected from a magnetic squeeze. b)

δB < 0 (magnetic trap); ET—electrostatically trapped par-

ticles, reflected from the potential squeeze at a magnetic

well; MT—magnetically trapped particles, localized within

a magnetic well.

IV. TRAPPED PARTICLE FRACTIONS
Two distinct groups of trapped particles exist:3 parti-

cles with low parallel energy are trapped in the low mag-

netic field region (magnetic trap), while particles with low

total energy are trapped in the high field region (magnetic

squeeze). The fraction of trapped particles is computed for

the bi-Maxwellian distribution (5). The computation is per-

formed for a1/2 � λD (i.e., at low T‖), and assuming that

φ1 = −(T⊥/T‖) δB is uniform over the radius r except for a

narrow region close to the plasma column edge with a width

of the order of λD.

A magnetic squeeze, δB = B1/B0 > 0, creates a poten-

tial well for the particles with small magnetic moment since

φ1 = −(T⊥/T‖) δB < 0. Electrostatically trapped particles

are located within the region ET in Fig. 3a. Particles with

a greater magnetic moment are reflected from the magnetic

squeeze; they are magnetically trapped outside of the mag-

netic squeeze region that corresponds to the region MT in

Fig. 3a. Both kind of trapped particles are located between

the lines ε = μB0 and ε = μ (B0 + B1) + φ1, which inter-

sect in the point ε = μB0 = T⊥. Consequently, electrostati-

cally trapped particles have an energy below the plasma per-

pendicular temperature, ε < T⊥, while magnetically trapped

particles are characterized by a higher energy, ε > T⊥.

A local depression of the magnetic field, δB = B1/B0 <
0, yields a potential squeeze φ1 = −B1/B0 > 0. Conse-

quently, the particles with low energies, ε < T⊥, are electro-

statically trapped outside of the perturbation region (Fig. 3b).

Independently of whether the trapping is caused by a

magnetic squeeze or a well, it turns out that the density frac-

tions are given by the following universal formulas

nET

n
= 0.52

√
T⊥|B1|
T‖B0

,
nMT

n
= 0.37

√
T⊥|B1|
T‖B0

. (7)

V. DISCUSSION
A paraxial theory of the equilibrium of a non-neutral

plasma for weak axial perturbations of magnetic and electric

fields has been developed and the fractions of magnetically

and electrostatically trapped particles have been computed.

It has been shown that a magnetic barrier (trap) with

δB = B1/B0 > 0 (δB < 0) creates a potential trap (bar-

rier) with a depth (height) ϕ1 ≈ −(T⊥/e) δB in the plasma

bulk. The perturbation of the electric potential induced by

a variation of the conducting wall radius (or by a variation

of ϕ over the wall of the confining chamber) is effectively

shielded inside the plasma column. In contrast to electro-

statically induced perturbations, a magnetically induced ϕ1

usually changes its sign at a certain radius within the column

edge.
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