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The E×B shear instability of a two-dimensional (2D) filament (i.e., a thin, rectangular strip perpendicular
to the magnetic field) of magnetized pure electron plasma is investigated experimentally in the presence of
an externally imposed strain flow. Data are acquired using a specialized Penning-Malmberg trap in which
strain flows can be applied in 2D by biasing segmented electrodes surrounding the plasma. The E×B drift
dynamics are well-described by the Drift-Poisson equations, which are isomorphic to the 2D Euler equations
describing ideal fluids. Thus, the experimental results correspond to the Rayleigh instability of a shear layer
in a 2D ideal fluid, where the electron density is analogous to the fluid vorticity. Shear layers are prepared
by stretching initially axisymmetric electron vortices using a strong, applied strain flow. The data at early
times are in quantitative agreement with a linear model which extends Rayleigh’s work to account for the
influence of an external strain flow. In the presence of weak strain, the system approximately maintains a
phase relationship that corresponds to an instantaneous Rayleigh eigenmode. The instability develops into
the nonlinear regime later in time and at smaller spatial scales as the strain rate is increased. A secondary
vortex pairing instability is observed, but it is suppressed when the strain-to-vorticity ratio exceeds roughly
0.025. In this way, vorticity transport perpendicular to the filament is diminished due to the applied strain.

I. INTRODUCTION

Shear flows can be found in a wide variety of quasi-two-
dimensional (2D) plasma and fluid systems, both natu-
rally occurring and human-made, across a broad range
of scales. In many cases, shear instabilities give rise to
turbulence and transport, often with important conse-
quences. A few common examples include shear flows
and zonal flows in geophysical fluids (e.g., atmospheres
and oceans),1–4 magnetically confined fusion plasmas,5–7

accretion and protoplanetary disks,8–10 and non-neutral
plasmas.11–16 Thus, understanding the stability proper-
ties of shear layers is a key objective in plasma and
fluid research. Often, the stability and persistence of
shear flows is attributed to external conditions such as
planetary rotation, topography, or background density
gradients.1,4,6,8 In contrast, it is well known that isolated
shear flows in 2D, inviscid, incompressible (ideal) fluids
are unstable.17,18

The linear stability of an infinitesimally thin, 2D in-
viscid shear layer with a density discontinuity was first
studied by Kelvin and Helmholtz,18 whose names are now
commonly used to refer to a broad class of shear insta-
bilities. Rayleigh generalized their results to account for
finite layer width in a uniform density (incompressible)
fluid, showing that a piecewise linear flow velocity profile
is unstable for wavenumbers ranging from zero to roughly
the inverse layer width.3,17 More recent work has focused
on smooth flow profiles,19–21 nonlinear physics,22–24 and
3D effects.4,25 However, in many physically realistic sit-
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uations, shear layers are embedded in complicated (per-
haps turbulent) background flow fields.26–29 Thus, they
are often subjected to shear and strain flows which are
sourced externally by other nearby flow structures. This
situation was studied theoretically and numerically by
Dritschel, et. al.,30,31 showing that the external flow
could significantly modify the stability properties of the
shear layer.

Here, experiments with single component electron
plasmas are used to study the Rayleigh instability on a
thin filament of vorticity, and the effect of external strain
flow on the wave growth and saturation is explored. Fur-
ther, several effects due to the applied strain are identi-
fied that contribute to limiting the spreading of the vor-
ticity that results from the instability.

The experiments described here take advantage of an
analogy between the E×B guiding center drift dynamics
of non-neutral pure electron plasmas and the dynamics
of 2D ideal fluids, where the electron density plays the
role of fluid vorticity.32 A specially designed Penning-
Malmberg plasma trap is used in which the electron fluids
are subjected to externally applied E×B strain flows by
differentially biasing a segmented electrode surrounding
the plasma, a technique which has been used recently to
study dynamical behavior of elliptical vortices.33–35 We
focus here on the influence of external strain on the sta-
bility properties of shear layers in a 2D ideal fluid. The
shear layers are created by stretching initially axisym-
metric electron vortices into thin filamentary structures
in the plane perpendicular to the magnetic field using
strong external strain flows.33,36 Subsequently, the ap-
plied strain is either removed or reduced so as to study
the resulting Rayleigh instability of the filaments. The
behavior is characterized by the strain to vorticity ra-
tio ε∗ ≡ ε/ω0, where the strain rate ε is proportional
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to the magnitude of an applied quadrupolar potential,
ω0 is the magnitude of the peak (central) vorticity, and
0 ≤ ε∗ ≤ 0.045 in the present work. Interestingly, while
the strain rates considered here have a profound impact
on the instability, they are significantly smaller than
that required for destabilization of an elliptical vortex,
ε∗ ∼ 0.15.35,37

We find that at early times, the plasma behavior is well
described by a simple, linear model in which the vortic-
ity is treated as piecewise constant inside the layer.31

This model generalizes Rayleigh’s analysis to include a
background strain flow, resulting in non-modal behav-
ior where the waves experience temporary amplification
while they are stretched toward low wavenumber. The
data show that, for the range of strain rates studied
here, the coupled waves on the upper and lower sur-
face of the layer approximately maintain a phase rela-
tionship that corresponds to an instantaneous Rayleigh
eigenmode which changes in time due to the strain. Al-
though the experimental procedure offers little or no con-
trol over the initial wave spectrum, the data suggest that
the waves may be growing from discrete-particle or finite
gyroradius fluctuations at a scale three orders of magni-
tude smaller than the initial layer width.

If the wave amplification is sufficient, nonlinearity be-
comes important and the instability saturates due to
wave breaking and vortex formation. A key result is that
saturation occurs at later times and at smaller scales as
the strain rate is increased. A secondary vortex pairing
instability24,38 is observed in which vortices enter into
pairwise orbits and eventually merge, however the insta-
bility is suppressed for ε∗ >∼ 0.025 since the vortices are
advected apart faster than the pairing rate. Thus, the
applied strain flow has the effect of significantly reduc-
ing transport perpendicular to the filament, such that
spreading of electron vorticity due to the instability is
less than the spatial extent of the initial filament for
ε∗ >∼ 0.04. For ε∗ ∼ 0.045, the spatial scale of the vor-
tices approaches the resolution of the diagnostic, and so
no firm conclusions can be made regarding vortex sup-
pression or stabilization of the filament.

This paper is organized in the following way: details
of the experimental procedure are given in Sec. II; the
linear theory and corresponding data are presented in
Sec. III; and in Sec. IV, data are presented regarding
the nonlinear regime of the instability. Finally, in Sec.
V, the results are discussed and conclusions are given.

II. EXPERIMENTAL METHODS

A. The analogy between electron plasmas and 2D fluids

Plasmas with nonzero charge density and macroscopic
electric fields are often referred to as non-neutral plas-
mas, or single-component plasmas if only one species is
present. They exhibit a variety of interesting behavior39

and they arise in important applications such as ac-

celerator beams40 and antimatter experiments.41 The
work presented here is based on the result that the E×
B guiding-center drift dynamics of magnetized, single-
component plasmas can mimic the behavior of 2D ideal
fluids.11,32 Such experiments are typically performed us-
ing pure electron plasmas in a Penning-Malmberg trap,
a device in which radial confinement is achieved using a
strong, uniform, applied axial magnetic field B = −Bẑ,
and axial confinement is achieved by creating an electro-
static potential well φ(z) using a set of hollow, cylindrical
electrodes surrounding the plasma.39,42

Electrons inside the trap bounce axially between po-
tential barriers at frequency fb = v̄/2L where v̄ =

(kBT/m)
1
2 is the thermal velocity, kB is Boltzmann’s

constant, T is the plasma temperature, m is the elec-
tron mass, and L is the plasma length (SI units). In the
plane perpendicular to B, they execute cyclotron orbits
of frequency fg = eB/m and spatial scale given by the
gyroradius rg = v̄/fg, as well as E×B drift motion at a
characteristic “vortex” frequency scale fv = en/4πBε0,
where n is the electron density, e is the electron charge,
and ε0 is the permittivity of free space. Like-particle
electron collisions occur at a frequency given roughly by
fc ∼ nv̄d2, where d is the classical distance of closest
approach.43 When the frequency scales are separated as

fg � fb � fv � fc, (1)

the cyclotron motion and the bounce motion can be time-
averaged and the electrons treated as thin cylinders of
charge which drift in the (x, y) plane inside the trap with-
out collisional dissipation.

Under these conditions, the drift dynamics are given
by the Drift-Poisson equations( ∂

∂t
− ∇φ× ẑ

B
· ∇
)
n = 0; ∇2φ = −en

ε0
, (2)

where φ(x, y) is the electric potential in 2D and v =
−∇φ × ẑ/B is the E ×B drift velocity.32 Equations (2)
are isomorphic to the 2D Euler equations describing ideal
fluid ( ∂

∂t
−∇ψ × ẑ · ∇

)
ω = 0; ∇2ψ = ω, (3)

where ψ is the fluid stream function, v = −∇ψ× ẑ is the
flow velocity, and ω = ∇×v is the fluid vorticity. There-
fore, the electron density is the analog of the fluid vor-
ticity, and the electric potential is the analog of the fluid
stream function under the transformations ω → en/ε0B
and ψ → φ/B.32 The individual electrons are analo-
gous to point vortices with circulation e/BLε0 and core
size equal to the gyroradius rg, and so ω ≥ 0 in these
experiments.44 Due to this correspondence, electron plas-
mas can be used to study 2D ideal fluids in the laboratory
in a way which is inaccessible to traditional fluid exper-
iments (e.g., water tanks) due to viscous and/or three-
dimensional (3D) effects. The plasma system offers ad-
ditional advantages including direct, high-resolution di-
agnosis of the vorticity field using a phosphor screen and
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CCD camera,45 and precise electrical control over the ini-
tial conditions and boundary conditions.34,46–48 Further-
more, experimental parameters can be varied rapidly in
a way which is difficult to accomplish using numerical
simulations.

The 2D ideal fluid system described by Eqs. (3) offers
an important and simple setting for basic studies of non-
linear fluid phenomena including self-organization, struc-
ture formation, and turbulence.49,50 It can be described
as an infinite-dimensional Hamiltonian system where the
spatial coordinates serve as canonical variables.51 Vari-
ants of Eqs. (3) have been used extensively to model
a variety of important flows in geophysics, astrophysics,
and plasma physics.1,2,4,8,52,53

The vorticity plays an important role in that, along
with the boundary conditions, it uniquely determines the
instantaneous flow field through the Poisson equation.
Vorticity and strain are mathematical counterparts: the
vorticity is the magnitude of the (imaginary) eigenvalues
of the antisymmetric part of the velocity gradient tensor
1
2 (∇v − ∇vT), and it is associated with elliptical flow
geometry and rotational fluid motion; whereas the strain
rate is the magnitude of the (real) eigenvalues of the sym-
metric part 1

2 (∇v+∇vT), and it is associated with hyper-
bolic geometry and stretching motion. The dynamics of
2D ideal fluids are characterized by a tendency of the vor-
ticity to arrange itself into rotating clumps known gener-
ally as vortices. When isolated, these structures are typi-
cally axisymmetric and stable, whereas in the presence of
external flows (e.g., due to other vortices or boundaries)
they can be destabilized and stretched into thin filaments
or shear layers.33,35,36,54,55

B. The eight-segment trap apparatus

The experiments presented here are conducted using
pure electron plasmas confined in a Penning-Malmberg
trap apparatus which is engineered specifically to study
2D ideal fluid dynamics subject to external flows. The
apparatus and experimental technique are discussed in
detail elsewhere,34,35 and so only a brief description is
given here. The apparatus is referred to as the eight-
segment trap (8ST) since its key feature is an electrode
extending over the length of the plasma which is seg-
mented azimuthally into eight pieces that can be elec-
trically biased independently. In this way, the boundary
conditions of the fluid system can be controlled precisely
in 2D, allowing for the imposition of externally imposed
flows which advect the trapped electrons due to the E×B
drift.

The 8ST electrode structure is depicted schematically
in Fig. 1(a), including an electron gun (left) and a diag-
nostic consisting of a phosphor screen and CCD camera
(right). Electrodes I, III, and V are solid (not segmented)
and are typically biased to Vc = −100 V in order to
axially confine the electrons. Electrode II is the eight-
segment electrode in which the fluid experiments take
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FIG. 1. A schematic diagram of the eight-segment trap ap-
paratus. (a) The electrode structure, consisting of solid elec-
trodes I, III, and V, the eight-segment electrode II, and a four-
segment electrode IV. Also shown are an electron gun (left)
and a diagnostic consisting of a phosphor screen and CCD
camera (right). (b) A cross-section of electrode II including
streamlines (black) of an external strain flow created by bias-
ing the segments to voltages (Vs, 0,−Vs, 0, Vs, 0,−Vs, 0) begin-
ning along the positive x−axis. Positive (negative) voltages
are shown as red (blue), arrows indicate the flow direction,
and the initial plasma is depicted as a blue circle.

place, and electrode IV is a shorter electrode with four
segments which is used to condition the electron density
profile n(r) using the rotating wall technique.48,56,57 The
entire structure is immersed in an axial magnetic field
B = 4.8 T and held at ultra-high vacuum conditions at
pressure ∼ 10−9 Torr. The inner radius of the electrodes
is rw = 13 mm, the length of the entire electrode struc-
ture is 440 mm, and the length of electrode II is 260 mm.

The plasmas studied here are described by particle
number N = 4.93 × 108, peak density n0 = 1.19 ×
1014 m−3 (corresponding to peak vorticity ω0 = 450
krad/s), length L ≈ 240 mm, radius rv = 2.3 mm and
temperature T ∼ 0.1 eV. The corresponding frequency
scales are fg = 134 GHz, fb ≈ 276 kHz, fv ∼ 36 kHz,
and fc ∼ 3 kHz, and so the scale separation (1) is satisfied
to at least an order of magnitude.

Externally imposed E × B flows are generated by
electrically biasing the segments of electrode II, which
amounts to specifying the fluid stream function on the
boundary ψ(rw, θ). Here, we focus on a quadrupolar con-
figuration in which the segments are biased to voltages
(Vs, 0,−Vs, 0, Vs, 0,−Vs, 0), beginning with the segment
along the positive x−axis, as shown in Fig. 1(b). Also
shown are contours of the electric potential (i.e., stream-
lines of the external flow) which are given by a series solu-
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tion to the Laplace equation. Near the origin (r/rw � 1),
the second-order term in the potential expansion is domi-
nant, and so the external flow field is given approximately
by

ψs =
1

2
ε(x2 − y2); vs = ε(yx̂ + xŷ), (4)

which is called a simple strain flow, where

ε =
1.8Vs
Br2

w

(5)

is the strain rate, and the strain axis (i.e., the orientation
of the positive eigenvector) is given by y = x. The next
lowest nonzero term in the potential expansion is sixth-
order and therefore negligible for r/rw <∼ 0.5.

The plasma dynamics can deviate from Eqs. (2)
due to violations of the scaling (1) or perturbative 3D
effects.34,58 These deviations include collisional viscous
diffusion on long timescales >∼ 1 ms,44,59 slow magnetron
drifts due to the curvature of the endcap potentials at
frequency ∼ 150 Hz,25,58 and flow dissipation and/or
smearing of vorticity features at spatial scales approach-
ing the gyroradius rg = 0.16 µm or the interparticle spac-

ing (n0L)−
1
2 = 0.19 µm. The former two processes are

expected to be unimportant in this work since the ex-
periments take place over < 150 µs. However, the vor-
ticity filaments studied here can be stretched rapidly to
small scales at which discrete-particle and gyroradius ef-
fects may be relevant, although these scales cannot be
resolved with the CCD diagnostic.

C. Experimental procedure and data collection

The experiments consist of a series of run cycles, each
of duration 10-20 seconds, which proceed as follows.
First, plasmas are generated by the scattering of electrons
from the gun into an electrostatic potential well between
electrodes I and V. They are then radially compressed
using the rotating wall technique, where a rotating elec-
tric field is applied using electrode IV.48,56,57 This results
in an axisymmetric, quasi-flat density distribution that
can be approximated by

n(r) = n0 exp
[
−
( r
rv

)α ]
, (6)

where α ∼ 10 is called the “smoothness parameter.” The
plasmas are then confined between electrodes I and III
and the m = 1 diocotron mode40 is damped using a feed-
back circuit, thus positioning the density centroid at the
origin. Finally, the plasmas are allowed to cool via cy-
clotron radiation in the strong magnetic field.60 At this
point, they have the necessary properties for the fluid
experiment. A CCD measurement of the vorticity distri-
bution ω(x, y) at this time is shown in Fig. 2(a). The
radial vorticity profile ω(r) = (2π)−1

∫
ω(r, θ)dθ is shown

in Fig. 2(b) along with a least-squares fit to Eq. (6),
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FIG. 2. Measurements of the initial vortex and filament used
in the experiments. (a) CCD image of the initial axisymmet-
ric vortex just prior to application of the strain flow, where
data are truncated for ω < 0.03ω0; (b) radial vorticity profile
ω(r) (blue) corresponding to panel (a), along with a fit to Eq.
(6) (dotted); (c) CCD image of the initial filament following
application of a strong external strain flow, with the filament
angle ξ and filament-aligned coordinate system (x′, y′) indi-
cated; and (d) cross-section of the filament as measured by
the CCD (blue), and that obtained by scaling the profile in
panel (b) according to Eq. (7) (black).

yielding the aforementioned values of ω0, rv, and α. The
profile closely resembles a step function, except for an
extended, low-vorticity tail near the edge of the distribu-
tion.

Next, the axisymmetric vortex is stretched into a thin
filament using a strong external strain flow. The seg-
ments of electrode II are biased as described above with
strain-to-vorticity ratio ε∗ = 0.377 for a time interval
∆t∗ ≡ ω0∆t = 9. Here, ε∗ is sufficiently large that the
vortex behaves passively and distorts elliptically with as-
pect ratio

λ = a/b = exp(2εt), (7)

where a and b are the semimajor and semiminor axes,
d(ab)/dt = 0 due to incompressibility, and the ellipse
orientation ξ is close to that of the strain axis.36 When
a ∼ rw, the filament curves at the ends due to higher-
order terms in the potential expansion, and electrons are
advected out of the system through gaps between the
segments of electrode II. For λ� 1 the geometry can be
regarded as rectangular, and we refer to the distribution
as a filament of thickness 2b. From Fig. 2, the procedure
described above yields 2b0 = 0.155 mm (rv/b0 ∼ 30),
which serves as the initial condition for the shear insta-
bility experiment.
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FIG. 3. An example CCD measurement of vorticity data
(color map) of a filament undergoing shear instability in the
absence of strain (ε∗ = 0) at time t∗ = 33.75. Also shown is
a region of interest (dotted) of width rw and height 0.2rw in
which the analysis presented in Sec. III and IV is conducted.

At t = 0 the strain rate is reduced either to ε∗ = 0 or
to some intermediate value 0.005 ≤ ε∗ ≤ 0.045. The fila-
ment is allowed to evolve for a time t, after which the vor-
ticity is diagnosed destructively by grounding electrode
III, accelerating the electrons onto a phosphor screen bi-
ased to +5 kV and recording the fluorescent light with the
CCD camera. The pixel size is 32.5 µm, and the signal-
to-noise ratio (at peak vorticity) is typically ∼ 102. Ex-
perimental uncertainty is determined by repeating each
measurement five times. The surface roughness of the
initial filament is much smaller than the pixel size, and
so it cannot be measured directly.

D. Data analysis techniques

A CCD image of the initial filament at t = 0 is given
in Fig. 2(c). We define a coordinate frame (x′, y′) where
the x′−axis is aligned with the filament at an angle ξ
with respect to the x−axis. The expected filament profile
ω(y′) is obtained by scaling the cross-section of the initial
vortex [cf. Fig. 2(a)] by a factor exp(−ε∆t) [cf. Eq.
(7)]. It is plotted in Fig. 2(d) along with the measured
profile through the origin ω(x′ = 0, y′) [e.g., obtained
from the CCD image in Fig. 2(c)]. The measured profile
is smoothed due to convolution with the discrete-pixel
grid of the CCD camera. The measured peak gradient is
max(∂ω/∂y′) = 4.58× 106 rad/mm-s whereas the actual
value is likely close to the prediction 20× 106 rad/mm-s
based on Eq. (7).

A sample CCD image of the vorticity is given in Fig.
3 at t∗ ≡ ω0t = 33.75 for ε∗ = 0 (in the absence of ex-
ternal strain). Here, the shear instability near the origin

y'/rw
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FIG. 4. Measurements of the filament profile ω(x′ = 0, y′) for
the initial vortex [cf. Fig. 2(a,b)] subjected to an external
strain flow with ε∗ = 0.377 for time intervals ∆t∗ = 7.2−13.5
(blue to red). The initial filament used in the experiments
(∆t∗ = 9) is shown as a dotted line, and circles indicate pixel
locations.

has developed into an array of discrete vortex structures.
Furthermore, two larger vortices have developed near the
boundary at either end of the filament. These structures
form early relative to those near the origin due to the
curvature of the intial filament near the boundary as well
as image charges which generate a cooperative shear flow
(i.e., a background fluid rotation in the same sense as the
vorticity). In order to avoid image effects, higher-order
terms in the applied flow, and the influence of the vortices
near the boundary, we restrict our analysis to the region
(−0.5 ≤ x′ ≤ 0.5,−0.1 ≤ y′ ≤ 0.1), which is indicated by
a dotted box in Fig. 3. At lowest order, the vortices near
the boundary are expected to contribute a superposed
strain flow with strain rate ε∗ ∼ 0.005 where the axis is
inclined by about −30◦ relative to the filament.

When ε∗ >∼ 0.01, electrons near the boundary are re-
moved from the system through small gaps between the
segments of electrode II, and so the boundary vortices
do not form. However, in some cases these electrons can
orbit the biased electrode segment and return into the
trap volume through an adjacent gap.34 Although this
behavior is not completely understood, the number of
re-entrant electrons is typically small (< 0.01N), and so
they have little effect on the instability of the filament
near the origin.

The instability causes vorticity transport in the direc-
tion perpendicular to the filament, leading to a broader
flow profile with lower mean shear. This is quantified by
the root-mean-square spread of vorticity perpendicular to
the initial filament, or the effective filament half-width

beff =
[
Γ−1

∫
ωy′2dA

] 1
2

, (8)

where Γ =
∫
ωdA is the total circulation and dA = dxdy

is an area element.
When the filament thickness approaches the pixel size,

the CCD signal decreases due to convolution with the
pixel grid. This places a limit on the spatial scale of
vorticity features that can be diagnosed. This is demon-
strated in Fig. 4, which shows measurements of the fil-
ament profile ω(x′ = 0, y′) when the initial vortex [cf.
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FIG. 5. Measurements of the evolution of the filament angle
near the origin, calculated using Eq. (9), for ε∗ = 0 (blue
circles), 0.01 (squares), 0.02 (triangles), 0.03 (diamonds), and
0.04 (red triangles). The orientation of the strain axis π/4 is
also shown (dotted). Note that most of the error bars here
are obscured by the data markers.

Fig. 2(a,b)] is subjected to an external strain flow with
ε∗ = 0.377 for times ∆t∗ = 7.2− 13.5. The initial condi-
tion used for the experiments, corresponding to ∆t∗ = 9,
is shown as a dotted line.

Since the initial filament is closely aligned with the
strain axis, ξ(t = 0) ≈ π/4. However, in general
ξ changes with time as the filament rotates, depend-
ing on the external strain rate. The angle of the fil-
ament ξ is found by calculating quadrupole moments
Qij = Γ−1

∫
ω(x, y)(2xixj−r2δij)dA of the vorticity dis-

tribution for r/rw < 0.5, where δij is the Kronecker delta
function. The angle is given by

ξ =
1

2
tan−1

(Qxy
Qxx

)
. (9)

Figure 5 shows measurements of ξ(t) for a few different
values of ε∗. In the absence of strain, the filament rotates
continuously since the total circulation is nonzero, and ξ
is irrelevant due to rotational symmetry of the boundary.
For nonzero strain, the filament may rotate toward or
away from the strain axis depending on the value of ε∗.
However, the rate of rotation dξ/dt is slow compared to
that of the instability. For the data presented here (for
ε∗ 6= 0), the maximum angle reached between the strain
axis and the filament is ξ − π/4 ≈ 12◦ for ε∗ = 0.005,
t∗ = 65.25. Thus, for simplicity and convenience, it is
assumed in the following analysis that the filament is
always aligned with the strain axis.

III. LINEAR INSTABILITY

A. Theoretical model

The linear theory of a piecewise strip of vorticity was
studied by Rayleigh3,17 as a generalization of the Kelvin-
Helmholtz mechanism to a finite-thickness shear layer
in an ideal (constant-density) fluid. Later, Dritschel,
et. al.30,31 extended this analysis to consider the influ-
ence of external shear and strain flows on the instability.
Here, the vorticity is taken to be a constant ω0 between
the upper and lower boundaries and zero elsewhere, a
technique known as contour dynamics.18 In this model,
waves propagate on the upper and lower surface of the
layer and their evolution is coupled, which can lead to
phase-locking and instability.3,61 Following Dritschel,31

the boundaries of the filament subject to a perturbation
with wavenumber k in the x′ direction are defined ac-
cording to

y′± = 2b(±1

2
+ η±) (10)

and

η±(t) = Re[η̃±(t) exp(ikx′)], (11)

where η̃± is the complex wave amplitude. The linear
evolution of the waves on the upper and lower surface is
described by the coupled equations

i
dη̃±
dt∗

= ±1

2
(1− 2bk)η̃± ∓

1

2
exp(−2bk)η̃∓. (12)

In the absence of strain, the wavenumber and the fila-
ment thickness are constant in time, k = k0 and b = b0,
where k0 is the initial wavenumber of a perturbation. In
this case, Eqs. (12) describe the Rayleigh shear instabil-
ity, yielding unstable eigenmodes for wavenumbers in the
range 0 < 2bk < 2bkc ≈ 1.278. The normalized growth
rate is

γ∗ ≡ γ/ω0 =
1

2
[exp(−4bk)− (1− 2bk)2]

1
2 , (13)

which has a single maximum γ∗m ≈ 0.201 at 2bkm ≈
0.797. The eigenmodes are normal modes in which the
waves on the upper and lower surface have equal ampli-
tude and are phase-shifted by an angle

Φ = cos−1[(1− 2bk) exp(2bk)]. (14)

When Eq. (14) is not satisfied, the wave growth is mod-
ified and the instability is non-modal (does not grow ex-
ponentially). Furthermore, the phase-locked state acts
as an attractor in that waves initialized with arbitrary
Φ will rapidly (over a few t∗) approach the eigenmode
solution where Eq. (14) is satisfied.61 For large k, the
wave interactions are weakened due to the exponential
coupling term in Eq. (12). For k > kc, the coupling is
too weak to maintain phase-locking and so the system is
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FIG. 6. Schematic diagram of shear-layer instability with a
background strain flow. Colored curves show the Rayleigh
growth rate [cf. Eq. (13)] for b/b0 = 1, 0.4, and 0.2, where
b decreases over time as per Eq. (15). A perturbation with
initial wavenumber 2b0k0 = 5 is also indicated, where k de-
creases over time as per Eq. (16). The horizontal dashed line
indicates the strain rate ε∗ = 0.05; in regions of high and low
k where this value exceeds the Rayleigh growth rate, waves
are stabilized directly due to the strain.

marginally stable and the two waves travel in opposite
directions.

In the presence of an applied strain flow defined by Eq.
(4), and assuming that the filament remains aligned with
the strain axis, the instability is described by Eqs. (10-
12) where the filament half-thickness and wavenumber
evolve over time due to the strain as31

b = b0 exp(−εt), (15)

k = k0 exp(−εt). (16)

The former effect can be understood as filament thinning
due to inflow perpendicular to the strain axis, and the
latter as wave stretching due to outflow parallel to the
strain axis. Due to these time-dependent parameters, the
dynamics of Eqs. (12) are generally non-modal. Analytic
solutions have not been obtained, and so they are studied
numerically. The overall result is that waves experience
temporary amplification while k is near km, before be-
coming damped as k → 0 due to the filament thinning
effect, which directly opposes wave growth.31 Further-
more, initially stable waves with k0 > kc are destabilized
over time as b and k decrease.

This behavior is depicted schematically in Fig. 6,
where the colored curves show the Rayleigh growth rate,
Eq. (13), for different values of b. Here and through-
out the rest of this work, wavenumbers are normalized
to the initial filament thickness 2b0. Since b decreases
over time, the unstable region expands toward high k,
as shown by the rightward arrow. A perturbation with
initial wavenumber 2b0k0 = 5 is also shown, where a left-
ward arrow indicates that the wave is stretched toward
low k over time due to the strain. Finally, a horizontal
dashed line indicates that the stability threshold is raised
due to direct damping associated with the filament thin-
ning effect at the strain rate ε∗ (shown here as 0.05), and

2b0k

A

FIG. 7. Wave slope amplification spectrum A(k) over time
t∗ = 0− 50 (blue to red) for ε∗ = 0.03. Dashed lines indicate
2b0km = 0.797 and 2b0kc = 1.278.

so regions of weak growth at low and high k are stabi-
lized.

In addition to direct wave damping at low k, the ap-
plied strain modifies wave growth by changing the eigen-
mode phase relationship due to filament thinning. In
this way, the attracting, phase-locked state given by Eq.
(14) acts as a “moving target” toward which the system
continuously evolves. However, when the strain is suf-
ficiently small, the system approaches the phase-locked
state faster than it changes, and so the linear evolution
can be regarded approximately as a continuous series of
instantaneous Rayleigh eigenmodes.

Theoretical analysis in the long-wavelength limit shows
that the filament is completely stabilized (i.e., all per-
turbations are damped) for ε∗ ≥ 0.25,31 which is much
higher than the range of strain rates studied here.
However, in the linear picture all waves are eventually
damped at low k, and so a useful question is whether
a given wave is amplified sufficiently so that nonlinear
effects become important. Following Dritschel,31 nonlin-
earity is expected when the wave slope exceeds unity,

s ≡

[(∂y′+
∂x′

)2

+
(∂y′−
∂x′

)2
] 1

2

> 1. (17)

Amplification of the mean wave slope is described by
〈s(t)〉 = A(t)〈s(t = 0)〉 where

A(t) = exp(−2εt)

[
|η̃+(t)|2 + |η̃−(t)|2

|η̃+(0)|2 + |η̃−(0)|2

] 1
2

(18)

is the amplification factor with A(t = 0) = 1 by defi-
nition, and 〈·〉 indicates a spatial average over the wave
period.31 An example of the evolution A(k, t) averaged
over initial phase is shown in Fig. 7 for ε∗ = 0.03. Here,
the amplification at early times (blue curves) is small
and peaked close to km. As time proceeds (purple curve)
the peak has grown and shifted to a lower value of k.
At later times (red curves), as the peak moves to pro-
gressively smaller values of k, the amplification reaches a
maximum and then decreases, showing that at late times
the amplification eventually goes to zero, and the waves
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are damped. The small variations of A(k) appear to be
an artifact related to the phase-averaging technique.

B. Experimental data

In this section, small-amplitude waves growing at early
times on the surface of the electron filament are di-
agnosed and compared to the linear contour dynamics
model discussed above.3,17,31 The vorticity data inside
the region of interest (−0.5 ≤ x′/rw ≤ 0.5,−0.1 ≤
y′/rw ≤ 0.1) are reduced to two separate lines y′±(x′)
by numerically determining the maximum and minimum
of ∂ω/∂y′ as a function of x′. This approach breaks down
when the wave slope (17) becomes infinite, and so it is
useful only in the linear and weakly nonlinear regimes. In
this section, the experimental analysis concerns a spec-
trum of unstable waves growing on the electron filament,
as opposed to the linear model described above in which
waves are treated independently. Thus, waves can break
unevenly across the filament, and so rather than averag-
ing the wave slope over x′,31 fulfillment of the criterion
(17) at any point x′ is interpreted as a departure from
the global linear description.

Measurements of the early evolution of ω(x′, y′),
y′±(x′), and s(x′) are given in Fig. 8 for ε∗ = 0, t∗ = 22.5,
24.75, 27, and in Fig. 9 for ε∗ = 0.02, t∗ = 22.5, 27, 31.5,
where time proceeds from left to right. The transition to
nonlinearity, as defined by Eq. (17), occurs between the
second and third panel in both cases, and so the third
panel corresponds to the weakly nonlinear regime (i.e.,
prior to wave breaking). These data indicate that wave
growth is delayed in the presence of applied strain. For
ε∗ 6= 0 (cf. Fig. 9), the filament thickness decreases
somewhat due to the strain prior to observable growth
of the instability. This leads to a reduction in the CCD
signal, as described above with regard to Fig. 4.

Figure 10 shows spectra obtained from experimental
measurements of y′± for ε∗ = (a) 0, (b) 0.01, (c) 0.02, and
(d) 0.03. The solid lines and shaded areas indicate the
average and standard deviation of five identical runs. The
experimental spectra of the upper and lower contours are
found by taking the fast Fourier transform (FFT) of the
surface perturbations normalized to the initial filament
thickness

ỹ′± = (y′± − 〈y′±〉)/2b0, (19)

where the average is performed along x′ and the nor-
malization factor of 400 pixels is included in the inverse
FFT. The spectra from the upper and lower layer are
then added in quadrature to obtain a measure of the to-
tal wave amplitude,

|ỹ′| = (|ỹ′+|2 + |ỹ′−|2)
1
2 . (20)

The measured difference between |ỹ′+| and |ỹ′−| is typ-
ically < 5%, which is expected when the two surfaces
approximately satisfy the phase relationship of Eq. (14).

The data are compared to solutions of Eqs. (10)-(12)
(dotted) where b and k evolve according to Eqs. (15)
and (16), and the model spectra are calculated as |ỹ′| =
exp(−εt)(|η̃+|2 + |η̃−|2)

1
2 . Since the initial perturbation

amplitudes ∆y′±(t = 0) are unknown, the solutions are
averaged over the initial phase Φ(t = 0) and fit to the
data in the linear regime by choosing the initial condi-
tion |ỹ′(t = 0)| = 0.5 (independent of k and ε∗).

The experimental data and model predictions shown
in Fig. 10 are in close quantitative agreement. The data
and model both show the transfer of wave power toward
low k as ε∗ increases, consistent with the wave stretching
mechanism discussed above. Following the transition to
nonlinearity, weak spectral power is observed at high k
due to wave-wave interactions. Whether or not the ap-
parent variations in the data at intervals 2b0∆k ∼ 0.1
are of physical significance is presently unknown.

By performing an inverse FFT, the initial condition
|ỹ′(t = 0)| = 0.5 yields the surface roughness ∆y′± =
2.5 × 10−3b0 = 0.194 µm. Thus, the amplitude of the
seed waves from which the instability grows is compara-
ble to both the interparticle spacing (0.19 µm) and the
gyroradius (0.16 µm), suggesting that these non-fluid ef-
fects could be responsible for development of the insta-
bility. It is remarkable that the techniques described in
Sec. II for preparing the initial filament result in such a
smooth surface. In order to determine whether the waves
grow due to (density-dependent) discrete-particle effects,
filaments were studied with peak vorticity ranging from
293 to 563 krad/s. However, no clear variation of seed
wave amplitude with density was observed. In princi-
ple one could look for finite-gyroradius effects by varying
B, however in practice it is difficult to do this without
changing other aspects of the experimental procedure,
and so this was not attempted. Therefore, the source of
the initial perturbations remains unknown.

The FFT routine provides phase information for each
k on the upper and lower surfaces of the filament. The
phase differences Φ(k) are plotted in Fig. 11 for (a)
ε∗ = 0 at times t∗ = 22.5, 24.75, 27 (proceeding left
to right), and (b) ε∗ = 0.02, t∗ = 22.5, 27, 31.5. They
are compared to numerical solutions of Eqs. (12) aver-
aged over initial phase. They are also compared to the
phase relationship (14) for the instantaneous Rayleigh
eigenmode, where k is scaled by exp(εt) so as to offset
the change in b. In row (a), the data compare favor-
ably to Eq. (14) and to the numerical model, suggesting
that the growing waves are consistent with the unstable
eigenmodes studied by Rayleigh. For k > kc, the phase is
expected to be random since the Rayleigh theory predicts
counter-propagating waves on the two surfaces, which is
apparent in the experimental data and numerical solu-
tions.

In Fig. 11(b), it can be observed that the reduction
in b due to the applied strain leads to phase-locking and
therefore instability at higher k, even though the am-
plitude remains fairly low (see the data in Fig. 10).
The data and model are roughly in agreement at low
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FIG. 8. Measurements of (a) the vorticity ω (color map), (b) the upper and lower filament boundaries y′±, and (c) the wave
slope s given by Eq. (17), for ε∗ = 0 at times t∗ = 22.5, 24.75, 27 (left to right).
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FIG. 9. Measurements of (a) the vorticity ω (color map), (b) the upper and lower filament boundaries y′±, and (c) the wave
slope s given by Eq. (17) for ε∗ = 0.02 at times t∗ = 22.5, 27, 31.5 (left to right).

k, however they diverge from the eigenmode phase curve
near the instability threshold at k <∼ kc exp(εt), likely
due to the finite time required for a recently destabilized
wave to phase-lock. It is anticipated that higher values
of strain will result in greater departures from the eigen-
mode state, until the phase becomes completely unlocked
and wave growth is inhibited.

To summarize this section, the E×B shear instability
of the electron filaments has been measured in the linear
regime with and without an applied strain flow. In the
absence of strain, wave growth is observed across a wide
range of the spectrum between k = 0 and kc. In the
presence of strain, spectral transfer toward low k is ob-
served due to wave stretching, and waves are destabilized
over time at higher wavenumbers k > kc as the filament
thins. Moreover, for small values of strain the two surface
waves appear to approximately maintain a phase shift
which corresponds to an instananeous Rayleigh eigen-
mode. These measurements were compared to a linear
contour dynamics model,31 and shown to be in good
quantitative agreement.

IV. NONLINEAR REGIME

In this section, results are presented regarding the
nonlinear behavior of the instability at late times. An
overview of the dynamics is given in Fig. 12, where vor-

ticity data are shown for ε∗ = (a) 0, (b) 0.015, (c) 0.03,
and (d) 0.045 at times t∗ = 22.5, 33.75, 45, and 56.25
(left to right). In the absence of external strain, unstable
waves grow and eventually break, and the instability sat-
urates due to the formation of discrete, rotating vortex
structures. The resulting linear array of vortices is then
subject to a secondary vortex pairing instability, in which
neighboring vortices enter into pairwise orbits and may
eventually merge.24,38 This behavior can be observed in
the last two panels of Fig. 12(a), where merger events
result in the formation of larger-scale vortex structures.

In the presence of strain, the filament thinning and
wave stretching mechanisms cause the instability to de-
velop later in time and saturate at smaller spatial scales
as ε∗ increases. Evidence of vortex pairing can be ob-
served for ε∗ = 0.015 in Fig. 12(b), however, for ε∗ = 0.03
[row (c)] the vortices are advected away from one another
due to the strain rapidly enough that the pairing instabil-
ity is suppressed. For ε∗ = 0.045 [row (d)], the filament
width approaches the pixel size by the time the instability
develops, and so detailed study of the resulting vortices is
not possible. The last panel in row (c) is enlarged in Fig.
13, showing evidence that small-scale vortices do indeed
form at ε∗ = 0.045. Thus, due to limitations imposed by
the CCD pixel resolution, vortex suppression due to the
strain has not been observed here. It remains an open
question what value of ε∗ is sufficient to prevent vortex
formation or nonlinear behavior altogether, although this



10

2b0k

(a)

NL

(b)

(c) (d)

NL

NL NL

2b0k

|�

'|
|�

'|

FIG. 10. Experimental wave spectra |ỹ′| [cf. Eq. (20)] are compared to predictions of a contour dynamics model described by
Eqs. (12) (dotted) for (a) ε∗ = 0, t∗ = 22.5, 24.75, 27, 29.25; (b) ε∗ = 0.01, t∗ = 22.5, 24.75, 27, 29.25; (c) ε∗ = 0.02, t∗ = 22.5,
24.75, 27, 29.25, 31.5; (d) ε∗ = 0.03, t∗ = 22.5, 27, 31.5, 36. Time proceeds upwards in each panel from blue to red, separated
for clarity by intervals of ∆|ỹ′| = 100. The nonlinear transition [cf. Eq. (17)] is indicated (NL), as are km and kc (dashed
lines). Shaded regions indicate the experimental uncertainty.

likely depends on the initial seed wave amplitude.

The progression of the instability in the nonlinear
regime can also be visualized using the perpendicular
vorticity spread beff normalized to its initial value, as
described in Sec. II, Eq. (8). This is shown in Fig. 14
for ε∗ ranging from 0 to 0.045. As before, the data points
and error bars are given by the average and standard de-
viation of five identical runs. Black circles indicate the
onset of nonlinearity [i.e., the first data point at which
the wave slope surpasses unity, as defined by Eq. (17)].
For smaller values of ε∗, quasi-exponential growth is ob-
served at early times. Following the onset of nonlinear-
ity, beff levels off and a plateau is observed, which cor-
responds to primary vortex formation (this is especially
pronounced for ε∗ = 0). After this, a secondary increase
in beff is observed due to the vortex pairing mechanism.
For ε∗ >∼ 0.025, no significant secondary increase is ob-
served, indicating that the pairing instability has been
suppressed due to the applied strain. Thus, the trans-
port of vorticity perpendicular to the filament due to the
instability is significantly reduced as ε∗ is increased. For

ε∗ = 0.045, beff is close to the pixel size and so the results
may not be reliable.

The vortex pairing instability can be described in a
simple way using a point-vortex model in which the vor-
tices are perturbed with respect to an infinite linear array.
If the vortices are assumed to be patch-like with area A
and are separated evenly by a distance ∆, then distur-
bances grow exponentially at a rate σ = πω0A/4∆2.18

Inspection of Fig. 12(a) (second panel) yields A ≈
0.21 mm2 and ∆ ≈ 1.3 mm, and so σ/ω0 ≈ 0.1, which
is greater than the strain rates studied here. However,
as the strain is increased, the primary vortices form with
larger separation and less circulation. For example, in
Fig. 12(c) (last panel), A ≈ 0.08 mm2, ∆ ≈ 5.2 mm, and
so σ/ω0 ≈ 0.024, which is smaller than ε∗ and therefore
consistent with suppression of the pairing instability.

The tendency of the instability to saturate at later
times and at smaller scales as ε∗ increases is evident in
Fig. 14. This trend is quantified further in Fig. 15, which
shows how the saturation time and spatial scale vary with
the applied strain. Panel (a) shows the time t∗NL at which
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FIG. 11. Measured phase shift between the upper and lower filament boundaries as a function of wavenumber for (a) ε∗ = 0,
t∗ = 22.5, 24.75, 27; (b) ε∗ = 0.02, t∗ = 22.5, 27, 31.5. Also shown are predictions of Eq. (14) where k is scaled by exp(εt)
(black, dash-dot), and solutions to the linear contour dynamics model [Eq. (12)] averaged over initial phase (red, dotted).
Shaded regions indicate the experimental uncertainty, km and kc are indicated (dashed lines), and for ε∗ 6= 0 instability is
predicted for k < kc exp(εt).
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33.75, 45, and 56.25 (left to right).

nonlinearity becomes important, as defined by Eq. (17),
for the experimental data (error bars) and solutions to
Eqs. (12) with initial wave slope s(0) = 0.01 (dotted,
independent of k) and s(0) = 0.03b0k (dashed). Here,
the error bars for t∗NL correspond to the time window
between the black circles in Fig. 14 and the preceding
data point. The curves corresponding to the numerical
model terminate when ε∗ is high enough that Eq. (17) is
never satisfied. The linear spectrum of the initial slope
s ∝ k was chosen to model a constant initial wave am-
plitude (independent of k), as might be expected due
to discrete-particle or finite gyroradius effects. Panel (b)
shows the wavenumber kNL for which Eq. (17) is first sat-

isfied, corresponding to t∗NL for the linear model shown
in panel (a). Panel (c) shows the spatial scale of the ex-
perimental filament beff(t∗NL) at the onset of nonlinearity.
In both the model and the experiment, the same general
trends are observed. However, it appears that the exper-
imental instability reaches nonlinearity at higher values
of ε∗ where the model does not, suggesting that the ini-
tial wave slope spectrum might be better described by a
nonlinear function of k.

The mean perpendicular profiles of the vorticity distri-
butions are found by integrating over the region of inter-
est, 〈ω〉x′ = r−1

w

∫
ω(x′, y′)dx′. They are plotted in Fig.

16 for ε∗ = (a) 0, (b) 0.015, and (c) 0.03 at times t∗ =
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FIG. 14. Evolution of the effective filament width beff [cf. Eq.
(8)] normalized to its initial value for ε∗ = 0 - 0.045 (blue to
red). Black circles indicate the onset of nonlinearity, where
Eq. (17) is first satisfied. The value of beff corresponding to
a single pixel is also shown (dotted).

0, 22.5, 31.5, 40.5, 49.5 and 58.5. Gaussian functions are
numerically fit to the profiles and shown as dotted lines,
which are almost indistinguishable from the experimen-
tal data. Thus, as the instability proceeds, the mean pro-
file assumes a nearly Gaussian shape of width beff which
spreads due to both the primary shear instability and
the secondary vortex pairing instability. In Fig. 16(a)
(ε∗ = 0), the total circulation is nearly constant, whereas
in panels (b,c) (ε∗ 6= 0) it decreases over time due to
advection out of the region of interest by the strain flow.

Data beyond t∗ = 65.25 are not shown since the time
window discussed here encapsulates the physics on which
this work focuses. However, a few experimental runs
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FIG. 15. Measurements (error bars) and predictions of the
linear model (black lines) showing (a) the time t∗NL at which
nonlinearity becomes important [as defined by Eq. (17)] ver-
sus ε∗; (b) the wavenumber kNL for which Eq. (17) is first sat-
isfied in the model; and (c) the effective half-width beff(t∗NL) at
the onset of nonlinearity. The model is averaged over initial
phase and plotted for s(0) = 0.01 (dotted) and s(0) = 0.03b0k
(dashed).

at later times were conducted in order to determine the
qualitative behavior. In the absence of strain, the vor-
tices continue to pair and merge. This causes the spacing
between vortices to increase, and therefore the timescale
for further pairing and merging events increases as well.
On long timescales (t∗ ∼ 100 − 200), the entire array of
vortices becomes curved due to the influence of image
fields. Eventually, the remaining vortices begin to move
chaotically around the circular domain, occasionally in-
teracting and/or merging.

In the presence of the external strain flows studied here
with 0 ≤ ε∗ ≤ 0.045, once the vortices have formed they
tend to be stable since the strain is much weaker than
the Moore-Saffman limit ε∗ ≈ 0.15 at which elliptical
patch vortices lose stability.18,35,37 Thus, after primary
saturation, if pairing is suppressed, beff is expected to be
roughly constant. Based on inspection of the vorticity
data and the simple point-vortex pairing model described
above, it is unlikely that the vortices pair and/or merge
for strain rates ε∗ > 0.025 at times t∗ > 65.25. In this
case, the vortices are advected away from the origin due
to the strain and eventually carried out of the region of
interest and out of the system through gaps between the
segmented electrodes. This behavior is outside the scope
of the current study.
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FIG. 16. The mean vorticity profile perpendicular to the fila-
ment (i.e., averaged over the x′ direction), for ε∗ = (a) 0, (b)
0.015, and (c) 0.03, at times t∗ = 0 (black), 22.5, 31.5, 40.5,
49.5, and 58.5 (blue to red). Solid lines and shaded regions
indicate the average and standard deviation of five identical
runs. Dotted lines indicate Gaussian fits to the data.

V. DISCUSSION AND CONCLUSIONS

The experimental studies presented here focus on the
linear and nonlinear behavior of E×B shear instabilities
in electron plasmas under the influence of applied strain
flows. By precisely controlling the boundary conditions
on the electrodes in 2D, the electrons can be subjected
to externally applied strain flows.33–35 Here, electron vor-
tices are stretched into thin, rectangular filaments (i.e.,
E×B shear layers) by applying strong strain flows, and
then the strain-to-vorticity ratio is reduced to either zero
or a small value ε∗ ≤ 0.045 and the filament evolution is
studied. In the absence of strain, the filament is unsta-
ble to the Rayleigh shear mechanism,3,17 causing waves
to grow and break. This results in the formation of a
linear array of discrete vortex structures, which is then
unstable to the vortex pairing mechanism,24,38 leading to
vortex merger events and transport of vorticity perpen-
dicular to the filament.

When the strain rate is nonzero, the filament (approx-
imately aligned with the strain axis) thins over time due
to inflow along the perpendicular direction, and develop-
ing waves are stretched toward lower wavenumbers due
to outflow along the parallel direction. Due to these ef-

fects, which appear as exponential, time-dependent pa-
rameters in the equations of motion, the linear dynamics
are non-modal. The net result is that waves experience
temporary amplification before becoming damped at suf-
ficiently small k.31 If the amplification is large enough,
nonlinearity becomes important and the waves can break
and form vortex chains. However, the spacing between
the vortices increases over time due to advection by the
strain flow; and so, if the strain is sufficiently strong, then
the vortex pairing mechanism is suppressed. The over-
all effect is that perpendicular transport of the vorticity
due to the instability is significantly reduced as the strain
rate is increased.

In the linear regime, the experimental data are consis-
tent with theoretical results of Rayleigh3,17 and Dritschel,
et. al.31 using the contour dynamics technique.18 An
important insight is that, in the presence of strain, the
phase shift between waves on the upper and lower surface
of the filament continuously evolves toward an instanta-
neous normal-mode configuration61 which changes over
time as the filament thins.

In terms of nonlinear physics, we find that ε∗ >∼ 0.025
is sufficient to suppress the vortex pairing instability, and
that ε∗ >∼ 0.04 is sufficient to limit the perpendicular vor-
ticity spread to less than its initial value, although these
results may depend on the initial seed wave amplitude.
Since evidence of vortex formation was observed near the
spatial scale of the pixel resolution of the CCD, no conclu-
sions could be reached regarding the value of ε∗ for which
vortex formation is prevented altogether. It is interesting
that the strain rates studied here, 0 ≤ ε∗ ≤ 0.045, which
have a significant effect on the shear instability, are rel-
atively small compared to the Moore/Saffman elliptical
vortex stability limit ε∗ ≈ 0.15.18,37 This implies that the
system exhibits hysterisis, in the sense that an external
strain flow is much more effective at inhibiting a shear
instability than it is at breaking apart an elliptical vortex
which has already formed.

Open directions of research include investigating the
effect of profile smoothness on the shear instability19–21

and Love instabilities which grow on highly elliptical
vortices,18,62,63 and further developing theoretical de-
scriptions of the nonlinear regime (e.g., using point-
vortex and vortex patch models22,36 and/or spectral
truncation methods23). Finally, it would useful to gener-
alize the present results to other more complicated quasi-
2D fluid systems of interest to geophysics, astrophysics,
and the magnetic fusion community, e.g., potential vor-
ticity models.4,6,8,52
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