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Experimental study of the stability and dynamics
of a two-dimensional ideal vortex under

external strain
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The dynamics of two-dimensional (2-D) ideal fluid vortices is studied experimentally
in the presence of an irrotational strain flow. Laboratory experiments are conducted
using strongly magnetized pure electron plasmas, a technique which is made possible
by the isomorphism between the drift–Poisson equations describing plasma dynamics
transverse to the field and the 2-D Euler equations describing an ideal fluid. The
electron plasma system provides an excellent opportunity to study the dynamics of a
2-D Euler fluid due to weak dissipation and weak 3-D effects, simple diagnosis and
precise control. The plasma confinement apparatus used here was designed specifically
to study vortex dynamics under the influence of external flow by applying boundary
conditions in two dimensions. Additionally, vortex-in-cell simulations are carried out
to complement the experimental results and to extend the parameter range of the
studies. It is shown that the global dynamics of a quasi-flat vorticity profile is in
good quantitative agreement with the theory of a piecewise-constant elliptical patch of
vorticity, including the equilibria, dynamical orbits and stability properties. Deviations
from the elliptical patch theory are observed for non-flat vorticity profiles; they include
inviscid damping of the orbits and modified stability limits. The dependence of these
phenomena on the flatness of the initial profile is discussed. The relationship of these
results to other theoretical, numerical and experimental studies is also discussed.

Key words: low-dimensional models, plasmas, vortex dynamics

1. Introduction
Two-dimensional (2-D) inviscid, incompressible (ideal) fluid systems are governed

by the Euler equations

[∂t − (∇ψ × ẑ) · ∇] ω= 0; ∇2ψ =ω, (1.1)

where ψ is the fluid streamfunction in two dimensions, with fluid velocity v =
−∇ψ × ẑ and vorticity ωẑ=∇× v. Flows described by (1.1) are often characterized
by the emergence and persistence of coherent rotational flow structures known
generally as vortices. When isolated, these structures are known to be long lived
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and stable (McWilliams 1984). However, when subjected to externally imposed strain
flows, such as those due to another nearby vortex or a boundary, vortex deformation
and/or destruction can occur (Mariotti, Legras & Dritschel 1994; Trieling, Beckers
& Heijst 1997). Understanding the competition between strain and vorticity is an
important goal of nonlinear fluid dynamics that is relevant to a variety of quasi-2-D
fluid systems.

A particularly fruitful approach for investigating 2-D ideal fluids in the laboratory
involves study of the dynamics of a magnetized pure electron plasma confined in
a cylindrical Penning–Malmberg (PM) trap (O’Neil 1999). In a PM trap, electrons
perform axial bounce motion in an electrostatic potential well, while moving in the
plane perpendicular to the magnetic field via guiding-centre E × B drift dynamics,
where E and B are the electric and magnetic fields (Chen 1984). When the magnetic
field is strong and the bounce motion is rapid, the electrons behave approximately as
rigid line charges. In this case, the 2-D dynamics of the electron density is described
by the drift–Poisson equations[

∂t −
1
B
(∇φ × ẑ) ·∇

]
n= 0; ∇2φ =

en
ε0
, (1.2)

(SI units) where ε0 is the permittivity of free space, n(x, y) is the electron density
in two dimensions, φ(x, y) is the electric potential, e is the electron charge, and the
E × B drift velocity is v = −∇φ × ẑ/B. Equations (1.2) are isomorphic to the 2-D
Euler equations (1.1) for ideal fluid flow, under the transformations ω→ en/Bε0 and
ψ → φ/B (Driscoll & Fine 1990). Thus, the electron density is analogous to the
fluid vorticity, and the electric potential is analogous to the fluid streamfunction. This
plasma/fluid correspondence has been used widely as a proxy to study the dynamics
of 2-D ideal fluids (O’Neil 1999).

Advantages of the electron plasma system for 2-D ideal fluid experiments include
weak dissipation and free-slip boundary conditions, precise control over the initial
vorticity distribution and external flows and the ability to image directly the vorticity
field using a phosphor screen and a camera. Additionally, system parameters can be
varied rapidly in electron plasma experiments, permitting studies across a wide range
of conditions.

In the present work, we study the behaviour of a 2-D ideal vortex embedded in
an external irrotational strain flow using laboratory experiments with electron plasma
and vortex-in-cell simulations (Leonard 1980). The experiments utilize a PM electron
plasma trap called the 8-segment trap (8ST) which was designed specifically to
study 2-D vortex dynamics under the influence of external flows. It features a long
electrode spanning the length of the plasma which is azimuthally segmented into
eight pieces. It provides the capability to impose asymmetric boundary conditions
without introducing 3-D effects. Additionally, initial axisymmetric vorticity profiles
ranging from Gaussian to quasi-flat can be obtained. The experiments and simulations
are compared with predictions of a theory assuming the vorticity is constant within
an elliptical region (the elliptical patch model (Moore & Saffman 1971; Kida 1981)).
Specifically, we observe periodic orbits, equilibria and unstable modes corresponding
to vortex destruction. For quasi-flat profiles, the results are in good quantitative
agreement with the elliptical patch model (i.e. with no fitted parameters). However,
smooth profiles are subject to inviscid damping of the dynamical orbits and modified
stability properties. A preliminary report of these studies can be found in Hurst et al.
(2016).
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FIGURE 1. (Colour online) Experimental data for the evolution of vorticity (electron
density) under constant strain-to-vorticity ratio ε∗= (a) 0.116, (b) 0.130, for t=0–22.8ω−1

0
(at equal increments), and peak vorticity ω0 = 228 krad s−1 out of the page. Data are
suppressed for ω< 0.05ω0 in order to remove noise. Spatial coordinates are scaled to the
wall radius rw of the 8ST.

An example of experimental data obtained using the 8ST is shown in figure 1.
Here, an initially axisymmetric vortex with a quasi-flat profile (shown in figure 5b)
is subjected to an externally imposed irrotational simple strain flow given by

ψs =
1
2ε(x

2
− y2); vs = ε(yx̂+ xŷ), (1.3a,b)

where ε is the strain rate, by electrically manipulating the boundary conditions in
a way that preserves the 2-D dynamics. The strain is raised abruptly from zero to
some value ε, and then held constant. Figure 1(a) shows the measured evolution of
the vorticity distribution at 20 µs (4.56ω−1

0 ) increments, where the ratio of applied
strain magnitude to peak vorticity is ε/ω0 ≡ ε

∗
= 0.116, with ω0 = 228 krad s−1. The

strain extracts filaments of vorticity from the periphery of the distribution, however
the vortex core remains intact and elliptical, and continues to rotate in the counter-
clockwise direction. Figure 1(b) shows the vorticity evolution for ε∗= 0.130, with the
same initial condition and time intervals as figure 1(a). In this case, elliptical distortion
of the vortex core increases without bound, the orientation approaches the strain axis
and the vortex is effectively destroyed.

Vortex deformation in response to strain has received much attention in the
literature, using a variety of different approaches. Theoretical progress has been
facilitated by the elliptical patch model. In particular, exact solutions to the Euler
equations (1.1) were found by Moore & Saffman (1971) and Kida (1981) (henceforth
MS71 and K81) for the equilibria and dynamics of an elliptical vortex patch
in external shear and strain flows. Detailed studies of the stability of the these
solutions have been conducted by Dritschel (1990). In contrast, theoretical study of a
smooth vorticity distribution in an external strain flow is a more daunting task, and
progress has been made so far only in cases where the nonlinearity can be handled
perturbatively, for example, in the limit of weak or strong strain (Hunt & Carruthers
1990; Lingevitch & Bernoff 1995; Balmforth, Smith & Young 2001), or short time
scales (Weiss 1991; Schecter et al. 2000; Turner, Gilbert & Bassom 2008).
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Experimental studies of strained vortices have focused primarily on laboratory
water tanks (Trieling et al. 1997), demonstrating vortex deformation, destruction and
partial destruction, or ‘vortex stripping’, where thin filaments of vorticity are extracted
from the edge of the vortex by the applied strain. However, viscous effects in these
experiments have prevented a direct comparison with the elliptical patch theory.
Numerical experiments have been conducted using the contour dynamics technique,
where nested contours of piecewise-constant vorticity are advected dynamically
(Zabusky 1979; Dritschel 1989). This procedure has qualitatively reproduced the
vortex stripping and destruction phenomena observed in the laboratory, and it has
also provided other useful insights (Mariotti et al. 1994; Legras, Dritschel & Caillol
2001; Mitchell & Rossi 2008).

Notable previous results using electron plasma fluids include laboratory studies
of vortex crystal formation (Fine et al. 1995) and stability (Durkin & Fajans 2000),
inviscid damping of vortex distortions (Schecter et al. 2000), vortex merger events
(Mitchell & Driscoll 1996; Soga et al. 2003) and studies of 2-D turbulent cascades
(Kawai et al. 2007; Chen, Maero & Rome 2017). Most of these experiments focused
on the free relaxation of an initial vorticity distribution with azimuthally symmetric
boundary conditions. Some work has also been done with asymmetric boundary
conditions (Chu et al. 1993; Schecter et al. 2000), although these experiments may
have been subject to 3-D effects which violate the plasma/fluid analogy. Particularly
relevant is the work of Eggleston (1994), in which electron vortices are subjected to
irrotational E×B shear due to an externally imposed radial electric field.

Approximate 2-D vortices are commonly observed in geophysical fluids, strongly
magnetized plasmas, astrophysical disks and a variety of other flows in engineering
and industrial settings. Vortices form regularly in the oceans and atmospheres of
Earth and other planets, and are important for heat and chemical transport (Dritschel
& Legras 1993). It is well known that a strong magnetic field in a plasma causes
a spatial asymmetry which can result in quasi-2-D drift dynamics perpendicular
to the field (Hasegawa & Mima 1978; Montgomery & Turner 1980; Terry 2000).
This phenomenology is applicable to a wide range of laboratory and astrophysical
plasmas, including magnetically confined plasmas for controlled nuclear fusion. A
quasi-2-D polar geometry is commonly found in astrophysical disks such as galaxies
and accretion disks. It is thought that vortices may form in these disks, which could
impact planet formation (Godon & Livio 1999) and momentum transport (Lithwick
2009). Interestingly, recent theoretical work suggests the existence of a 2-D fluid-like
flow of space–time near the event horizon of large black holes (Adams, Chesler &
Liu 2014). The stability and behaviour of 2-D vortices is of importance in various
engineering flows including, for example, airfoil wakes (Moore & Saffman 1971) and
mixing processes (Voth, Haller & Gollub 2002). Finally, the filamentation behaviour
described here is ubiquitous in vortex dynamics; it is closely related to the forward
enstrophy cascade familiar to 2-D turbulence theory (Tabeling 2002). A key theme
in many of these systems is that the fluid dynamics and transport properties can be
significantly affected by the presence of vortices, and so their stability under external
flow is of broad interest.

The remainder of the paper is organized as follows. In § 2, we discuss further details
of the plasma/fluid analogy and the experimental and numerical procedures. In § 3,
we present a review of relevant theoretical work. In § 4, we present experimental and
numerical data, and compare the results to theoretical predictions. Finally, in § 5 we
conclude with a discussion of the results and prospects for future work.
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(a) (b)

FIGURE 2. (Colour online) Sketch of electron motion in a PM trap. (a) (y, z) and (b)
(x, y) views are shown, with axial confinement voltages Vc, axial and radial electric fields
Ez and Er and magnetic field B. Electron trajectories are depicted, including (a) the axial
bounce motion and (b) the perpendicular E× B drift motion, as well as the small-scale
gyromotion in both panels.

2. Experimental procedure
This section contains a discussion of how 2-D ideal fluid vortices can be studied

in the presence of external strain using magnetized electron plasmas. A description
of the analogy between these plasmas and fluid vortices is given, and details of
the experimental procedure are discussed. Finally, numerical methods are discussed
in which a vortex-in-cell algorithm (Leonard 1980) is implemented to support and
extend the experimental results. Further information about the experimental technique
can be found in Hurst, Danielson & Surko (2018).

2.1. The analogy between electron plasmas and fluid vortices
Non-neutral plasmas consisting only of electrons are routinely confined in a cylindrical
geometry using a strong, constant axial magnetic field B= Bẑ for radial confinement
and electrostatic potentials φ(z) for axial confinement. This configuration is known
as a Penning–Malmberg (PM) trap (Dubin & O’Neil 1999); a schematic diagram of
this type of apparatus is shown in figure 2. Confinement in a PM trap is sufficiently
good that the plasma can reach a steady-state thermal equilibrium characterized by
a temperature T . In the presence of a strong magnetic field, the electrons perform
small, high-frequency gyro-orbits perpendicular to the magnetic field with radius
rg=mvT/eB and frequency fg= eB/2πm, where vT = (T/m)1/2 is the thermal velocity,
and e and m are the electron charge and mass. Furthermore, when electric fields are
present, the gyrating electrons drift perpendicular to B with velocity v = B−2 E × B
(Chen 1984). Electric fields are generated by the non-neutral plasma itself and by
the boundary conditions via the Poisson equation, ∇2φ = en/ε0. Often, the plasma
density is axisymmetric and quasi-uniform within radius rv, so the self-electric field
is radial, and the drift motion is azimuthal and periodic about the plasma centroid
with frequency fv = en/4πBε0 (Danielson et al. 2015). Parallel to the magnetic field,
electrons bounce rapidly between the endcap confinement potentials at frequency
fb = vT/2L, where L is the plasma length. The axial motion, perpendicular drift
motion, and small-scale gyration of the electrons are depicted schematically in
figure 2. Collisions between electrons occur at a rate per particle given roughly by
fc∼ nvTe4/T2, although they are significantly more complicated than particle collisions
in a neutral fluid (Dubin 1998).
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When the magnetic field is large, the gyroradius is very small compared to the
plasma radius (rg/rv� 1) and the gyrofrequency is large compared to the frequency
of the drift motion ( fg/fv � 1). Typically, the plasma temperature is high enough
that the axial bounce frequency is large compared to the frequency scale of the
perpendicular drift motion ( fb/fv � 1). Additionally, PM traps are often designed so
that the aspect ratio is large, i.e. L/rw� 1, where rw is the radius of the circular trap
boundary. In this way, 3-D effects due to the end confinement fields are small, and
so the dynamics is two-dimensional to a good degree of approximation. Furthermore,
when the drift dynamics is rapid compared to collisional frequency scales ( fc/fv� 1),
a collisionless description is appropriate and so the system is dissipationless. In
summary, the frequency scales are ordered as fg� fb� fv � fc and spatial scales as
rg� rv < rw� L. Under these conditions, the electrons behave as rigid line charges
which move in two dimensions (i.e. in the plane perpendicular to B) as point-like
particles under dissipationless E×B drift dynamics.

In this regime, the thermal energy is small compared to the electrostatic energy,
eφ/T� 1, so the electron dynamics is described by the Hamiltonian

H =
e
L

N∑
i=1

φs(ri)+
( e

L

)2 ∑
i6=j

G(ri, rj), (2.1)

where φs is the potential associated with the applied boundary conditions, and G(ri, rj)
is the Green’s function for the Poisson equation in two dimensions (neglecting image
charges, G(ri, rj) = ln(|ri − rj|)). Furthermore, the momentum is dominated by the
magnetic vector potential, and so the canonical variables for a given particle are
(pθ , θ), where pθ = eBr2/2L (Chu et al. 1993). Therefore, the electron drift dynamics
is analogous to point vortex dynamics, where the electron charge per unit length
corresponds to the point vortex circulation. Since the PM trap confines only a single
sign of charge, the corresponding vorticity also has a single sign, ω> 0. In principle,
both signs of vorticity could be studied by simultaneously confining electrons and
positrons (i.e. anti-electrons), however in practice this is quite difficult to accomplish
(Danielson et al. 2015).

When the electron density is large relative to the scale of fluid motion (nL� r−2
v ),

a continuum description is appropriate, in the same way that 2-D point vortex
dynamics can be used to approximate the 2-D Euler equations (1.1) (Goodman,
Hou & Lowengrub 1990). In this case, the plasma drift dynamics is described by
the drift–Poisson equations (1.2), which are isomorphic to the 2-D Euler equations
(Driscoll & Fine 1990), as discussed in § 1. This correspondence permits studies of
2-D ideal fluids in the laboratory which are difficult to accomplish using traditional
fluids.

2.2. The eight-segment trap apparatus
The eight-segment trap (8ST) is a PM electron plasma confinement device designed
and built specifically to study the response of an electron plasma vortex to externally
imposed flows in the two dimensions perpendicular to the magnetic field. This is
accomplished by using an electrode extending over the length of the plasma which
is divided into eight equal azimuthal segments that can be independently biased (as
opposed to other PM devices where the segmented electrode covers only a portion
of the plasma). An asymmetric voltage pattern on these electrodes results in an
electric field which gives rise to an E × B drift that advects the trapped electrons.
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FIGURE 3. (Colour online) Schematic diagram of 8ST apparatus. (a) (y, z) view of the
8ST apparatus, including electron source (A), cryo-pump (B), 8ST electrodes (C), magnet
coils (D), phosphor screen (E), optical lens (F) and CCD camera (G). Magnetic field lines
are shown schematically, as is the vacuum chamber enclosing the electrodes. (b) (x, y)
view of the 8-segment electrodes, including streamlines of the E × B flow (black lines)
due to boundary potentials +Vs (red) and −Vs (blue), and a box (dashed) corresponding
to the panels in figure 1.

In this way, the 2-D electron vortices can be subjected to externally imposed flows
by specifying the streamfunction at the circular boundary. In the 8ST, fg = 130 GHz,
fb ≈ 1 MHz, fv = 50–250 kHz, fc ≈ 3 kHz, rg = 0.5 µm, rv = 1–3 mm, rw = 13 mm,
L ∼ 240 mm and the areal density of the electrons is approximately nL ∼ 1013 m−2.
Thus, the separation of temporal and spatial scales discussed in § 2.1 is satisfied, and
the plasma/fluid analogy is valid.

2.2.1. Experimental set-up
Components of the experimental apparatus are shown schematically in figure 3,

including (a) a (y, z) view perpendicular to the field, and (b) an (x, y) view along
the field. Solid electrodes I, III and V are used for axial confinement of electrons.
Electrode IV is azimuthally segmented into four equal pieces. It is used for rotating
wall plasma density profile control (Danielson et al. 2015). Electrode II is divided
azimuthally into eight equal segments. Electron plasmas are confined under electrode
II for the fluid experiments described here, enabling the imposition of asymmetric
boundary conditions. The entire electrode structure is 430 mm long, and electrode II
is 260 mm long. A cryogenic pump maintains an ultra-high vacuum with pressure
approximately 10−9 Torr inside a vacuum chamber which is shown in figure 3 as
a solid black boundary. The electrodes are immersed in an axial magnetic field
which is approximately uniform (δB/B . 0.01) at B= 4.8 T, shown schematically in
figure 3 as black lines. It is generated by superconducting coils outside the vacuum
chamber. For these experiments, typical plasma conditions are total electron number
N= 1.5–7.2× 108, central density n0= 0.27–1.3× 1014 m−3 (corresponding to vorticity
ω0 = 100–500 krad s−1) and temperature T ≈ 0.1 eV.

2.2.2. Applied strain flow
The applied potential used for the fluid experiments is shown in figure 3(b)

as black contours; they are the analogue of fluid streamlines, with flow direction
specified by the arrows. The eight segments of electrode II are biased to voltages
Vs(1, 0,−1, 0, 1, 0,−1, 0), starting with the electrode aligned with the positive x-axis.
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This pattern is used exclusively in the work described here, although the magnitude
of Vs is varied. The applied potential due to these boundary conditions,

φs(r, θ)=
∞∑

m=0

Am

(
r
rw

)m

cos(mθ), (2.2)

is the solution to the Laplace equation ∇2φs = 0, with expansion coefficients Am and
azimuthal wavenumber m. Since the vorticity in the plasma/fluid correspondence is
analogous to electron density, the fluid flow associated with the vacuum potential φs is
necessarily irrotational. For the boundary conditions described above, the lowest non-
zero coefficients are found to be A2 ≈ 0.9Vs and A6 ≈ 0.3Vs, so that near the axis of
the domain (r/rw� 1), the second-order term dominates. The drift velocity due to the
second-order potential φ(2)s is

v(2)
s =

2A2Vs

Br2
w

(yx̂+ xŷ), (2.3)

which is called a ‘simple strain flow’, with the strain magnitude given by

ε =
2A2Vs

Br2
w

. (2.4)

The electrode geometry and magnetic field are fixed, so the applied strain magnitude
ε may be controlled simply by adjusting the voltage Vs applied to the eight-segment
electrodes. The time dependence of the applied strain ε(t) is chosen by programming
a waveform generator to produce the corresponding voltage Vs(t). In this way, an
arbitrary time dependence can be chosen for the applied strain, subject to low-pass
filtering from the electrode circuit on a time scale ∼1 µs. In the work reported here,
we focus on two relatively simple cases: a square pulse, where Vs= V0 for 0< t< tf ,
and a linear ramp, where Vs(t)= V0t/tf , with V0 = constant.

2.2.3. Preparation of the initial vorticity distribution
Prior to application of the strain flow, the plasma is prepared according to a

protocol such that its properties (electron density, spatial distribution and temperature)
are suitable for vortex experiments. First, the plasma is generated by trapping electrons
between electrodes I and V using the electron source, and axial confinement voltages
Vc =−100 V. The plasma is typically initiated with a low-amplitude m= 1 diocotron
mode (Danielson et al. 2015), meaning that the plasma is offset from the cylindrical
electrode axis and therefore executes a circular orbit due to its image field. This
mode is eliminated using a feedback damping circuit connected to two segments of
electrode II so the vortex is centred on the origin. Next, electrode IV is used to
condition the plasma density profile via the rotating wall technique (Danielson et al.
2015) in order to achieve the desired axisymmetric vorticity distribution. Then, the
plasma is ‘cut’ by ramping electrode III to −100 V; this results in two separate
plasmas confined under electrodes II and IV. The plasma under electrode IV is
discarded by grounding electrode V. This cutting process can also generate a small
diocotron mode in the plasma remaining under electrode II, which is then damped
again. Finally, the plasma under electrode II is allowed to cool via cyclotron radiation
in the magnetic field (O’Neil 1980) to roughly T ≈ 0.1 eV, at which point the plasma
obeys the separation of scales discussed in § 2.1 and can therefore be described by
(1.2).
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2.2.4. Fluid experiment
The fluid experiment begins with an axisymmetric electron density distribution n(r)

centred on the cylindrical electrode axis, confined between electrodes I and III. At
t= 0, an external strain flow is generated by adjusting the voltage Vs on four segments
of electrode II, as described above (cf. figure 3b), and the plasma density distribution
evolves in response to the strain according to (1.2). At t= tf , Vs is reduced to zero, and
the z-averaged plasma density 〈n〉z is destructively diagnosed by grounding electrode
III and allowing the plasma to stream along the magnetic field onto the phosphor
screen, which is biased to +5 kV. The resulting fluorescent light passes through a
window in the vacuum chamber. It is focused by a lens onto a CCD camera, and the
data are recorded. After the run, a ‘dark’ CCD exposure is taken without plasma, and
subtracted from the original image to eliminate background noise. The entire run cycle
is repeated many times to generate data sets. For example, tf can be varied to acquire
time series data.

A plasma subject to the simple strain flow (2.3) can be unstable to uniform
translation away from the origin (Fajans, Backhaus & Gilson 2000). This mode is
stabilized by the diocotron rotation due to image charges induced in the wall when
the diocotron frequency exceeds the strain rate, 4πε∗(rv/rw)

−2 < 1, although this
condition is rarely satisfied in these experiments. Care is taken to properly centre the
initial vortex at the origin so as to delay the onset of the translational instability. For
the experiments discussed here, tf . 50 ω−1

0 and the vortex displacement does not
exceed approximately 0.2rw.

2.2.5. Data analysis
The result of a single run cycle is a 2-D array of integers corresponding to the light

signal acquired by the CCD, which is proportional to vorticity ω(x, y). The spatial
resolution is 29.6 pixels/mm, and the signal-to-noise ratio (at peak vorticity) typically
ranges from 20–100. Once acquired, the CCD image for each run is analysed.
The streamfunction ψ is calculated from the CCD data by solving the Poisson
equation using a finite-difference method with the appropriate boundary conditions.
The streamfunction is then differentiated numerically to obtain the velocity field, and
differentiated again to find the strain tensor and the Okubo–Weiss parameter across the
domain (Weiss 1991). Critical points of the system, defined by v= 0, are found from
the velocity magnitude by using a local minimization routine. The total circulation
Γ is found by integrating the CCD signal over the domain, Γ =

∫
ω dA. The initial

vorticity profile ω(r) is found by taking an azimuthal average, ω(r)= (2π)−1
∫
ω dθ ,

and the equation

ω(r)=ω0 exp
[
−

(
r
rv

)α]
(2.5)

is fit to the experimental profile using a least-squares routine where the peak vorticity
ω0, the vortex radius rv and the smoothness exponent α are fit parameters.

This work focuses on elliptical distortions of the vortex core, described by an aspect
ratio λ and orientation with respect to the strain axis ξ , and so these quantities must be
extracted from the vorticity data. This is accomplished by using a least-squares routine
to fit an ellipse to the half-maximum vorticity contour. In this way, low-vorticity
filamentary structures do not influence the fit, and a robust representation of elliptical
distortions of the vortex core is obtained. An example of an elliptical fit is shown
in figure 4, corresponding to the data in the fourth panel of figure 1(b). Pixels with
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FIGURE 4. (Colour online) Demonstration of the elliptical fitting routine. (a) Vorticity data
from the fourth panel of figure 1(b); (b) zoomed-in region corresponding to black square
in panel (a). Pixels with vorticity between 0.4ω0 and 0.6ω0 are shown as black dots. The
ellipse (magenta line) is fitted to these points.

0.4 6 ω/ω0 6 0.6 are shown as black dots, and the ellipse (magenta line) is fit to
these points. Panel (b) shows a zoomed-in region corresponding to the black square
in panel (a), where the half-maximum contour diverges slightly from the elliptical
shape due to filamentation.

In order to compare the experimental (λ, ξ) values to theory, the finite diagnosis
time for electrons to exit the trap and impinge on the phosphor screen must be
accounted for. This may take a few microseconds. Over this time, the plasma
continues to freely rotate (under zero external strain), leading to a shift in orientation
1ξ . This shift is determined experimentally and subtracted from the data in order to
obtain ξ(tf ) when the external strain is turned off.

One goal of this work is to study how the vortex dynamics is modified as
the smoothness of the profile is varied. Therefore it is important to have precise
control over the initial vorticity profile ω(r). This is achieved using the rotating wall
technique (Danielson et al. 2015), where oscillating electric potentials applied to
electrode IV are implemented to drive radial transport of the electrons. Examples of
initial vorticity profiles generated in this manner are shown in figure 5, including
azimuthally averaged experimental data (solid lines) and fits to (2.5) (dashed). Shown
are (a) a smooth profile with α = 3, (b) a quasi-flat profile with α = 6 including
vertical and horizontal slices of the CCD data and (c) a quasi-flat profile with α≈ 8.
In the case of figure 5(c), equation (2.5) is not a good fit due to a tail to the
vorticity distribution at large radii. Once the desired profile has been obtained, the
rotating wall potential is turned off, and the profile is stable (cf. figure 6). The total
circulation can be adjusted during the plasma fill process by varying the number
of trapped electrons. Smoothness exponents in the range 2 6 α 6 10 (cf. (2.5)) are
used for the data reported here. The initial profiles produced by the rotating wall
are axisymmetric to a high degree of precision. Elliptical fits to the initial profiles
typically yield λ≈ 1.01, although this measurement is limited by the finite pixel size.

2.2.6. Calibration
The vorticity is calibrated with the CCD light signal using a quasi-flat vortex (α>5)

briefly excited to a small aspect ratio, λ ≈ 1.2, by the external strain. In this case,
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FIGURE 5. (Colour online) Examples of initial vorticity profiles obtained using the
rotating wall technique, including data (blue, solid) and fits to (2.5) (black, dashed). (a)
A smooth profile with α = 3; (b) a quasi-flat profile with α = 6, including vertical (red,
dotted) and horizontal (red, dash-dot) slices; and (c) a quasi-flat profile with α≈ 8, where
the fit fails to capture a tail at the edge of the vorticity distribution.

500

600

100

200

300

400

0 0.1 0.2 0.3 0.4 0.5

FIGURE 6. Stability of a freely relaxing vorticity profile. Shown are the initial profile
(solid line) and the same profile after 10 s (5× 106ω−1

0 ) of evolution with Vs= 0 (dashed).

the rotation rate is dξ/dt≈ω/4 (Saffman 1992). The vorticity is measured using the
elliptical fitting routine to extract ξ(t). The strain magnitude can be calculated directly
from the electrode geometry, the magnetic field and the applied voltage using (2.4);
however, it can also be independently calibrated using a rapid distortion technique.
Here, a constant strain is applied with ε∗≈ 0.25. In this case, the strain is sufficiently
strong that the vorticity behaves passively and the aspect ratio evolves as

λ(t)≈ exp(2εt). (2.6)

This is repeated varying ε∗, and λ(t) is diagnosed in order to verify that the
assumption of passive vorticity is valid. Results of this technique disagree slightly
with the strain magnitude calculated from (2.4). The calibrated strain magnitude
(determined from fitting data to (2.6)) is used for all data presented here. This
discrepancy and further details of the calibration process are discussed elsewhere
(Hurst et al. 2018).

2.2.7. Limitations to the plasma/fluid analogy
It is important to understand how the plasma/fluid analogy is broken when the

spatio-temporal scale separations described in § 2.1 are not satisfied. The conditions
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fg� fv and rg� rv are related to the finite size and internal structure of the electron
point vortices; they are satisfied by many orders of magnitude in the 8ST due to the
strong magnetic field. The condition rw�L is related to 3-D effects due to the endcap
confinement potentials, which give rise to a background rotation called the ‘magnetron
drift’ (Danielson et al. 2015). In the 8ST, L/rw = 20, and the magnetron frequency
is approximately three orders of magnitude lower than fv. The condition fb � fv is
related to the rigidity of the electron line charges; when this is violated, 3-D effects
are expected which could give rise to a smearing of the point vortices. Additionally,
smearing effects are expected from temperature-dependent magnetron drifts (Peurrung
& Fajans 1993). In the 8ST, sharp vorticity features are routinely observed, and no
evidence of smearing is apparent.

The condition fv� fc ensures that viscous effects can be neglected. This is satisfied
by at least an order of magnitude in the 8ST. The plasma viscosity arises from
like-particle collisions between magnetized electrons. Thus, where the electron density
is zero (i.e. in irrotational regions of the flow), the viscosity is identically zero; and
in general, the viscosity varies with electron density inside the plasma. Therefore, the
plasma viscosity differs fundamentally from that of a traditional hydrodynamic system,
where viscosity is approximately uniform throughout. Thus, viscous effects are outside
the scope of the plasma/fluid analogy. Since the plasma is isolated from the wall,
the fluid obeys free-slip boundary conditions. Radial transport of the vorticity under
symmetric boundary conditions is slow. Figure 6 shows a quasi-flat vortex which
remains approximately static over time 106ω−1

0 , thus defining an effective Reynolds
number of Re> 106. Further information on viscosity and radial transport in electron
plasmas can be found in Kriesel & Driscoll (2000) and Kriesel & Driscoll (2001).

2.3. Vortex-in-cell simulations
To support and extend the 8ST experimental results, numerical simulations are
conducted using the vortex-in-cell technique (Leonard 1980). The vorticity distribution
is approximated by a number of discrete point vortices of equal strength. A Monte
Carlo method is used to arrange the point vortices to achieve the desired initial
profile given by (2.5). Alternatively, experimentally measured vorticity profiles can
be loaded into the simulation. At each time step, the Poisson equation is solved
on a grid using a finite-difference method, subject to the same boundary conditions
used in the experiments (see figure 3b). The streamfunction at the location of each
point vortex is calculated using a linear interpolation between grid points, and time is
advanced using a fourth-order Runge–Kutta technique. Typical simulation parameters
are the number of point vortices N ∼ 105, 300 grid points in the wall diameter
and a time step ∼0.05ω−1

0 . The displacement of the entire vorticity distribution is
feedback-damped artificially in the simulation in order to avoid translation instability
due to the external strain, thus allowing for longer time scales than are possible in
the experiments.

Examples of the results of vortex-in-cell simulations are shown in figure 7,
corresponding directly to the data in figure 1, with (a) ε∗ = 0.116 and (b) ε∗ = 0.13.
The simulation results in figure 7 are in good qualitative agreement with the
experimental results in figure 1. Notable differences are that the experimental vortices
are rotated counter-clockwise slightly due to the diagnosis process, and the thin
filaments are more difficult to observe in the laboratory due to noise acquired by the
CCD.
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FIGURE 7. (Colour online) Vortex-in-cell simulations of strained quasi-flat vortices with
applied strain (a) ε∗ = 0.116 and (b) ε∗ = 0.13 and 0 6 t 6 22.8ω−1

0 . These results
correspond directly to the experimental data in figure 1.

3. Theoretical description of strained vortices
Ideal 2-D fluids are described by the 2-D Euler equations (1.1). The flow field

is uniquely specified by the vorticity and the boundary conditions via the Poisson
equation, ∇2ψ = ω. Equations (1.1) form a continuous Hamiltonian system, where
the vorticity is locally conserved in the Lagrangian frame (Morrison 1998). The
dissipationless flow also conserves internal energy along streamlines, so thermal
forces are absent and the pressure can be calculated directly from the flow field
(Majda & Bertozzi 2002). The streamfunction can be decomposed into homogeneous
and particular solutions, ψ =ψs +ψv where ψs describes irrotational flow associated
with boundary conditions and ψv describes flow generated by the vorticity.

A key theme in the present work is the competition between strain and vorticity in
a 2-D fluid. The velocity gradient tensor at any point ∇v(x, y, t) can be decomposed
into its symmetric part σ ≡ (1/2)[∇v + (∇v)T] which is called the strain tensor, and
its antisymmetric part Ω ≡ (1/2)[∇v − (∇v)T] which is called the vorticity tensor.
The vorticity tensor has complex conjugate eigenvalues with magnitude equal to the
vorticity ω in the ẑ direction. Assuming incompressibility, the strain tensor is traceless
with real eigenvalues ±s=±[4ψ2

xy + (ψxx −ψyy)
2
]

1/2 where subscripts indicate partial
derivatives. The magnitude of the strain and vorticity eigenvalues can be combined
to form a dimensionless parameter s∗ = |s/ω|, which quantifies the local competition
between strain and vorticity, with s∗� 1 corresponding to strain-dominated hyperbolic
fluid motion and s∗� 1 corresponding to vorticity-dominated periodic fluid motion.

Here we consider an initially axisymmetric, monotonically decreasing vorticity
distribution ω(r) in a 2-D ideal fluid, subject to an externally imposed irrotational
simple strain flow defined by (1.3). The external strain flow ψs has a uniform strain
tensor everywhere, where the eigenvalue is s= 2ε and the strain axis orientation (i.e.
the direction of the positive eigenvector) is π/4. However, s may vary across the
domain when the full flow field ψ = ψs + ψv is considered, since ψv can contribute
to the strain tensor.

A goal of this work is to study the behaviour of quasi-flat radial vorticity profiles,
where ω(r) is a constant in the core, and then decreases quickly to zero at the edge
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of the vortex (cf. figure 5b). When the vorticity gradient is very steep, elliptical
vortex patch theory is expected to be an accurate description. Another goal is to
study how the dynamics depends on the degree of flatness of the profile. When the
profile is relatively smooth (cf. figure 5a), departures from the elliptical patch theory
are expected. In this section, details of the vortex patch model and its predictions are
presented, then theoretical efforts regarding smooth profiles are discussed. Theoretical
results are compared to experimental and numerical data in § 4.

3.1. Elliptical patch model
A particularly useful theoretical description of 2-D ideal vortices is the so-called
elliptical patch model, where the vorticity is treated as piecewise-constant with
vorticity ω0 inside an elliptical boundary and zero elsewhere. Neglecting uniform
translations and imposing incompressibility, the ellipse can be described by the aspect
ratio λ≡ a/b and the orientation ξ , where a and b are the semimajor and semiminor
axes. In the absence of external flow, Kirchoff found that the patch rotates freely
with dλ/dt= 0 and (Saffman 1992)

dξ
dt
=ω0

λ

(λ+ 1)2
. (3.1)

In the presence of the time-independent simple strain flow (1.3), the behaviour of the
elliptical vortex patch was solved exactly by K81 (Kida 1981). Dynamical equations
for the aspect ratio and orientation are given by

dλ
dt
= 2λε cos 2ξ, (3.2)

dξ
dt
=−ε sin 2ξ

λ2
+ 1

λ2 − 1
+ω0

λ

(λ+ 1)2
, (3.3)

where ξ is defined relative to the strain axis. These equations were solved by
eliminating the time dependence and extracting trajectories of the form

ε sin 2ξ =ω0

[
λ

λ2 − 1
ln
(λ+ 1)2

4Cλ

]
, (3.4)

where C is an integration constant associated with the initial condition, with C = 1
corresponding to an initially circular vortex, λ(t= 0)= 1.

Since the Euler flow is dissipationless, the K81 system preserves total energy. The
Hamiltonian

H(λ, ξ)= 2ε sin 2ξ
1− λ2

λ
+ 2ω0 ln

[
(1+ λ)2

λ

]
(3.5)

is invariant along a trajectory in phase space (Meacham, Morrison & Flierl 1997),
and C = (1/4) exp(H/2ω0). Although (λ, ξ) are physically intuitive quantities, they
are not canonical coordinates for this system, and they are degenerate under the
transformations (λ, ξ) → (1/λ, ξ + π/2) and ξ → ξ + π. A suitable choice of
canonical momentum and coordinate is (Melander, Zabusky & Styczek 1986)

p=
(λ− 1)2

λ
, q= 2ξ, (3.6a,b)
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1 3 5 7 1 3 5 71 3 5 7

(a) (b) (c)

FIGURE 8. (Colour online) Contours of the K81 Hamiltonian (3.5) in polar coordinates
(λ, 2ξ) for ε∗= (a) 0.11, (b) 0.135 and (c) 0.155, with saddle (centre) points shown as X
(O), the separatrix (thick black line), closed orbits (red), open orbits (blue) and the orbit
corresponding to C= 1 (thick magenta line).

yielding the Hamiltonian

H(p, q)=−2ε sin q
√

p2 + 4p+ 2ω ln(p+ 4). (3.7)

In this work, coordinates (λ, ξ) are used for most results to aid physical intuition,
where 1 6 λ and 0 6 ξ <π.

It is useful to normalize time to ω−1
0 , such that t→ t∗ = tω0. The first term on the

right-hand side of (3.5) is the interaction energy between the patch and the strain,
and the second term is the self-energy associated with elliptical distortion of the
patch (Vanneste & Young 2010) (note that the second term on the right-hand side
of (3.3) is given by (3.1)). Thus the dynamics can be described qualitatively as a
competition between the two terms in the Hamiltonian representing stretching and
rotation of the patch, parameterized by ε∗ ≡ ε/ω0. Contours of the K81 Hamiltonian
(3.5) are plotted in figure 8(a–c) for three values of the normalized strain parameter,
ε∗ = 0.11, 0.135, 0.155.

The behaviour of the K81 system is dictated by its fixed points (λ0, ξ0), which are
defined by dλ/dt= dξ/dt= 0, resulting in ξ0 =π/4 and λ0 given by the solution to

λ0(λ0 − 1)
(λ0 + 1)(λ2

0 + 1)
= ε∗. (3.8)

This formula was first derived by MS71 (Moore & Saffman 1971), and later,
independently, in the context of electron plasma by Backhaus, Fajans & Wurtele
(1999). For ε∗ < ε∗c , equation (3.8) has two solutions, where ε∗c ≈ 0.15 is the critical
strain value. At ε∗c the two branches meet, and above ε∗c there are no solutions. For a
given value of the parameter ε∗<ε∗c , the K81 phase space contains an unstable saddle
point and a stable centre point corresponding to the upper and lower branches of
(3.8), respectively. The saddle point defines a separatrix which divides the phase space
into closed and open (i.e. stable and unstable) orbits. The centre point corresponds
to a local minimum of H. The fixed points and separatrices are shown graphically in
figure 8.

Physically, a closed orbit not enclosing the origin corresponds to a nutation of the
ellipse where ξ is bounded, and one enclosing the origin corresponds to rotation of
the ellipse where ξ increases monotonically. The orbit with circular initial condition
(C = 1) marks the boundary between rotations and nutations. These modes are
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generalizations of the linear vortex patch perturbations known as Kelvin waves
(Saffman 1992), or diocotron waves in the context of non-neutral plasma (Danielson
et al. 2015). Open orbits correspond to destruction modes of the vortex; here, ξ
is bounded and λ is unbounded from above, and the vortex is stretched into an
ever-thinning filament aligned with the strain axis.

An orbit is uniquely defined by the constant C and the normalized strain ε∗. For
a given value of C, there exists a critical value of the strain called the dynamical
stability limit ε∗d (C) where the orbit coincides with the separatrix. The orbit is closed
if ε∗ < ε∗d or open if ε∗ > ε∗d . The dynamical stability limit can be calculated by
determining when the maximum value λm of the aspect ratio reached in the orbit
coincides with the upper branch of (3.8). At this point, dλ/dt= 0, yielding ξ = π/4,
and λm is given by the solution to

λm

λ2
m − 1

ln
[
(λm + 1)2

4Cλm

]
= ε∗. (3.9)

When the left sides of (3.8) and (3.9) are equated and C is specified, the solution for λ
can be used to find the stability limit ε∗d (C). The case of circular initial condition (C=
1) is particularly important in this work since the 8ST produces initially axisymmetric
vortices. In this case, ε∗d ≈ 0.123, which corresponds to λm ≈ 5.4. Thus an initially
circular vortex patch subject to constant strain is destroyed at a smaller value of strain
than the equilibrium critical value ε∗c ≈ 0.15, and in general ε∗d can vary with C across
the interval (0, ε∗c ). The strain values shown in figure 8 are chosen such that for the
lowest (a) ε∗ < 0.123 with C = 1 corresponding to a closed orbit; then (b) 0.123 <
ε∗< 0.15 where C= 1 is an open orbit, and finally (c) ε∗> 0.15 where no fixed points
exist and all orbits are open.

The K81 system can be simplified substantially by neglecting one of the two terms
in the Hamiltonian. The rotation term always dominates when λ is near 1; however for
C= 1 with sufficiently large ε∗, dλ/dt� dξ/dt and λ quickly grows to a value where
the strain term dominates. In this case, ξ(t)≈0, the rotation term is negligible, and the
vorticity is advected like a passive scalar. Thus the solution to (3.2) is approximately
given by (2.6). On the other hand, in the limit of small ε∗, the rotation term dominates
over the strain and the orbits are simply perturbed Kelvin waves.

In this discussion so far, the normalized strain ε∗ was defined as the ratio of
the external strain magnitude to the vorticity of the patch. However, the vortex can
produce localized strain as well. Based on the particular solution to the Poisson
equation ψv, an elliptical vortex patch produces a constant strain within the patch
with eigenvalue

sv =ω0

(
λ− 1
λ+ 1

)
(3.10)

and orientation ξ − π/4. Therefore, the total strain s = sv + 2ε inside the elliptical
vortex patch can be much larger than the applied strain. For example, a patch in
equilibrium just below the threshold has ε∗ ≈ 0.15, λ≈ 2.9, and sv/2≈ 0.25, so the
self-strain exceeds the applied strain significantly.

Another important point is that the K81 solutions described above are possible
because an initially elliptical vortex patch remains elliptical at all times under the
action of a simple strain flow such as (1.3). However, perturbations to the elliptical
shape may be unstable. Perturbations about the Kirchoff solution (3.1) were considered
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by Love (Saffman 1992); MS71 considered perturbations about their strained patch
equilibria (3.8); and a more general discussion of the stability of K81 vortices was
given by Dritschel (1990). While these instabilities are not discussed further here,
they should be considered as limitations to the utility of the elliptical patch model.

In the presence of a circular boundary, the elliptical mode frequency can be shifted
relative to (3.1) due to image fields. In the linear regime, corrections to dξ/dt scale
as (rv/rw)

4 (Danielson et al. 2015). Thus, the influence of the boundary can be safely
neglected when the vortex radius is small (in the 8ST, rv/rw . 0.2), and so the K81
description is appropriate. For a detailed discussion of boundary effects, see Chu et al.
(1993).

When the strain magnitude is allowed to vary in time, the Hamiltonian is no longer
conserved and the phase space structure changes over time. Although time-dependent
strain was not discussed by K81 or MS71, the K81 dynamical equations (3.2) and
(3.3) are valid for time-dependent ε∗. If the applied strain varies slowly relative to the
vortex rotation, the system preserves the adiabatic invariant J =

∮
p dq, which is the

area enclosed by the orbit in (p, q) space (Crosby, Johnson & Morrison 2013). Since
the circular initial condition occupies only a point in the phase space for ε∗= 0, then
as the strain is gradually increased, the system evolves in equilibrium along the lower
branch of (3.8) with J≈ 0. As ε∗ approaches the limit ε∗c ≈ 0.15, the centre point and
saddle point annihilate, and the vortex loses stability via a saddle-node bifurcation. For
an initial condition with J 6= 0, as the strain is gradually increased, J is preserved until
the orbit collides with the separatrix and the system loses stability via a homoclinic
bifurcation. For sufficiently rapid changes in ε∗, adiabaticity is broken and dJ/dt 6= 0.
A detailed study of vortex adiabaticity is left for future work.

3.2. Non-flat vorticity profiles
If the initial vorticity distribution is taken to be smooth and continuous, then
non-elliptical structure can form in response to the external strain flow. In particular,
experiments and simulations have shown that sharp filamentary structures form at the
vortex periphery (Mariotti et al. 1994; Trieling et al. 1997). In this case, a simple
low-dimensional description in terms of (λ, ξ) is not possible; instead, the dynamics
is given by the 2-D Euler equations (1.1) with continuous spatial coordinates as
dynamical variables (Morrison 1998). An important theme here is that the competition
between strain and vorticity is locally quantified by s∗(x, y), as opposed to the patch
description where the dynamics is set by the global parameter ε∗.

The experiments discussed here use initial vorticity profiles which are generally well
approximated by (2.5), where α→∞ corresponds to the vortex patch and α = 2 to
the Gaussian profile. In the experiments, α can be varied roughly from 2 to 10, where
α > 5 are loosely referred to as ‘quasi-flat’ profiles due to good agreement with the
elliptical patch theory (see § 4). Other work has focused on hyperbolic tangent profiles
(Turner & Gilbert 2008) and compact polynomial profiles (Balmforth et al. 2001),
both of which can be varied from smooth to flat. Alternatively, smooth profiles can be
approximated using discrete steps (i.e. the contour dynamics method (Zabusky 1979;
Polvani & Flierl 1986; Dritschel 1989; Legras et al. 2001)).

In general, describing the nonlinear dynamics of smooth profiles is difficult, and
so certain approximations must be used in order to make progress. For example,
the Euler equations can be linearized in the limit of weak or strong strain, or
in the limit of short time scales. For the case of weak applied strain (Lingevitch
& Bernoff 1995; Balmforth et al. 2001; Turner et al. 2008), perturbations to the
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FIGURE 9. (Colour online) Initial flow geometry for a Gaussian vortex under external
strain. (a) The normalized vorticity profile (solid line) and azimuthal velocity profile
(dashed line); (b) the external strain flow given by (1.3), with streamlines (black), saddle
point (X) and flow direction specified by arrows; and (c) the superposition of the flows
in panels (a) and (b) for ε∗= 0.2, with saddle points (X) and centre point (O), separatrix
(thick black line), streamlines (black) and vorticity contours (coloured).

vorticity distribution are small, and so the Euler equations can be linearized about the
steady-state axisymmetric vortex solution. For the case of strong strain, the dynamics
can be linearized by neglecting the particular solution to the Poisson equation ψv,
such that the vorticity is advected as a passive scalar (so-called rapid distortion theory
(Hunt & Carruthers 1990)). In the present work, we consider marginal strain (i.e. near
the critical strain threshold), so neither the strain nor the vorticity may be treated
perturbatively. In this case, it is useful to analyse the flow behaviour on short time
scales.

For example, consider a Gaussian initial vorticity profile (α = 2) which, for ε = 0,
produces the azimuthal flow

vθ(r)=
ω0r2

v

2r
[1− exp[−(r/rv)2]], (3.11)

shown in figure 9(a). When subjected to the simple strain flow (1.3) shown in panel
(b), the instantaneous flow field at t = 0 is given by the superposition of the flows
due to the vortex vv and the external strain vs, as shown in panel (c) for ε/ω0 ≡

ε∗ = 0.2. This flow features critical points (Moffatt 2001) defined by v = vv + vs =

0, whose existence and location depend on ε∗. For ε∗ < 1/2, the flow contains three
critical points: two saddle points along the y-axis which define a separatrix enclosing a
single centre point at the origin. Inside the separatrix, streamlines are closed and the
fluid motion is vorticity dominated; outside this boundary, the streamlines are open,
and the motion is strain dominated. When the separatrix intersects the vorticity profile,
partial vortex destruction events are expected, where a portion of the total circulation
is carried away by the external flow. As ε∗ increases, the saddle points move toward
the origin and the separatrix shrinks. At ε∗=1/2, the streamfunction topology changes
as the two saddles annihilate the centre point. For ε∗> 1/2 there exists a single saddle
point at the origin and all streamlines are open. In this case, the initial flow field
predicts complete destruction of the vortex.

Further information can be obtained from the instantaneous flow field by studying
spatial derivatives of the velocity field. Using this approach, Okubo and Weiss
independently derived approximate short-term descriptions of the 2-D Euler equations
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(Okubo 1970; Weiss 1991) which have been widely studied in the context of 2-D
turbulence. Following Weiss, local solutions are found to equations (1.1) for the
evolution of the vorticity gradient ∇ω in the Lagrangian frame, under the assumption
that strain and vorticity vary slowly relative to ∇ω. The solutions take the form

d
dt
∇ω∝ exp Q1/2t, (3.12)

where Q = ψ2
xy − ψxxψyy is the Okubo–Weiss parameter, with subscripts indicating

partial derivatives. Here, Q is identified as the square of the eigenvalues of the velocity
gradient tensor ∇v, which is equal to the difference of the squared strain magnitude
and the squared vorticity, Q= s2

−ω2. Normalizing to the vorticity yields Q/ω2
≡Q∗=

s∗2− 1, so Q is a measure of the local strain-to-vorticity ratio. Equation (3.12) admits
oscillatory solutions when the vorticity dominates (s∗ < 1), and exponential solutions
when the strain dominates (s∗> 1). The oscillatory solutions are associated with stable
vortices, and the exponential solutions are associated with filamentation behaviour (i.e.
the forward enstrophy cascade). Although the assumption used to derive (3.12) was
found to be valid only in certain regions of flow (Basdevant & Philipovitch 1994),
the Okubo–Weiss result has been extended to higher orders of approximation and to
three dimensions (Hua & Klein 1998; Haller 2005), and is widely used to differentiate
stable vortex structures from regions of turbulent cascade activity.

Knowledge of the full flow field is necessary to find the streamfunction separatrix,
whereas the Okubo–Weiss stability criterion can be calculated locally by differentiating
the velocity field. Both criteria are valid on short time scales where the vorticity is
static. On longer time scales the nonlinear evolution of the vorticity field must be
taken into account, and so these stability criteria may be inaccurate. For example,
the centre of a circular vortex patch with 0.123 < ε∗ < 0.5 initially follows closed
streamlines, whereas the nonlinear K81 theory predicts eventual destruction. However,
both the separatrix and the Okubo–Weiss criterion are useful as approximate predictors
of the local stability of the vorticity on short time scales.

4. Data

Experimental data for the evolution of an initially axisymmetric electron plasma
vortex under a simple strain flow were shown in figure 1 for two values of
normalized strain, ε∗ = 0.116 and 0.13, that are below and above the critical strain
threshold. In this section, we compare these and other data, and corresponding
vortex-in-cell simulations with theoretical predictions of the elliptical patch model.
Finally, departures from the elliptical patch theory are studied using smooth profiles.

4.1. Tests of the elliptical patch model
Data are presented here from experiments with the 8ST comparing elliptical distortions
of a strained vortex to predictions of the elliptical patch theory (Moore & Saffman
1971; Kida 1981). Ellipses are fit to the measured half-maximum vorticity contours
using the numerical routine described in § 2. This yields experimentally determined
values of the aspect ratio of the ellipse λ and the orientation ξ with respect to
the applied strain axis, which are compared directly to the theory with no fitted
parameters. For comparison to the patch model, quasi-flat initial vorticity profiles are
used, where ω(r) is approximately given by (2.5) with smoothness exponent α > 5.
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1.0 1.5 2.0 2.5 1 3 5
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FIGURE 10. (Colour online) Comparison of experimental data and predictions of the
K81 theory in polar (λ, 2ξ) space for a quasi-flat vortex under external strain, with
ε∗ = (a) 0.087, (b) 0.116, (c) 0.13 and (d) 0.152. Contours of the K81 Hamiltonian are
shown, including open orbits (blue lines), the separatrix (thick black line) and the C= 1
orbit (magenta line). Fixed points of the K81 system are shown as (X) and (O), and
experimental data are shown as magenta circles.

The evolution of (λ, ξ) are shown in figure 10 for an initially axisymmetric vortex
with α ≈ 6 (cf. figure 5b), subject to a constant external strain flow given by (1.3).
These data are compared to the K81 prediction for C = 1. Evolution of the ellipse
parameters (λ, 2ξ) is plotted for normalized strain ε∗ = 0.087, 0.116, 0.13 and 0.152
(panels (a)–(d), respectively), with central vorticity ω0= 228 krad s−1. Data are taken
at intervals of 5 µs (1.1ω−1

0 ), and repeated three times for statistics. Contours of
the K81 Hamiltonian (3.5) are plotted over the data including open orbits, the C =
1 orbit and the separatrix. Note that in figure 10(c) the circular initial condition is
unstable, although closed orbits still exist inside the separatrix; whereas in panel (d)
the separatrix has disappeared.

These data are also plotted versus normalized time in figure 11, with (a) λ(t∗) and
(b,c) ξ(t∗), for six values of strain including ε∗= 0.044, 0.087, 0.116, 0.13, 0.152 and
0.173. Predictions of the K81 theory for C= 1 are shown as solid lines. The lowest
strain values ε∗ = 0.044, 0.087 and 0.116 are below the dynamical stability threshold
ε∗d (C = 1) ≈ 0.123 (shown as dashed lines), so the system executes periodic orbits
in (λ, ξ) space. The highest strain values ε∗ = 0.13, 0.152 and 0.173 are above the
threshold, so λ grows without bound as ξ approaches 0.

The data in figures 10 and 11 generally agree with the theory, with a few notable
exceptions. Since behaviour of the K81 system is unstable near the separatrix, data for
the strain values just above and below the threshold (i.e. ε∗= 0.116 and 0.13) become
noisy at later times. For the above threshold cases (ε∗ = 0.13, 0.152 and 0.173), the
experimentally measured ξ diverges from that of the theory when λ is large. This is a
manifestation of the dump rotation effect discussed in § 2; since the ellipse continues
to rotate slightly during the diagnosis process, the data here are corrected using a
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FIGURE 11. (Colour online) Comparison of experimental data and the K81 theory for
a quasi-flat vortex with C = 1 under external strain. (a) λ(t∗) (b) ξ(t∗) (closed orbits)
and (c) ξ(t∗) (open orbits) where t∗ = tω0 and ω0 = 228 krad s−1, for normalized strains
ε∗ = 0.044 (cyan), 0.087 (black), 0.116 (blue), 0.13 (green), 0.152 (magenta) and 0.173
(red). Predictions of K81 elliptical patch theory are shown as solid lines, including the
threshold orbit ε∗ = 0.123 (black dashed line).

uniform shift of 1ξ = −10◦, but the rotation shift decreases as the vortex distorts,
according to (3.1).

Well above the critical strain threshold ε∗ � ε∗c , the K81 elliptical patch theory
predicts exponential behaviour λ(t) = exp(t/τ), where τ = 1/2ε (cf. (2.6)). For
ε∗ > ε∗d , exponential curves are fit to data for λ(t) to find τ . Figure 12(a) shows
measurements of λ(t) for ω0 = 195 krad s−1 and ε∗ = 0.136, 0.159, 0.181, 0.204,
0.227, 0.249, 0.272 with exponential fits. Figure 12(b) shows the normalized time
constant τ ∗≡ τω0 associated with the exponential fits as a function of ε∗ for ω0= 195,
260 and 326 krad s−1, compared to the K81 prediction. The prediction assuming
passive vorticity (τ = 1/2ε) is shown, as is the K81 stability limit ε∗d (C= 1)≈ 0.123.
Figure 12 shows that the assumption of passive vorticity is accurate for roughly
ε∗ > 0.20; whereas for 0.123 < ε∗ < 0.20 the stretching rate is reduced (i.e. the
lifetime of the vortex is extended), and λ(t) is not exactly exponential because the
system stalls near the saddle point.

For the case of constant strain imposed on an initially axisymmetric vortex, as in
figure 10, stationary solutions are not possible. However, if the strain is gradually
increased, the system can be expected to behave adiabatically. In this case, the action
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FIGURE 12. (Colour online) Dynamics of unstable elliptical vortices above the critical
strain threshold. (a) Data (circles) for λ(t∗) for ε∗ = 0.136, 0.159, 0.181, 0.204, 0.227,
0.249, 0.272 (blue to red), with exponential fits (lines), where ω0 = 195 krad s−1. (b)
Normalized time constant of the exponential fits τ ∗≡ τω0 for ω0= 195 (blue circles), 260
(green squares) and 326 (magenta triangles) krad s−1. Also shown is the K81 theoretical
prediction (solid black line), that assuming passive vorticity τ ∗= 1/2ε∗ (dashed black line)
and the stability boundary ε∗d (C= 1)≈ 0.123 (dotted red line).

0.08 0.10 0.12 0.14 0.160.060.040.020
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FIGURE 13. (Colour online) Demonstration of MS71 strained vortex equilibria. Data are
obtained using a slow linear ramp function ε∗ ∝ t, for ω0 = 143 krad s−1 (red triangles),
182 krad s−1 (green squares), 228 krad s−1 (magenta circles) and 313 krad s−1 (blue
triangles). They are compared to the stable branch (solid line) of the MS71 theory (3.8).
The unstable branch is also shown (dashed line). Data and predictions for the maximum
aspect ratio in a K81 orbit λm are shown as well, with theory given by (3.9) (dotted line)
and data (black diamonds).

J remains approximately zero, such that the (λ, ξ) are given by the MS71 equilibrium
solution (3.8). Data are shown in figure 13, where λ is studied by the imposition of
a slow, linearly ramped strain, for ω0 = 143, 182, 228 and 313 krad s−1; and ramp
rates in the range dε∗/dt∗ = 0.0025–0.005. The theoretical equilibria (3.8) are shown,
including both the stable and unstable branches. The data agree with the theory, up
to the stability limit of ε∗c ≈ 0.15 to within the experimental uncertainty, implying that
the system is behaving adiabatically. However, numerical solutions to (3.2) and (3.3)
indicate that a small-amplitude orbit may be excited due to the kink in ε(t) as the
linear ramp begins (Notte et al. 1993).
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FIGURE 14. (Colour online) Stability threshold measurements versus peak vorticity. The
thresholds ε∗d (C=1) for initially axisymmetric vortices subject to constant strain are shown
(blue). Also shown are those for vortex equilibria ε∗c using a linearly ramped strain (red).
K81 and MS71 predictions are shown (ε∗= 0.123, dashed, and 0.15, dotted), as are results
of vortex-in-cell simulations (shaded). The experimental measurements are indicated by
error bars (see text for details).

Also shown in figure 13 is the maximum aspect ratio λm reached by a K81 orbit
with C = 1 (3.9), with data for ε∗ = 0.045, 0.087 and 0.116, corresponding to the
orbits shown in figure 10. Again, the data and theory are in close agreement.

Shown in figure 14 are experimental measurements of both the equilibrium and
dynamical stability thresholds for quasi-flat vortices with α > 5. These data are
compared to results of vortex-in-cell simulations, and predictions of the elliptical
patch theory ε∗c ≈ 0.15 and ε∗d (C= 1)≈ 0.123. Experimentally, the dynamical stability
threshold is found by observing λ at late times in the evolution under constant strain
(tf ∼ 30ω−1

0 , cf. figure 11). These measurements of ε∗d (C = 1) are plotted against the
peak vorticity ω0 in figure 14, where the bottom (top) end of the error bar corresponds
to a strain where five consecutive runs show stable (unstable) behaviour. A similar
technique is used to measure the equilibrium stability limit ε∗c . In this case, the strain
is slowly increased using a linear ramp time dependence with rate dε∗/dt∗ ∼ 0.005
(cf. figure 13), and then held at a particular value of ε∗ to determine the stability.
The stability thresholds are found in a similar manner using vortex-in-cell simulations.
The experimental measurements give ε∗c = 0.15± 0.01 and ε∗d (C= 1)= 0.124± 0.006.
The simulations give ε∗c = 0.145–0.147 and ε∗d (C= 1)= 0.123–0.125.

Thus the stability threshold observed in experiments and simulations are in good
agreement with the predictions of elliptical patch theory, except for a slightly reduced
value of ε∗c in the simulations. Small deviations such as this may be associated with
the smoothness of the profile at the edge of the vortex, an issue which is investigated
in further detail in figure 17. Alternatively, the finite ramp time of the strain could lead
to breaking of the adiabaticity and therefore slightly reduced stability limits. Constancy
of the experimental results over a wide range of ω0 lends confidence that non-ideal
or 3-D effects depending on the electron density are negligible.

In conclusion, many aspects of the elliptical vortex patch model studied by K81 and
MS71 have been tested using realistic quasi-flat vorticity profiles that are subjected to
external strain. In general, the global dynamics of the vortex cores is found to be in
good agreement with the theory.
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FIGURE 15. (Colour online) Evolution of a quasi-flat vortex is shown for ε∗= (a) 0.116
and (b) 0.13 (i.e. the same data shown in figure 1). Also shown are streamlines (black
lines), the separatrix (thick black line), saddle points (X), centre points (O) and the Okubo–
Weiss stability boundary defined by Q= 0 (dashed line). Note the topological change of
the streamfunction between fourth and fifth panels in row (b).

4.2. Physics beyond the elliptical patch model
The agreement between the experiments and the elliptical patch theory for quasi-flat
profiles raises the following questions: How ‘flat’ must the profile be in order to agree
with the theory? How is the vortex dynamics modified relative to the patch theory
predictions when the profile is not sufficiently flat? These questions are addressed here
by studying the full flow field as described by the 2-D Euler equations (1.1), and by
studying non-flat profiles.

The vorticity evolution data shown in figure 1 for ε∗ = 0.116 and 0.13 are plotted
again in figure 15, with overlaid streamlines, the separatrix and the Okubo–Weiss
stability criterion Q = 0. At t = 0, a small amount of circulation exists outside
the separatrix; as the vorticity evolves, the separatrix changes accordingly. Below the
critical strain threshold (panel (a)), peripheral vorticity is carried into filaments exterior
to the separatrix, while the majority of the circulation remains on closed streamlines
inside the separatrix. Above the critical threshold (panel (b)), the separatrix shrinks
as the vortex distorts. The saddle points move inward and annihilate the centre point
at the origin between the fourth and fifth panels, thus changing the streamfunction
topology as the vortex is destroyed. The Okubo–Weiss local stability criterion shows
qualitatively similar behaviour to the separatrix, disappearing at the same point in
figure 15(b). Quantitatively, however, stable regions predicted by the separatrix and
the Okubo–Weiss theory show a slightly different shape and spatial extent.

The temporal evolution of the local stability properties are studied quantitatively
in figure 16 for six values of ε∗. Shown are (a) the total normalized circulation
integrated over the domain Γ /Γ0; (b) the circulation contained inside the separatrix
Γsep/Γ0; (c) the circulation inside the Q = 0 surface ΓQ/Γ0; and (d) the normalized
Okubo–Weiss parameter evaluated at the origin Q∗0, where the stability boundary
Q∗0 = 0 is shown as a black dashed line. Here, Γsep and ΓQ are calculated as

∫
S ω dA

where S corresponds to the region enclosed by the separatrix or the Q = 0 surface.
Error bars show averages over three data points. These results are calculated from the
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FIGURE 16. (Colour online) Local stability inside a vortex versus time, for ε∗ = 0.045
(cyan), 0.087 (black), 0.116 (blue), 0.13 (green), 0.152 (magenta) and 0.173 (red). (a) The
normalized total circulation, (b) circulation inside the separatrix, (c) circulation inside the
Okubo–Weiss stability boundary and (d) value of the normalized Okubo–Weiss parameter
at the origin, compared to the stability threshold (dashed line). Note that Γsep, ΓQ→ 0 and
Q∗0 crossing zero indicate a change of the streamfunction topology.

same data shown in figures 1, 10 and 11. At late times, figure 16(a) demonstrates
loss of circulation to the wall gaps (note that for the three strain values above the
threshold, Γ /Γ0 eventually tends to zero). Panels (b) and (c) show the shrinking and
disappearance of the separatrix and Okubo–Weiss stable region for the cases above
the strain threshold, and destabilization of peripheral circulation for the case slightly
below threshold. In figure 16(d), Q∗0 = s∗2 − 1 increases dramatically from its initial
value 4ε∗2 − 1 due to the self-strain sv as the vortex distorts. For the three strains
above the threshold, Q∗0 crosses the stability boundary as the stream function changes
topology. Thus, the initial streamfunction separatrix and the Okubo–Weiss criteria
fail to predict the eventual destruction of the vortex due to nonlinear evolution of
the vorticity. The temporal behaviour of Γsep and ΓQ are comparable, although not
exactly in agreement. Further study of these local stability criteria is left for future
work.

Hurst et al. (2016) demonstrated a slightly reduced critical strain threshold for
smooth, Gaussian vorticity profiles relative to quasi-flat ones. This effect is analysed
further in figure 17, which shows the dynamical threshold ε∗d (C = 1) versus the
smoothness exponent α. Experimental and numerical data are shown, as is the K81
strain threshold ε∗d (C = 1) ≈ 0.123. The error bars are found in the same manner
described above in the discussion of figure 14. Here, the simulations use profiles
given by (2.5), with α varying from 2 to 10. For the experimental data, α is found
using a fit to (2.5). Both the experimental and numerical data show a clear shift to
lower stability threshold at low α (i.e. approaching Gaussian profiles). Data are taken
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FIGURE 17. (Colour online) Dynamical stability threshold for constant strain ε∗d (C = 1)
versus smoothness exponent α, where α= 2 corresponds to a Gaussian profile and α→∞
to a patch profile. Shown are the K81 theoretical stability limit (dashed line), simulations
(black error bars, shaded) and experimental data (magenta error bars).

here for ω0= 347–571 krad s−1, and radius rv = 0.1–0.2 rw. The experimental profiles
agree closely with (2.5). Other data (not shown here) suggest that the threshold
is lowered by approximately 10 % for rv ≈ 0.3rw, likely due to influence from the
wall. Additionally, results for profiles which are not good fits to (2.5) show that the
threshold can be sensitive to specific details of the profile.

Data for the evolution of a Gaussian vortex relative to a quasi-flat vortex is shown
in figure 18. Here, panel (a) shows a Gaussian vortex with α≈ 2, and panel (b) shows
a quasi-flat vortex with α ≈ 8. For both profiles, ω0 = 785 krad s−1 and ε∗ = 0.112.
The strain magnitude is chosen just slightly below the K81 threshold, such that the
flat vortex survives, but the Gaussian vortex is destroyed, demonstrating the threshold
shift shown in figure 17. A plausible explanation for this shift is that the smooth
profiles feature substantial filamentary structures near the saddle points which augment
the total strain in the vortex core. In contrast, although quasi-flat profiles may also
show filamentary behaviour, the circulation contained in these filaments is small and
therefore the effect of the filaments on the core is negligible.

For a smooth vortex below the critical destruction threshold, although the core may
survive, the outer circulation can be stripped away to some degree. Figure 19 shows
the total remaining circulation in a vortex subjected to constant strain for time tf =

25ω−1
0 . The experimental data agree well with simulations for both a quasi-flat profile

with α≈ 7 and a smooth profile with α= 2. The K81 destruction threshold is shown
as well. The data show that smooth vortices suffer heavy stripping due to the external
strain, even well below the destruction threshold.

The K81 elliptical patch model preserves energy, and therefore trajectories in phase
space are given by contours of the Hamiltonian (3.5). However, it is observed that
these orbits can undergo inviscid damping (i.e. spatial Landau damping (Schecter
et al. 2000; Balmforth et al. 2001; Turner et al. 2008)) when the vorticity profile
is sufficiently non-flat. This effect is demonstrated in figure 20 using an initial
profile which has a flat core (α ≈ 8) and a low-vorticity tail exterior to the core
(cf. figure 5c). Figure 20(a–c) shows evolution of the ellipse parameters (λ, 2ξ) in
response to constant strain of magnitude ε∗ = 0.045, 0.09 and 0.108, respectively.
Shown here are experimental data and simulation data, where the simulations use
an initial vorticity profile identical to the experimental one. The data are compared
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FIGURE 18. (Colour online) Experimental evolution of vorticity (colour maps) and
streamfunction (lines) for (a) a Gaussian profile, and (b) a quasi-flat profile with α ≈ 8.
Both rows (a) and (b) correspond to ω0 = 785 krad s−1, ε∗ = 0.112 and panels are
separated by time t∗ = 12.56 beginning with t∗ = 0.
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FIGURE 19. (Colour online) Fraction of the circulation remaining in a vortex after a
straining event. Shown are experimental data (magenta) for a quasi-flat vortex with α≈ 7
(diamonds) and a Gaussian vortex with α≈ 2 (squares), and simulation data (black, with
lines) for α= 7 (triangles) and α= 2 (circles). The K81 stability threshold is indicated by
the dashed line.

to the C = 1 contour of the K81 Hamiltonian. The energy H is calculated from
(λ, ξ), and plotted versus time in figure 20(d–f ) for experimental and numerical
data, corresponding to the damped orbits in panels (a–c). The amount of remaining
circulation at the end of each data set is Γf /Γ0≈ 1 (panel a), 0.95 (panel b) and 0.9
(panel c). The evolution of the vorticity and streamfunction is shown for two damped
orbits in figure 21 with ε∗ = (a) 0.045 and (b) 0.09 (corresponding to the data in
figure 20(a,b)). Both cases clearly show filamentation behaviour, and panel (b) also
shows circulation loss to the wall.

Here, the energy H (3.5) associated with the m= 2 elliptical distortions decreases
as energy is transferred to other wavenumbers, either by differential rotation or
filamentation. Thus, the C = 1 orbit evolves toward the local minimum of H at the
stable centre point given by the lower branch of (3.8). In figure 20(a,b), the damping
drives the system very close to the equilibrium. However in panel (c), the damping
saturates at a finite orbit amplitude. In this case, the tail is stripped away suddenly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

31
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Sa

n 
D

ie
go

 L
ib

ra
ry

, o
n 

07
 Ju

n 
20

18
 a

t 1
3:

53
:1

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.311
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Experimental study of strained electron plasma vortices 283

2.775

2.770

2.765

2.760

(d) 2.78

2.76

2.74

2.72

2.76
2.74
2.72

2.68
2.70

(e) 2.78

(a) (b) (c)

3010 20 400 3010 20 400 3010 20 400

1 1.2 1.4 1 1.6 2.2 1 2 3

( f )

H

FIGURE 20. (Colour online) Inviscid damping of K81 orbits in (λ, 2ξ) space.
(a–c) Experimental data (magenta circles) and simulation results (black triangles), as well
as contours of H for the C = 1 orbit (magenta line) and separatrix (black line), and
the stable equilibrium point (green square), for ε∗ = (a) 0.045, (b) 0.09 and (c) 0.108.
(d–f ) The temporal evolution of H corresponding to the data in (a–c), relative to the initial
value (dashed) and the value at the stable equilibrium (dotted).
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FIGURE 21. (Colour online) Vorticity (colour maps) and streamfunction (lines) evolution
during inviscid damping of a K81 orbit, for ε∗ = (a) 0.045 and (b) 0.09. Here, ω0 =

458 krad s−1, and data are shown at time intervals 1t∗= 9.16 beginning with t∗= 0.916.

and the damping shuts off, and the remaining flat core executes a nutation mode.
Both the experiments and simulations show similar behaviour, although the onset and
rate of damping is slightly different.

Based on these observations, inviscid Landau damping of an elliptical vortex in
the presence of external strain differs qualitatively from the freely relaxing case
studied previously (Schecter et al. 2000; Balmforth et al. 2001; Turner et al. 2008)
in two major ways. First, rather than damping toward axisymmetry, the system damps
toward a steady elliptical state similar to the stable equilibria given by MS71. In the
case of zero strain, the damping may saturate as a rotation mode, whereas with
non-zero strain the saturated state can be a nutation mode. Secondly, circulation
may be stripped and lost to the wall due to the external strain. Thus, in addition
to damping via differential rotation and filamentation, damping may occur through
an ‘evaporative’ process associated with circulation crossing the separatrix. Note
that in figure 20 panels (b) and (c) evidence of circulation loss implies that the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

31
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Sa

n 
D

ie
go

 L
ib

ra
ry

, o
n 

07
 Ju

n 
20

18
 a

t 1
3:

53
:1

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.311
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


284 N. C. Hurst, J. R. Danielson, D. H. E. Dubin and C. M. Surko

evaporative damping mechanism is active, whereas in panel (a) no circulation loss
is observed. Here, inviscid damping of the K81 orbit is demonstrated for a profile
which is quasi-flat in the core, but with a tail of circulation at the edge of the vortex,
as shown in figure 5(c). Other various data from the 8ST (not shown here) indicate
that damping may occur for a broad range of non-flat profiles.

5. Summary and discussion

This work focuses on the behaviour of a 2-D ideal vortex structure under the
influence of external strain. The experiments are done in an electron plasma
confinement apparatus which was designed specifically to study vortex dynamics
under the influence of an external flow. Corresponding simulations are conducted
using the vortex-in-cell technique. External strain is imposed by adjusting the
boundary conditions in two dimensions. Details of the experimental technique are
given, including a discussion of the analogy between a 2-D ideal fluid and pure
electron plasma. Quasi-flat initial vorticity profiles are prepared, and the resulting
dynamics is compared to a simple model which treats the vorticity distribution as
piecewise constant in an elliptical region.

The theoretical predictions of K81 (Kida 1981) are confirmed, that strained vortices
execute closed orbits below a certain strain threshold, where the aspect ratio and
orientation of the ellipse oscillate periodically. Above this threshold, the experiments
confirm that the aspect ratio increases without bound in response to the external strain
and the entire vortex is destroyed. Measurements of the critical strain threshold are in
good agreement with results of simulations and theoretical predictions. Additionally,
when the strain is slowly ramped up, the experimental data agree with the stable
elliptical patch equilibria given by Moore & Saffman (1971). The elliptical patch
variables (λ, ξ) are measured directly by diagnosing the vorticity field, and the
observed dynamics agrees quantitatively with the theoretical predictions.

When the initial vorticity profile is relatively smooth, the dynamics of strained
vortices diverges from the predictions of the elliptical patch model. Here, stability of
the vorticity is a local matter, so vortices may experience partial or total destruction.
During total destruction, saddle points move smoothly into the profile, eventually
causing a topological change in the fluid streamfunction as the strain overcomes
rotation at the centre of the vortex. Linear predictions from the initial flow field and
the Okubo–Weiss criterion fail to predict the eventual destruction of vortices in the
range ε∗d < ε∗ < 1/2 due to additional strain associated with the vortex distortion.
Experiments show that smooth profiles exhibit slightly reduced stability limits relative
to quasi-flat profiles, possibly due to additional self-strain produced by filaments
which form near the saddle points. Finally, non-flat profiles are found to execute
periodic orbits similar to those discussed in K81, but the orbits may experience
inviscid damping, reminiscent of the work of Schecter et al. (2000), Balmforth
et al. (2001) and Turner et al. (2008). This is manifested by a decrease in the orbit
amplitude, where the system evolves toward the stable equilibria given by MS71 and
may saturate as a K81 nutation mode. In general, it is observed that the dynamics of
a vortex core can be modified due to the behaviour of peripheral circulation near the
vortex edge, leading to deviations from the elliptical patch theory.

These results are relevant to a variety of quasi-2-D fluid systems found in man-made
and natural environments. Examples include geophysical fluids, strongly magnetized
plasmas, astrophysical disks and various engineering and industrial applications. A
common theme in many of these systems is that the transport of heat, momentum
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and particulate matter (i.e. passive tracers, chemicals, etc.) is often dominated by the
formation and persistence of coherent vortices. For example, vortices appear routinely
in the Earth’s atmosphere and oceans, and they have a substantial impact on weather
and climate behaviour (Dritschel & Legras 1993). In strongly magnetized toroidal
laboratory plasmas, quasi-2-D turbulent transport has challenged attempts to generate
the conditions necessary for nuclear fusion, although recent work has shown that
transport can be suppressed through an eddy decorrelation mechanism similar to the
K81 destruction modes (Terry 2000). Although many practical fluid systems feature
non-2-D and non-ideal effects at some level, the 2-D ideal vortices discussed here
provide a simple qualitative description of the physics involved (Tabeling 2002).

Recent experimental results from the 8ST suggest opportunities for further
investigations. For example, more detailed studies could be carried out regarding
inviscid damping of the K81 orbits for non-flat profiles. Additionally, further studies
of the Okubo–Weiss local stability criterion and its variants would be interesting.
The time dependence of the external strain can be chosen arbitrarily, while this work
focused only on constant or ramped strain. Further investigation of vortex adiabaticity
under ramped strain would be an important direction of research. Other possibilities
include a Gaussian strain pulse, which could mimic a smooth transient straining event,
or a sinusoidal time dependence to produce a periodic straining scenario. Another
interesting direction would be the intentional introduction of various non-2-D or
non-ideal effects, with the goal of more accurately simulating flows of interest to
geophysics, astrophysics and plasma physics.
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