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ABSTRACT

Initially, elliptical, quasi-two-dimensional (2D) fluid vortices can split into multiple pieces if the aspect ratio is sufficiently large due to the
growth and saturation of perturbations known as Love modes on the vortex edge. Presented here are experiments and numerical simulations,
showing that the aspect ratio threshold for vortex splitting is significantly higher for vortices with realistic, smooth edges than that predicted
by a simple “vortex patch” model, where the vorticity is treated as piecewise constant inside a deformable boundary. The experiments are
conducted by exploiting the E�B drift dynamics of collisionless, pure electron plasmas in a Penning–Malmberg trap, which closely model
2D vortex dynamics due to an isomorphism between the Drift–Poisson equations describing the plasmas and the Euler equations describing
ideal fluids. The simulations use a particle-in-cell method to model the evolution of a set of point vortices. The aspect ratio splitting threshold
ranges up to about twice as large as the vortex patch prediction and depends on the edge vorticity gradient. This is thought to be due to
spatial Landau damping, which decreases the vortex aspect ratio over time and, thus, stabilizes the Love modes. Near the threshold,
asymmetric splitting events are observed in which one of the split products contains much less circulation than the other. These results are
relevant to a wide range of quasi-2D fluid systems, including geophysical fluids, astrophysical disks, and drift-wave eddies in tokamak
plasmas.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0201712

I. INTRODUCTION

Quasi-two-dimensional (2D) fluid dynamics is found in a variety
of important natural and human-made systems, including geophysical
fluids,1 soap films,2 astrophysical disks,3 black hole horizons,4 and
magnetized plasmas, including fusion experiments,5 non-neutral plas-
mas,6,7 and intense charged particle beams.8 In the case of magnetized
plasmas, the magnetic field can decouple parallel and perpendicular
motion, leading to fluid-like drift dynamics in the two perpendicular
dimensions.9 An important feature of 2D fluid systems is the self-
organization of the vorticity into coherent, rotating structures known
as vortices. Interactions between vortices in 2D can result in merger
events, which contribute to the inverse turbulent cascade that drives

vorticity toward large, domain-filling structures.10 However, in some
circumstances, 2D vortices can split into multiple pieces, which
opposes the merger phenomenology and drives vorticity toward
smaller spatial scales.11–13 This process typically involves deformation
of the vortex followed by a hydrodynamic instability that grows on its
edge.

Perhaps the most well-known example of vortex splitting is that
of Earth’s stratospheric, arctic polar vortex, which splits on average
about once every 2 years through a process known as a sudden strato-
spheric warming.14 These events exchange cold, polar air with warmer
air from lower latitudes, with significant consequences for the arctic
environment and for life in temperate regions. They are an important
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factor in global climate modeling but are difficult to predict, with some
disagreement as to the rate of splitting events expected in a warming
climate.15 Interestingly, the antarctic polar vortex has split only once in
recorded history, in September 2002.16 Similar processes may be active
on other planets in the solar system and beyond.17 In tokamak mag-
netic fusion experiments, thermal transport is driven by drift-wave tur-
bulence but partially suppressed due to the formation of zonal flows,
analogous to the dynamics of Rossby waves in planetary atmos-
pheres.18 It has been suggested that the interaction of drift-wave eddies
with zonal shear could result in splitting events, which could impact
transport rates.19 Vortex splitting has also been observed in quasi-2D
flow across airfoils12 and in quantum-mechanical systems such as the
nonlinear Schr€odinger equation20 and Bose–Einstein condensates.21

These examples highlight the need to develop a basic, first-
principles understanding of vortex splitting events. The simplest 2D
fluid system featuring vortex dynamics is that described by the Euler
equations for an ideal (inviscid and incompressible) fluid, given by

ð@t �rw� ẑ�rÞx ¼ 0; r2w ¼ x; (1)

where x ¼ r� v is the vorticity, v ¼ �rw� ẑ is the fluid velocity,
w is the stream function, and ẑ is a unit vector normal to the plane of
2D fluid motion. The problem can be further simplified by adopting a
“vortex patch” model where the vorticity is taken to be piecewise con-
stant inside a simply connected domain. Exact solutions for rotating,
elliptical vortex patches were found by Kirchoff.22,23 Waves propagat-
ing along the edge of the Kirchoff vortex were first investigated analyti-
cally by Love,24 who found unstable modes on elliptical vortices for
sufficiently large values of the aspect ratio k ¼ a=b, where a and b are
the semimajor and semiminor axes, respectively. The most unstable
wavenumber, m, becomes progressively higher as the aspect ratio
increases, and in the limit of large aspect ratio, the Love instability is
equivalent to the Kelvin–Helmholtz shear-layer instability. Binary vor-
tex splitting events are associated with the growth and nonlinear satu-
ration of m¼ 4 Love modes, whereas higher wavenumbers can result
in higher-order splitting events (i.e., into more than two pieces).
Analytical progress toward understanding the behavior of Love modes
is much more limited in the nonlinear regime,25 and for the case of
realistic, smooth vorticity profiles with finite edge gradients that are
not well described by the vortex patch model.26

The m¼ 3 and 4 Love modes are linearly unstable for k > 3:0
and k > 4:6, respectively, but higher aspect ratios are required for the
instability to proceed to nonlinear saturation and result in splitting.
Dritschel analytically calculated an aspect ratio splitting threshold of
ks ¼ 6:04 based on energy conservation between the elliptical vortex
patch and two-vortex equilibria.27 Contour dynamics simulations of
initially elliptical vortex patches were consistent with this result, but it
was found that the splitting threshold could be reduced if the vortex
was seeded with a sufficiently large amplitudem¼ 4 Love mode.13

Vortex patch models have been implemented in the analysis of
geophysical vortex splitting events. Specifically, the Kida model for
vortices subject to external shear and strain flows28 has been applied to
understand the evolution of the aspect ratio of Earth’s polar vorti-
ces.29,30 However, it rarely exceeds them¼ 3 Love instability threshold
of k¼ 3 and does not come near the vortex patch splitting threshold
quoted above. Furthermore, the polar vortices typically feature weak-
vorticity “surf zones” at their edges due to repeated growth and break-
ing of Rossby waves, and so their dynamics may not be well described

by the idealized vortex patch model. This motivates further investiga-
tion into the basic nonlinear physics of Love modes on vortices with
smooth profiles.

Presented here are laboratory experiments and simulations of
binary vortex splitting events, showing that the aspect ratio required
for splitting depends strongly on the edge vorticity gradient, ranging
up to twice that predicted by the vortex patch model. The experiments
are carried out using collisionless, magnetized, non-neutral pure elec-
tron plasmas in a regime where the E� B drift dynamics perpendicular
to the magnetic field is well described by the Drift–Poisson equations,
which are isomorphic to the 2D Euler equations describing ideal fluids.
Thus, the dynamics of the electron distribution accurately models that
of vorticity in a 2D ideal fluid, an analogy which has been used exten-
sively to study 2D fluids in a way not possible with traditional fluid
experiments (i.e., water tanks).

Here, elliptical electron vortices are prepared using applied strain
flows31 and then allowed to evolve freely. The initial aspect ratio, k0, is
varied in order to find the splitting threshold. An example of electron
plasma data from this procedure is shown in Fig. 1 with images of the
electron density or vorticity distribution obtained by accelerating
the electrons onto a phosphor screen imaged by a CCD camera. In the
upper row, k0 ¼ 7:9 and the vortex does not split. In the lower row,
k0 ¼ 10:7 and the vortex splits into two approximately equal pieces.
The rotating wall technique32 is used to adjust the edge electron vortic-
ity gradient, and the process is repeated, revealing a dependence of the
splitting threshold on the profile smoothness. Interestingly, asymmet-
ric splitting events are observed in which one of the split products con-
tains significantly less circulation than the other. To support the
experimental results, the 2D Euler equations are solved numerically
using a particle-in-cell method based on point-vortex dynamics.33 The
simulation results agree closely with those of the experiments. It is
observed that the vortex aspect ratio decreases over time, which modi-
fies the Love mode growth and stability. This is thought to be due to
spatial Landau damping (also known as critical-layer damping).34–37 A
simple model accounting for this effect is compared to measurements
of Love mode growth in the experiments. The possible influence of the
circular boundary on the splitting threshold is also discussed.

This manuscript is organized in the following way. In Sec. II, an
overview of the experimental apparatus and numerical simulation
technique is described, including a description of the analogy between
pure electron plasmas and 2D fluids. In Sec. III, measurements of the
aspect ratio threshold for vortex splitting are presented and discussed.
An analysis of Love mode dynamics is given in Sec. IV. Finally, in Sec.
V, a summary and conclusions are provided.

II. EXPERIMENTAL AND NUMERICAL TECHNIQUE

The isomorphism between the Drift–Poisson equations describ-
ing the E� B drift of non-neutral electron plasmas perpendicular to
the magnetic field and the 2D Euler equations describing ideal fluid
dynamics has been widely studied. Experiments are typically per-
formed in a Penning–Malmberg trap, a device in which a set of hollow,
cylindrical electrodes is immersed in a strong axial magnetic field in
ultrahigh vacuum conditions. The magnetic field provides radial con-
finement of the particles, whereas electrostatic potentials applied to
electrodes at either end of the trap are used to confine the particles axi-
ally. Notable examples include the discovery of vortex crystals in the
laboratory,38,39 studies of vortex merging,40–42 and experiments on
vortex oscillations and instability due to applied strain flows.31,37,43–45
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The Drift–Poisson equations are given by

@t � 1
B
r/� ẑ�r

� �
n ¼ 0; r2/ ¼ en=e0; (2)

where B is the magnetic field, / is the electrostatic potential, n is the
electron density, e is the electron charge, and e0 is the permittivity of
free space. They are identical to Eq. (1) under the transformations
en=Be0 ! x and /=B ! w, so the electron density is analogous to
the fluid vorticity, and the electric potential is analogous to the fluid
stream function. Equations (2) describe the E�B drift motion of elec-
trons due to their self-electric field as well as applied electric fields asso-
ciated with boundary conditions.

The isomorphism relies on a separation of spatial and frequency
scales

fc � fb � fE � fd; (3)

where fc is the cyclotron frequency, fb is the axial bounce frequency
between confining electrostatic potentials of the trap, fE is the charac-
teristic frequency of the drift motion, and fd is the frequency scale asso-
ciated with dissipation due to particle collisions. Additionally, spatial
scales must follow the ordering

rc � rE < rw � L; (4)

where rc is the cyclotron radius, rE is the characteristic scale of the elec-
tron drift motion, rw is the radius of the trap wall, and L is the axial
length of the plasma. This ensures that the drift dynamics are
decoupled from other plasma effects that break the analogy, including
cyclotron and axial bounce motion, collisional dissipation, and 3D
effects due to confining electric potentials at the trap ends.

Although the frequency and spatial scale separations given in
Eqs. (3) and (4) are well-satisfied in the experiments, it is important to
understand the consequences of collisional and 3D physics. Collisional
dissipation in an electron plasma depends on the presence of particles
and, thus, acts like a vorticity-dependent viscosity, which is inconsis-
tent with traditional fluid viscosity in the Navier–Stokes equations.
The electron fluid system features free-slip boundary conditions to a

good approximation due to the lack of viscous drag between the wall
and the plasma. However in practice, small asymmetries in the circular
boundary place torques on the plasma and break angular momentum
conservation on very long timescales. In general, 3D and finite cyclo-
tron radius effects can cause smearing of small-scale structures and,
thus, act like dissipation mechanisms.46 The radial component of the
confining electric field at ends of the trap also causes weak E�B rota-
tion with frequency on the order of 100Hz. These non-fluid effects are
not expected to significantly impact the vortex dynamics in the experi-
ments presented here.

The apparatus used for the experiments is called the 8-segment
trap (8ST), shown schematically in Fig. 2.47 Its key feature is a long
electrode labeled iii in panel (a), which is segmented azimuthally into
eight parts that can be biased independently. This allows for the crea-
tion of perpendicular, externally applied electric fields, which cause
drift advection of the electrons without introducing strong axial elec-
tric fields that would invalidate the plasma/fluid analogy (e.g., due to
axial particle trapping). This technique has been used to study vortex
dynamics in applied strain flows.31,37,43–45 The 8ST also features three
short, solid electrodes ii, iv, and vi that are used for axial confinement
of the plasma. Another short electrode labeled v is segmented into four
pieces and used to control the electron density profile with the rotating
wall (RW) technique.32 The apparatus sits in a vacuum chamber evac-
uated to a pressure of about 10�9 Torr. Typical values of experimental
parameters in the 8ST are given in Table I, where T is the plasma tem-
perature and N is the total number of particles, showing that the sepa-
rations of spatial and temporal scales given in Eqs. (3) and (4) are
satisfied by at least an order of magnitude. Although viscous effects are
not included in the plasma/fluid analogy, the Reynolds number in 8ST
experiments is estimated to be Re � 106 based on decay of the peak
vorticity.43

Experiments in the 8ST are conducted in the following way: First,
a heated-cathode electron gun is used to inject electrons into the trap,
where they fall into an electrostatic potential well with a depth of
�100V created between electrodes ii and vi. Then, the radial density
profile is controlled using the RW electrode by applying a transverse
electric field that rotates near the plasma E�B rotation frequency.

FIG. 1. The free relaxation of an elliptical vortex inside a circular boundary is shown for two cases with initial aspect ratio (a) k0 ¼ 7:9 and (b) k0 ¼ 10:7, using data from elec-
tron plasma experiments at normalized times x0t evenly spaced from 0 to 47.2. In the latter case, the vortex splits into two pieces, whereas in the former, it does not, yielding
a measurement of the aspect ratio threshold for vortex splitting.
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This results in an axisymmetric electron density (vorticity) distribution
centered near the cylindrical axis of the electrodes. Examples of radial
profiles prepared in this way are shown in Fig. 3, along with least
squares numerical fits to the formula

xðrÞ ¼ x0 exp �ðr=rvÞs
� �

; (5)

wherex0 is the peak vorticity, rv is the vortex radius, and s is a parame-
ter characterizing the profile smoothness or edge gradient. The vortex
patch distribution (i.e., the Rankine vortex) corresponds to s ! 1,
and s¼ 2 is a Gaussian profile. The blue profile in Fig. 3 with
x0 ¼ 580 krad/s is used for all data presented here, unless otherwise
specified.

Following this, the RW electrode is grounded, and one segment
of electrode iii is connected to a feedback circuit that damps the m¼ 1
diocotron mode, placing the plasma density centroid very close to the
axis. The damping circuit is then turned off, electrode iv is ramped to
�100V, and the remaining plasma confined between electrodes iv and

vi is discarded by ramping electrode vi to ground. At this point, an
electron plasma with the desired radial density profile is confined
under electrode iii. This electrode is then used to apply an external
E�B flow to study vortex dynamics within the bounds of the plasma/
fluid analogy. Sometime later, electrode iv is ramped quickly to ground
such that the trapped plasma travels axially along the field, where it is
accelerated onto a phosphor screen biased to þ5 kV. The resulting
light is diagnosed with a CCD camera with a resolution of 31 pixels/
mm and signal-to-noise ratio on the order of 100. This yields a
destructive measurement of the 2D electron density or vorticity distri-
bution at one point in time, integrated along the axial direction.

Vortex splitting experiments are conducted by preparing elliptical
vortices using strong external strain flows and then turning off the
strain such that the electron fluid is allowed to relax freely inside the
circular boundary. Strain flows are created by applying quadrupolar
potentials to the eight-segment electrode, as shown in Fig. 2(b). The
eight segments are biased to voltages ½þV; 0;�V ; 0;þV; 0;�V ; 0�,
beginning on the x axis. Near the origin at the axis of the trap, this
results in an E�B flow described by

w ¼ 1
2
eðx2 � y2Þ; v ¼ eð yx̂�xŷÞ; (6)

where e ¼ 1:8V=Br2w is the strain rate. If the strain-to-vorticity ratio
e=x is sufficiently large, the self-generated flow due to the vorticity is
relatively weak and so the vorticity approximately experiences passive
advection. This causes an initially circular vortex to deform elliptically
with aspect ratio kðtÞ ¼ expð2eDtÞ, where Dt is the duration of the
applied strain flow. In this way, elliptical vortices with specific aspect
ratios can be prepared.

To study the vortex evolution, the sampling time was varied over
a series of experimental runs. Three runs are taken at each time in
order to measure the experimental uncertainty, which is typically set
by the initial filling of the trap with plasma with density variations
dn=n of a few percent from run to run. To assess whether vortex split-
ting has occurred without regard to details of the evolution, one partic-
ular sampling time is chosen, which is long compared to the instability
and saturation time (x0t � 50).

Numerical simulations are conducted by solving the 2D Euler
equations approximately using a particle-in-cell method. The particles
represent point vortices that obey the Hamiltonian

TABLE I. Typical values of experimental parameters in the 8ST.

Parameter Value Parameter Value

B 4.8 T rc 0.5lm
L 0.24 m rE 0.1–10mm
T �0:1 eV fc 130GHz
rw 13mm fb �1 MHz
N 108 � 109 fE 10–100 kHz
n 1013 � 1015 m�3 fd �1 kHz

FIG. 3. Initial axisymmetric vorticity profiles measured in the experiment, along with
least-square fits to Eq. (5) (dotted), yielding s ¼ 8.6 (magenta), 4.5 (blue), and 3.1
(red).

FIG. 2. Schematic of the 8ST experimental apparatus. (a) Side view of the electrode
structure (ii–vi), with electron gun (i), phosphor screen (vii), and CCD camera (viii).
(b) View along the magnetic field of the 8-segment electrodes biased to potential
6V (red/blue), with resulting streamlines of the applied E� B strain flow (black).
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H ¼ C
XN
i¼i

wextðriÞ þ C2
X
i 6¼j

Gðri; rjÞ; (7)

where wext is the applied flow due to the boundary conditions, G is the
Green’s function for the 2D Poisson equation, and ri is the location of
the point vortices. The point vortices are initially arranged using a
Monte Carlo method to approximate a smooth, elliptical vorticity dis-
tribution with aspect ratio k, which is defined by Eq. (5) with spatial
coordinates rescaled as ðx; yÞ ! x=

ffiffiffi
k

p� �
;
�
y

ffiffiffi
k

p �
. The stream func-

tion is calculated on a rectangular grid using a sparse matrix solver. It
is used to advance the vortices with a fourth-order Runge–Kutta algo-
rithm. The boundary condition is set by imposing constant stream
function on the circular wall, as represented on the rectangular grid.
The simulations are conducted on a grid of 5002 elements with 106

point vortices.

III. VORTEX SPLITTING THRESHOLD MEASUREMENTS

Vortex splitting events can be identified by topological changes in
the stream function and vorticity fields. The topology of the stream
function before and after splitting in the frame rotating with the vortex
(or vortices) is shown in Fig. 4. The Poisson equation is solved numeri-
cally to determine w from the vorticity measurement. The rotation
rate X is determined, and w is boosted into the rotating frame by add-
ing a uniform background vorticity term 1

2Xr
2. For the initially ellipti-

cal vortex, there exists an O-point (center point) at the vortex core,
two X-points (saddle points) along the major axis near the tips of the
vortex and two O-points along the minor axis. When the vortex splits,
the central O-point bifurcates into an O-X-O configuration, where the
two O-points are centered on the split products and the X-point
defines a separatrix enclosing them.

In a 2D ideal fluid described by Eq. (1), the vorticity field cannot
change topology since it is conserved in the Lagrangian frame.
However, after a splitting event, the two products are connected by a
filament of vorticity, which rapidly thins and is, therefore, subject to
coarse-graining due to the diagnostic resolution in the experiment or
finite-particle effects in the simulations. This causes the measured vor-
ticity in the filament to decrease and, thus, changes the topology of the

vorticity field. This way, late-time vorticity measurements can be used
to evaluate whether splitting has occurred. In addition, the ratio of cir-
culations contained in the two split products, C1=C2 2 ½0; 1�, can be
estimated by measuring the average radii of the half-maximum vortic-
ity contours hrvi, where C1=C2 ¼ ðhrv1i=hrv2iÞ2.

Since the Love mode growth on an elliptical vortex patch
depends only on the aspect ratio k, we use this as a control parameter
to study the vortex splitting bifurcation. Different initial vorticity pro-
files with varying levels of peak vorticity, vortex radius, and smooth-
ness (or edge gradient) are prepared, as shown in Fig. 3. The
axisymmetric vortices are stretched to initial aspect ratios k0 using
applied strain flows as described in Sec. II and then allowed to relax
freely. The initial aspect ratio is increased over subsequent experimen-
tal runs until splitting is observed, yielding measurements of the
aspect ratio splitting threshold, ks.

A few important qualitative observations of the vortex splitting
process were made. First, in all of the experiments and simulations pre-
sented here, once a vortex had split into two pieces, the new configura-
tion was metastable, meaning that they did not re-merge over many
rotations, although this would eventually happen on a dissipative time-
scale due to diffusive growth of hrvi. Second, in many cases, the split
products were born with oscillatory surface perturbations (e.g., Kelvin
modes), so that the post-splitting vorticity distribution was non-steady
in the rotating frame. Third, in some cases, near the threshold, asym-
metric splitting was observed in which C1=C2 � 1, as shown in Fig. 5.
This is likely due to the growth of an m¼ 3 Love mode, as opposed to
(or in addition to) the m¼ 4 mode implicated in symmetric splitting
events. This phenomenon was observed recently in PIC simulations
but not studied in detail.48 Finally, binary splitting events were not
observed for nearly Gaussian vorticity profiles with s� 3. Rather, the
strong vortex core remained intact, while two filamentary arms gener-
ated by the strain flow collapsed into two small satellite vortices.

The theoretical vortex patch analysis from Dritschel did not
account for asymmetric splitting.27 These events are associated with
topological changes and can be classified as vortex splitting bifurca-
tions, although C1=C2 does not change abruptly from 0 to 1 as k0 is
varied. For this reason, we define ks as a range, where the lower bound
corresponds to the largest k0 tested for which the system does not
bifurcate, and the upper bound corresponds to the smallest k0 for

FIG. 4. The vorticity (colormap) and stream function in the rotating frame (white
contours) are shown for k0 ¼ 10:7 at times x0t ¼ 0 (left) and 35.4 (right). Center
and saddle fixed-points of the stream function are marked with red circles and
crosses, respectively, indicating a topological change associated with vortex
splitting.

FIG. 5. Vorticity data are shown at normalized times x0t ¼ (a) 29.5 and (b) 76.7
with initial aspect ratio k0 ¼ 9:1, resulting in the growth of an m¼ 3 Love mode
shown in panel (a) and an asymmetric splitting event with C1=C2 � 0:1 shown in
panel (b).
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which splitting is observed with C1=C2 	 1=2 (a somewhat arbitrary
choice based on the distribution of circulation ratios observed in the
experiments and simulations).

Analytical profiles given by Eq. (5) were numerically fitted to a
set of 17 experimentally measured axisymmetric vorticity profiles in
order to extract values of s, rv, and x0 for each case. In Fig. 6, the mea-
sured binary split threshold ks is plotted against each fit parameter for
all profiles tested in the experiments. Also plotted are threshold mea-
surements from numerical PIC simulations with profiles given by Eq.
(5), and the vortex patch analytical prediction ks ¼ 6:04. The large
error bars reflect uncertainty in the experimental and numerical
results, the prevalence of asymmetric splitting events, and the resolu-
tion of the k0 scan performed.

An important observation is that all of the experimental vortices
tested show splitting thresholds well above the vortex patch prediction.
Furthermore, a clear dependence on the vortex smoothness parameter
s is observed in both the experiments and simulations. Due to limita-
tions on the vorticity profile control technique, the experimental vorti-
ces are limited to roughly s< 10. The simulation data show that ks
tends toward the theoretical prediction as s increases but reaches a
minimum of about 7 for s 	 25. Boundary effects are expected to
impact the splitting threshold at some value of the normalized vortex
radius rv=rw. In particular, the non-axisymmetric vorticity distribution
induces image vorticity at r=rw > 1, which causes adverse rotation
near the tips of the vortex. In the most extreme case of Fig. 6(b), the
tips of an elliptical vortex patch with rv=rw ¼ 0:225 and k¼ 12 extend
to r=rw ¼ 0:78 along the major axis. Interestingly, no strong depen-
dence of the splitting threshold on rv=rw is observed in the experi-
ments. Simulations with s¼ 10 and s¼ 100 are shown in Fig. 6(b),
where the former is representative of the experiments, and the latter
corresponds closely to the vortex patch model. The small variations in
ks with rv from the simulations and the slight discrepancy between the
simulations with large s and the theoretical vortex patch prediction
may be due to boundary effects, but more work is needed to clarify
this.

Varying x0 simply rescales time in Eq. (1) and otherwise has no
impact on the fluid dynamics. Thus, any dependence of the

experimental splitting threshold on x0 would indicate non-fluid
effects. For example, at high vorticity, the vortex rotation rate
approaches the axial bounce frequency of the electrons, introducing
3D physics. No significant dependence on x0 is observed within the
uncertainty of the measurements, so any such non-fluid effects present
in the experiment appear to have little effect on the splitting threshold.

Notably, ks from the simulations exceeds that from the experi-
ments in Fig. 6(a) for s 
 7. This is likely due to discrepancies between
the vorticity profiles measured in the experiments and Eq. (5) used for
the simulations. In particular, the experimental vortices tend to have
higher vorticity gradients near r¼ rv and weaker gradients at larger r
(see Fig. 3). Further simulations were conducted to more accurately
model the experimental procedure. The initial axisymmetric vorticity
profile measured in the experiment was reproduced in the simulations
and stretched into an elliptical shape using an applied strain flow. For
simulations corresponding to the data shown in Fig. 1, this yielded
ks ¼ ð8:9; 10:6Þ, which is consistent with the experimental result of
ks ¼ ð7:9; 10:7Þ, giving confidence that the electron plasma experi-
ments are a faithful representation of 2D fluid dynamics.

IV. LOVE MODE ANALYSIS

Love modes are linearized perturbations of the edge of an ellipti-
cal vortex patch.24 They describe the linear stability of the Kirchoff
rotating vortex solution to the 2D Euler equations.22,23 A modern ana-
lytical treatment of the Love instability is given by Guo et al.25 The
analysis is conducted in an elliptical coordinate system ðl; �Þ, which is
related to the Cartesian coordinates by

x ¼ c cosh l cos �; y ¼ c sinh l sin �: (8)

The unperturbed vortex edge is given by l ¼ l0 ¼ tanh�1ðb=aÞ, and
the focus is given by c2 ¼ a2 � b2. Displacements of the vortex edge
are described by

qð�Þ ¼ J0ð�Þdlð�Þ ¼
X1
m¼1

am cos mð� � bmÞ½ �; (9)

where dl ¼ l� l0 is the displacement in elliptical coordinates,
J0ðlÞ ¼ a2 sin2� þ b2 cos2� is the Jacobian used to change between

FIG. 6. The aspect ratio splitting threshold ks is plotted vs (a) the vortex smoothness parameter, (b) the normalized vortex radius, and (c) the peak vorticity, for experimental
measurements using electron plasmas in the 8ST and PIC simulations. The theoretical prediction from Dritschel27 is shown as a dotted line. In panel (a), the simulations use
rv=rw ¼ 0:15, and the inset shows simulation data for 5 
 s 
 100. In panel (b), two values of s are shown, where s¼ 100 closely approximates the vortex patch distribution.
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Cartesian and elliptical coordinates, am and bm are the mode ampli-
tude and phase, respectively, and m is the wavenumber. These modes
evolve in time as expð�icmtÞ, where the normalized growth rate

cm
x0

	 
2

¼ 1
4

2mk

ðkþ 1Þ2 � 1

" #2

� k� 1
kþ 1

	 
2m
2
4

3
5 (10)

depends only on the aspect ratio k of the unperturbed vortex for a par-
ticular m. It is shown in Fig. 7 for 3 
 m 
 6. Wavenumbers m¼ 1
and 2 correspond to translation and elliptical deformation of the vor-
tex, respectively, and they are never unstable. For each mode with
m 	 3, there exists a critical value kc above which the modes are unsta-
ble and below which they exhibit stable rotation. This critical value
increases with m, and the wavenumber of the fastest growing mode
increases with k. For m¼ 3 and 4, kc ¼ 3 and 4.6, respectively. In the
limit k ! 1, on the scale of the fastest growing mode, the local vortic-
ity distribution can be approximated as a rectangular shear layer, and
so the Love instability is equivalent to the Kelvin–Helmholtz instabil-
ity. In the limit k ! 1, the Love modes are equivalent to Kelvin modes
propagating on a circular (Rankine) vortex. The shape of the unstable
eigenmode for m¼ 3 features an elongated tip on one side of the vor-
tex along the major axis [see Fig. 5(a)], which can develop into an
asymmetric splitting event as discussed in Sec. III.13 The unstable

eigenmode for m¼ 4 has the shape of a peanut, with two lobes along
the major axis that develop into independent vortices during a splitting
event.

Love mode properties of the electron plasma vortices are
extracted from experimental measurements of the vorticity distribu-
tion, as shown in Fig. 8. In panel (a), the half-maximum vorticity con-
tour is found by identifying pixels with 0:4 < x=x0 < 0:6. An ellipse
is numerically fitted to these points using a least squares algorithm to
extract values of a and b, and the ellipse orientation n. The data are
rotated about their centroid by the angle n so that the major axis of the
ellipse lies along the x axis, and plotted in panel (b) along with the fit-
ted ellipse and the elliptical coordinate grid that it defines. The data are
transformed to elliptical coordinates ðl; �Þ, and the displacement qð�Þ
is plotted in panel (c), along with a smooth spline, which is fitted to the
data in order to reduce experimental noise. Finally, the Love mode
amplitudes are calculated by taking the Fast Fourier Transform (FFT)
of the spline in panel (c), and the results are shown in panel (d). The
example shown in Fig. 8 corresponds to the second panel in Fig. 1(b).
A strong m¼ 4 Love mode is detected, which develops into a near-
symmetric splitting event later in time.

For the highly elliptical vortices considered here, the Love mode
fitting routine fails at some time during the vortex evolution for several
reasons. For sufficiently large mode amplitudes and particular phases,
the half-maximum vorticity contour intersects the semimajor axis at a
location(s) jxj < c, and so the curve becomes discontinuous in the
angular elliptical coordinate near �¼ 0 and 6p [see Fig. 8(c)]. In this
case, Love’s theory based on elliptical coordinates becomes ill-posed.
The fitting routine can still be carried out, but its accuracy decreases
with the width of the discontinuity. During vortex splitting events, the
half-maximum contour becomes highly distorted, and the fitting rou-
tine becomes unreliable, in part due to the difficulty in fitting the
unperturbed ellipse. In cases that do not split, the routine can fail
instead due to filamentation at the tips of the vortex, which can be
seen in the third panel of Fig. 1(a).

The fitted values of k and the Love mode amplitudes a3 and a4
are shown in Fig. 9 for k0 ¼ 7:9, 9.1, and 10.7. Over three repetitions
of the experiment, the first case did not split, the second split asymmet-
rically in some instances, and the third split with near-symmetry in all
instances. Importantly, panel (a) shows that the aspect ratio of the fit-
ted ellipse decreases over time in all cases. Early in time, the decay is

FIG. 7. Love mode growth rate for various m, where negative and positive
ðcm=x0Þ2 indicate instability and stable rotation, respectively.

FIG. 8. An example of the Love mode fitting routine used for electron plasma vortices in the 8ST. (a) The half-maximum vorticity contour (red) is plotted over vorticity data (col-
ormap); (b) the contour (red) is plotted along with the fitted ellipse (blue) and corresponding elliptical coordinate grid (black); (c) the displacement of the vortex edge is plotted
vs the angular elliptical coordinate � (red) along with a smooth spline fit (black); and (d) the FFT of the curve in (c) quantifies the amplitude of Love modes with wavenumber m.
The example shown has k0¼ 10.7 and x0t ¼ 17:7, with a strong m¼ 4 mode.
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well described by an exponential function kðtÞ ¼ k0 expð�t=sÞ with a
normalized time constant x0s ¼ 20, which is plotted over the data.
This changes the linear growth rate and stability of the Love modes
over time. In particular, the m¼ 4 mode implicated in vortex splitting
is stabilized earlier for smaller k0.

The aspect ratio or quadrupole moment of an initially elliptical
vortex can decay through a mechanism known as inviscid spatial
Landau damping in the context of pure electron plasmas,34,35,37 or
critical-layer damping in fluid dynamics.36,49 Here, the damping occurs
due to fluid motion in the two spatial dimensions, in analogy with
velocity-space Landau damping in kinetic plasma systems. It is due to
the resonant interaction of the rotating fluid with the rotating elliptical
mode at a particular radius known as the critical layer, where the
damping rate is proportional to the vorticity gradient at this location.
In the linear stage, filaments form at the tips of the elliptical vortex,
and the nonlinear stage is marked by the trapping of fluid in “islands”
or stable regions on either side of the vortex along the minor axis. The
vortex evolution observed here is qualitatively consistent with this
mechanism, although damping has not been studied extensively for
such large aspect ratios.

Using the exponential decay curves for kðtÞ described in the con-
text of Fig. 9(a), the evolution of a3 and a4 is modeled and plotted over
the data in panels (b) and (c). In the model, the mode amplitude grows

according to Eq. (10) and stops growing when k < kc. The data show
approximately exponential growth early in time, but the amplitude lev-
els off later in time for lower values of k0. Mode amplitudes could not
be reliably obtained from the data at t¼ 0 due to low signal-to-noise
ratio, so the initial amplitude in the model was chosen to roughly
match the data later in time. Data are not shown at late times where
the fitting routine breaks down. The case with k0 ¼ 9:1 that produced
asymmetric splitting events yields large values of a3. The case with
k0 ¼ 10:7 that produced near-symmetric splitting events yields large
values of a4. Thus, the simple model predicts larger-amplitude modes
for higher k0 simply because the mode has more time to grow before
becoming stable due to decay of the aspect ratio. Discrepancies
between the data and the simple model may be due to the unknown
initial amplitude and phase; nonlinear effects that could modify growth
and/or exchange energy between modes at large amplitude; and the
direct influence of profile smoothness on the Love mode dynamics.

When k < kc, the Love modes are expected to rotate. Figure 10
shows the half-maximum contours for the case with k0 ¼ 7:9 below
the splitting threshold at times x0t ¼ (a) 17.7 and (b) 23.6. In panel
(a), an m¼ 4 mode is clearly visible with phase near p=4 (peanut
shape), and in panel (b), the phase is near 0 (eye shape), indicating
that the mode has rotated due to the decreasing aspect ratio.

V. SUMMARY AND CONCLUSIONS

The results presented here show that the aspect ratio threshold
for binary vortex splitting, ks, ranges from 8 to 12 for vortices with
realistic, smooth vorticity profiles, significantly higher than the analyti-
cal prediction of ks ¼ 6:04 for the idealized vortex patch model in
which the edge vorticity gradient is infinite.27 This conclusion is borne
out in non-neutral electron plasma experiments for which the E� B
drift dynamics is analogous to those of a 2D ideal fluid, and in particle-
in-cell simulations that solve for the motion of a set of point vortices.
While the circular boundary is expected to impact the vortex splitting
process at some level, the weak variation of the splitting threshold with
vortex radius indicates that boundary effects are relatively unimportant
in this work. Agreement between the experiments and simulations,
and independence of the experimental results on the electron density
give confidence that the experiments are a faithful representation of
2D ideal fluid dynamics.

Analysis of the vortex evolution reveals that the aspect ratio of an
ellipse fitted to the vorticity distribution decreases significantly over
time. This is presumably due to a spatial Landau (or critical-layer)

FIG. 10. The half-maximum vorticity contour (red) and unperturbed ellipse (blue,
dotted) are shown for k0 ¼ 7:9 at times x0t ¼ (a) 17.7 and (b) 23.6.

FIG. 9. Love mode amplitude evolution extracted from vorticity data, including (a)
the unperturbed ellipse aspect ratio, and (b) and (c) the m¼ 3 and 4 Love mode
amplitudes, respectively. Three cases are shown with k0 ¼ 7:9 (red squares), 9.1
(blue circles), and 10.7 (magenta triangles). In panel (a), the stability thresholds kc
are indicated for the m¼ 3 and 4 Love modes (dotted lines), and exponential func-
tions (solid lines) are fitted to the data as described in the text. In panels (b) and (c),
a simple model is shown (solid lines) in which the Love mode growth rate and sta-
bility vary in time.
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damping mechanism similar to that studied previously at lower aspect
ratio.35,36 As a result, the Love mode growth and stability properties
change over time, such that the m¼ 3 and 4 modes stop growing at
some point and begin to rotate. Thus, in order to grow to large enough
amplitude to proceed to nonlinear saturation and cause the vortex to
split, the initial aspect ratio must be large. In comparison, the vortex
patch model does not exhibit Landau damping due to the lack of vor-
ticity gradient at the resonant layer, and so splitting can occur for
smaller initial aspect ratio. It is possible that the Love mode dynamics
are also modified directly by the smooth vorticity profile and/or by
nonlinear mode interactions, but these topics are left for future work.

Another important finding is that near the splitting threshold, the
growth of m¼ 3 Love modes can lead to asymmetric splitting events.
Thus, the onset of vortex splitting with increasing aspect ratio is grad-
ual rather than sudden, with the circulation ratio of the resulting two
vortices varying smoothly from zero to unity. However, events with
circulation ratio near zero may be of less practical importance than
those near unity, since relatively little fluid is contained in the smaller
split product.

These results may be relevant to atmospheric vortex splitting
events at the poles of Earth and other planets. Usage of the vortex
patch model in the analysis of these events29,30 may be complicated by
the effect of Landau damping, for example, due to the edge vorticity
gradient associated with the Rossby-wave surf zone. Additionally, the
role of the symmetry-breakingm¼ 3 Love mode in setting the circula-
tion ratio should be considered. The aspect ratios of Earth’s polar vor-
tices do not typically approach the vortex patch splitting threshold of
ks ¼ 6:04 and are far from the thresholds measured here for smooth
vortices. Thus, they are unlikely to split due to the free growth of Love
modes, so forcing is probably necessary (e.g., due to topography and/
or the influence of other vortices at lower latitudes). For drift-wave
eddies in fusion plasmas,19 these results indicate that splitting may be
more unlikely than previously thought due to the relatively high aspect
ratios required.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy
(DOE) under Grant Nos. DE-SC0016532 and DE-SC0018236; the
Wisconsin Plasma Physics Laboratory (WiPPL), a research facility
supported by the DOE under Contract No. DE-SC0018266; the U.S.
National Science Foundation under Grant No. PHY 2106332, and
the Office of the Permanent Secretary, Ministry of Higher
Education, Science, Research and Innovation (Thailand) under
Grant No. RGNS 65-106.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

N. C. Hurst: Conceptualization (lead); Formal analysis (lead);
Investigation (lead); Methodology (lead); Software (lead); Visualization
(lead); Writing – original draft (lead); Writing – review & editing (equal).
A. Tran: Investigation (supporting); Methodology (supporting); Software
(supporting). P. Wongwaitayakornkul: Conceptualization (supporting);

Investigation (supporting). J. R. Danielson: Conceptualization (support-
ing); Formal analysis (supporting); Investigation (supporting);
Methodology (supporting); Resources (equal); Supervision (equal);
Writing – review & editing (supporting). D. H. E. Dubin:
Conceptualization (supporting); Investigation (supporting); Supervision
(equal). C. M. Surko: Conceptualization (supporting); Funding acquisi-
tion (lead); Project administration (lead); Supervision (equal); Writing –
review& editing (supporting).

DATA AVAILABILITY

The data that support the findings of this study are available from
the corresponding author upon reasonable request.

REFERENCES
1R. Salmon, Lectures on Geophysical Fluid Dynamics (Oxford University Press,
New York, 1998).
2T.Meuel, Y. L. Xiong, P. Fischer, C. H. Bruneau, M. Bessafi, and H. Kellay, “Intensity
of vortices: from soap bubbles to hurricanes,”Nat. Sci. Rep. 3, 3455 (2013).

3R. V. E. Lovelace, H. Li, S. A. Colgate, and A. F. Nelson, “Rossby wave instabil-
ity of Keplerian accretion disks,” Astrophys. J. 513, 805 (1999).

4A. Adams, P. M. Chesler, and H. Liu, “Holographic turbulence,” Phys. Rev.
Lett. 112, 151602 (2014).

5A. Hasegawa and K. Mima, “Pseudo-three-dimensional turbulence in magne-
tized nonuniform plasma,” Phys. Fluids 21, 87 (1978).

6R. H. Levy, “Diocotron instability in a cylindrical geometry,” Phys. Fluids 8,
1288 (1965).

7C. F. Driscoll and K. S. Fine, “Experiments on vortex dynamics in pure electron
plasmas,” Phys. Fluids B 2, 1359 (1990).

8R. C. Davidson, Physics of Nonneutral Plasmas (Addison-Wesley, Redwood
City, CA, 1990).

9D. Montgomery and L. Turner, “Two-dimensional electrostatic turbulence
with variable density and pressure,” Phys. Fluids 23, 264 (1980).

10R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence,” Phys. Fluids
10, 1417 (1967).

11J. P. Christiansen and N. J. Zabusky, “Instability, coalescence and fission of
finite-area vortex structures,” J. Fluid Mech. 61, 219 (1973).

12P. Freymuth, W. Bank, and M. Palmer, “First experimental evidence of vortex
splitting,” Phys. Fluids 27, 1045 (1984).

13T. B. Mitchell and L. F. Rossi, “The evolution of Kirchoff elliptic vortices,” Phys.
Fluids 20, 54103 (2008).

14A. H. Butler, Z. D. Lawrence, S. H. Lee, S. P. Lillo, and C. S. Long, “Differences
between the 2018 and 2019 stratospheric polar vortex split events,” Quart. J. R.
Meteorol. Soc. 146, 3503 (2020).

15D. M. Mitchell, A. J. Charlton Perez, L. J. Gray, H. Akiyoshi, N. Butchart, S. C.
Hardiman, O. Morgenstern, T. Nakamura, E. Rozanov, K. Shibata, D. Smale,
and Y. Yamashita, “The nature of Arctic polar vortices in chemistry-climate
models,” Quart. J. R. Meteorol. Soc. 138, 1681 (2012).

16A. J. Charlton, A. O’Neill, W. A. Lahoz, and P. Berrisford, “The splitting of the
stratospheric polar vortex in the southern hemisphere, September 2002:
Dynamical evolution,” J. Atmos. Sci. 62, 590–602 (2005).

17D. M. Mitchell, R. K. Scott, W. J. M. Seviour, S. I. Thomson, D. W. Waugh, N.
A. Teanby, and E. R. Ball, “Polar vortices in planetary atmospheres,” Rev.
Geophys. 59, e2020RG000723, https://doi.org/10.1029/2020RG000723 (2021).

18P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, “Zonal flows in plasma—A
review,” Plasma Phys. Controlled Fusion 47, R35 (2005).

19P. Manz, M. Ramisch, and U. Stroth, “Physical mechanism behind zonal-flow
generation in drift-wave turbulence,” Phys. Rev. Lett. 103, 165004 (2009).

20N. G. Berloff, “Vortex splitting in subcritical nonlinear Schr€odinger equations,”
Fluid Dyn. Res. 41, 051403 (2009).

21Y. Shin, M. Saba, M. Vengalattore, T. A. Pasquini, C. Sanner, A. E. Leanhardt,
M. Prentiss, D. E. Pritchard, and W. Ketterle, “Dynamical instability of a doubly
quantized vortex in a Bose-Einstein condensate,” Phys. Rev. Lett. 93, 160406
(2004).

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 052106 (2024); doi: 10.1063/5.0201712 31, 052106-9

VC Author(s) 2024

 06 M
ay 2024 17:11:21

https://doi.org/10.1038/srep03455
https://doi.org/10.1086/306900
https://doi.org/10.1103/PhysRevLett.112.151602
https://doi.org/10.1103/PhysRevLett.112.151602
https://doi.org/10.1063/1.862083
https://doi.org/10.1063/1.1761400
https://doi.org/10.1063/1.859556
https://doi.org/10.1063/1.862967
https://doi.org/10.1063/1.1762301
https://doi.org/10.1017/S0022112073000686
https://doi.org/10.1063/1.864753
https://doi.org/10.1063/1.2912991
https://doi.org/10.1063/1.2912991
https://doi.org/10.1002/qj.3858
https://doi.org/10.1002/qj.3858
https://doi.org/10.1002/qj.1909
https://doi.org/10.1175/JAS-3318.1
https://doi.org/10.1029/2020RG000723
https://doi.org/10.1029/2020RG000723
https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1103/PhysRevLett.103.165004
https://doi.org/10.1088/0169-5983/41/5/051403
https://doi.org/10.1103/PhysRevLett.93.160406
pubs.aip.org/aip/php


22G. Kirchhoff, Vorlesungen €Uber Mathematische Physik: Mechanik (Teubner,
Leipzig, 1876).

23H. Lamb, Hydrodynamics (Cambridge University Press, 1932).
24A. E. H. Love, “On the stability of certain vortex motions,” Proc. London Math.
Soc. s1-25, 18 (1893).

25Y. Guo, C. Hallstrom, and D. Spirn, “Dynamics near an unstable Kirchhoff
ellipse,” Commun. Math. Phys. 245, 297 (2004).

26L. Xu and R. Krasny, “Dynamics of elliptical vortices with continuous profiles,”
Phys. Rev. Fluids 8, 024702 (2023).

27D. G. Dritschel, “The nonlinear evolution of rotating configurations of uniform
vorticity,” J. Fluid Mech. 172, 157 (1986).

28S. Kida, “Motion of an elliptic vortex in a uniform shear flow,” J. Phys. Soc.
Jpn. 50, 3517 (1981).

29N. J. Matthewman and J. G. Esler, “Stratospheric sudden warmings as self-
tuning resonances. Part I: Vortex splitting events,” J. Atmos. Sci. 68, 2481
(2011).

30M. Mester and J. G. Esler, “Dynamical elliptical diagnostics of the Antarctic
polar vortex,” J. Atmos. Sci. 77, 1167 (2019).

31N. C. Hurst, J. R. Danielson, D. H. E. Dubin, and C. M. Surko, “Evolution of a
vortex in a strain flow,” Phys. Rev. Lett. 117, 235001 (2016).

32J. R. Danielson, C. M. Surko, and T. M. O’Neil, “High-density fixed point for
radially compressed single-component plasmas,” Phys. Rev. Lett. 99, 135005
(2007).

33J. Goodman, T. Y. Hou, and J. Lowengrub, “Convergence of the point vortex
method for the 2-D Euler equations,” in Communications on Pure and Applied
Mathematics (John Wiley and Sons, Inc., 1990), Vol. 43, p. 415.

34R. J. Briggs, J. D. Daugherty, and R. H. Levy, “Role of Landau damping in
crossed-field electron beams and inviscid shear flow,” Phys. Fluids 13, 421
(1970).

35D. A. Schecter, D. H. E. Dubin, A. C. Cass, C. F. Driscoll, I. M. Lansky, and T.
M. O’Neil, “Inviscid damping of asymmetries on a two-dimensional vortex,”
Phys. Fluids 12, 2397 (2000).

36S. L. Dizes, “Non-axisymmetric vortices in two-dimensional flows,” J. Fluid
Mech. 406, 175 (2000).

37P. Wongwaitayakornkul, J. R. Danielson, N. C. Hurst, D. H. E. Dubin, and
C. M. Surko, “Inviscid damping of an elliptical vortex subject to an external
strain flow,” Phys. Plasmas 29, 052107 (2022).

38K. S. Fine, A. C. Cass, W. G. Flynn, and C. F. Driscoll, “Relaxation of 2D turbu-
lence to vortex crystals,” Phys. Rev. Lett. 75, 3277 (1995).

39A. Sanpei, Y. Kiwamoto, K. Ito, and Y. Soga, “Formation of a vortex crystal cell
assisted by a background vorticity distribution,” Phys. Rev. E 68, 016404
(2003).

40T. B. Mitchell and C. F. Driscoll, “Electron vortex orbits and merger,” Phys.
Fluids 8, 1828 (1996).

41M. Amoretti, D. Durkin, J. Fajans, R. Pozzoli, and M. Rome, “Asymmetric vor-
tex merger: Experiments and simulations,” Phys. Plasmas 8, 3865 (2001).

42Y. Soga, Y. Kiwamoto, A. Sanpei, and J. Aoki, “Merger and binary structure for-
mation of two discrete vortices in a background vorticity distribution of a pure
electron plasma,” Phys. Plasmas 10, 3922 (2003).

43N. C. Hurst, J. R. Danielson, D. H. E. Dubin, and C. M. Surko, “Experimental
study of the stability and dynamics of a two-dimensional ideal vortex under
external strain,” J. Fluid Mech. 848, 256–287 (2018).

44N. C. Hurst, J. R. Danielson, D. H. E. Dubin, and C. M. Surko, “Instability of an
electron-plasma shear layer in an externally imposed strain flow,” Phys.
Plasmas 27, 042101 (2020).

45N. C. Hurst, J. R. Danielson, D. H. E. Dubin, and C. M. Surko, “Adiabatic
behavior of an elliptical vortex in a time-dependent external strain flow,” Phys.
Rev. Fluids 6, 054703 (2021).

46A. J. Peurrung and J. Fajans, “A limitation to the analogy between pure
electron plasmas and two-dimensional inviscid fluids,” Phys. Fluids B 5, 4295
(1993).

47N. C. Hurst, J. R. Danielson, and C. M. Surko, “An electron plasma experiment
to study vortex dynamics subject to externally imposed flows,” AIP Conf. Proc.
1928, 020007 (2018).

48C. A. F. Fracassi, R. Pakter, and Y. Levin, “Linear and non-linear instabilities of
Kirchhoff’s elliptical vortices,” J. Stat. Mech. 2020, 083205.

49N. J. Balmforth, S. G. L. Smith, and W. R. Young, “Disturbing vortices,” J. Fluid
Mech. 426, 95 (2001).

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 052106 (2024); doi: 10.1063/5.0201712 31, 052106-10

VC Author(s) 2024

 06 M
ay 2024 17:11:21

https://doi.org/10.1112/plms/s1-25.1.18
https://doi.org/10.1112/plms/s1-25.1.18
https://doi.org/10.1007/s00220-003-1017-z
https://doi.org/10.1103/PhysRevFluids.8.024702
https://doi.org/10.1017/S0022112086001696
https://doi.org/10.1143/JPSJ.50.3517
https://doi.org/10.1143/JPSJ.50.3517
https://doi.org/10.1175/JAS-D-11-07.1
https://doi.org/10.1175/JAS-D-19-0232.1
https://doi.org/10.1103/PhysRevLett.117.235001
https://doi.org/10.1103/PhysRevLett.99.135005
https://doi.org/10.1063/1.1692936
https://doi.org/10.1063/1.1289505
https://doi.org/10.1017/S0022112099007326
https://doi.org/10.1017/S0022112099007326
https://doi.org/10.1063/5.0086227
https://doi.org/10.1103/PhysRevLett.75.3277
https://doi.org/10.1103/PhysRevE.68.016404
https://doi.org/10.1063/1.868965
https://doi.org/10.1063/1.868965
https://doi.org/10.1063/1.1390331
https://doi.org/10.1063/1.1611181
https://doi.org/10.1017/jfm.2018.311
https://doi.org/10.1063/1.5138924
https://doi.org/10.1063/1.5138924
https://doi.org/10.1103/PhysRevFluids.6.054703
https://doi.org/10.1103/PhysRevFluids.6.054703
https://doi.org/10.1063/1.860546
https://doi.org/10.1063/1.5021572
https://doi.org/10.1088/1742-5468/aba68b
https://doi.org/10.1017/S0022112000002159
https://doi.org/10.1017/S0022112000002159
pubs.aip.org/aip/php



