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Abstract. Weak axial ripples in magnetic or electric confinement fieldsin pure electron plasmas
cause slow electrons to be trapped locally, and collisionaldiffusion across the trapping separatrix
then causes surprisingly large trapped-particle-mediated (TPM) damping and transport effects.
Here, we characterize TPM damping ofmθ 6= 0, mz = ±1 Trivelpiece-Gould (TG) plasma modes
in large amplitude long-lived BGK states. The TPM damping givesγBGK/ω ∼ 10−4, and seems to
dominate in regimes of weak collisions.
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In typical pure electron plasma columns, the magnetic field is axially “invariant” to
within 1 part in 103; but the slow electrons trapped in the weak ripples are predicted
to have near-discontinuous velocity distributions, and this apparently causes dominant
damping and transport effects. These trapped-particle-mediated (TPM) effects arise
from both magnetic and electric ripples, and have been observed to cause new modes
[1], damping of drift modes [2], cross-field tranport of particles [2, 3, 4], as well as the
damping of electron plasma waves discussed here. Theory suggests that TPM effects
dominate when collision ratesν are small compared to wave frequenciesω, since TPM
effects are predicted to scale as(ν/ω)1/2 rather than as(ν/ω)1.

Of course, magnetic and electric trapping is commonplace inneutral plasma physics.
In toroidal geometry, the enhanced inboard magnetic field strongly constrains the
poloidal rotation, and gives rise to a variety of trapped particle modes and induced
currents. An incisive boundary layer analysis of the trapping separatrix predicted near-
discontinuous distribution functions, with damping effects scaling as(ν/ω)1/2 [5]. Later
experimental work verified some aspects of trapped particlemodes (but not the damp-
ing) [6, 7]. Only a few theorists have tackled the subtle(ν/ω)1/2 trapping scaling [8].
In stellarator magnetic fields a variety of TPM effects are thought to arise from helical
ripples [9], but experimental tests are difficult.

In contrast, theory and experiment are in general accord on avariety of phase-space
wave-trapping effects. Particles moving near the wave phase velocity can be trapped
in the wave potential, causing a localized flattening of the (presumed) Maxwellian
distribution, voiding Landau damping, and enabling “steady-state” Bernstein-Greene-
Kruskal (BGK) modes [10]. For electron plasma waves, the initial wave amplitude
exhibits oscillations that correspond closely to theory [11], and a variety of long-lived
BGK states have been observed, including many with nonlinear frequency shifts [12,
13]. The recently-studied Electron Acoustic Waves exist only as nonlinear BGK states
[14].



Surprisingly, the requisite wave-particle correlations persist even for standing waves
in finite length apparatuses, surviving 103–104 end reflections of oppositely moving
waves. In the present experiments, the BGK state flattens the±ẑ velocity distribution
for a 0.5% component of electrons, over the range 0< |v| < 5 v̄.

Velocity-scattering collisions necessarily dissipate these BGK states. Zakharov and
Karpman [15] and others [16, 17] calculated repopulation ofthe Maxwellian distribution
at the wave phase velocity, predicting damping ratesγZK ∝ ν1.

In this paper, we observe a stronger damping of linear and large-amplitude waves,
determined to be due to TPM effects, with damping rates consistent with a(ν/ω)1/2

scaling. The trapping arises from an inherent magnetic ripple with peakδBz/Bz ∼
10−3 centered under the mid-plane cylinder, and from negative “squeeze” voltages
intentionally applied to that cylinder. This TPM damping isobserved only formθ 6= 0
modes, in whichθ̂ electric fields cause radial particle drifts, with consequent phase-
space discontinuities at the ripple-trapping separatrix.Analogous TPM effects would be
expected in neutral plasmas.

FIGURE 1. Schematic of cyclinridal electron plasma with magnetic andelectric ripples, and anmz = 1
plasma wave.

The pure electron plasma columns described here are confinedin a Penning-
Malmberg trap, as shown in Fig. 1. The electrons emitted froma hot tungsten source are
confined radially by a nearly uniform axial magnetic field 1≤ B≤ 15kG, and confined
axially by negative voltagesVc = −100V on end cylinders with radiusRw = 3.5cm.
Typical electron columns have densityn ∼ 1.5×107cm−3 over a radiusRp ∼ 1.2cm
and lengthLp ∼ 48cm, giving line densityNL ≡ πR2

pn0 = 6.7× 107cm−1. The un-
neutralized electron charge results in anE × B rotation of the column at frequency
fR(r) ∼ 0.1MHz(B/2kG)−1.

Thez-averaged densitiesn(r,θ, t) are measured at any time by dumping the electrons
axially onto a phosphor screen imaged by a CCD camera. Alternately, thez-averaged
density of the right-hand endonly, nh(r,θ, t), can be measured by cutting the plasma
in half with Vsq ∼ −100V immediately (0.2µs) before dumping onto the phosphor.
Additionally, the distribution of axial energiesF(Ez) can be obtained by measuring the
electrons which escape (preferentially nearr = 0) as the end confinementVc is slowly
raised to ground (in 100µs). The initial quiescent plasmas have a thermal distribution
with T ∼ 1eV, givingv ∼ 42cm/µs, λD ∼ 0.2cm, and collisional 90◦ scattering rate
νee∼ 160sec−1.
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FIGURE 2. Measured plasma densityn(r) and radial eigenfunctionδn(r) of themθ = 1,mz = 1,mr = 1
plasma wave. The dashed line shows Eq. (3).

Electron-plasma waves in the Trivelpiece-Gould (TG) regime are excited and mon-
itored on two cylinders with 4× 60◦ and 8×30◦ wall sectors, allowing unambiguous
identification of the axial and azimuthal mode numbersmz and mθ. The modes are
weakly damped standing waves inz, and have the form

δn(r,θ,z, t) = δn(r) sin(mzπz/Lp) cos
[

mθθ−2π f t
]

e−γt . (1)

Here, we focus onmz = 1, mθ = 1, in the lowest radial mode (mr = 1) with δn(r) = 0
only atr = 0 andr > Rp.

Two separate TG modes exist at eachmθ 6= 0, either co- or counter-rotating relative to
the plasmafR. The linearized cold electron plasma dispersion relation for top-hat density
profiles predicts (upper, lower) frequencies

fu,ℓ = mθ fR± f∗ (2)

≡ mθ fR±mz

(

πRp

jmθ−1,mr Lp

)

fp.

The wave frequency in the rotating frame scales asf∗ ∝ N1/2
L L−1

p , with f∗ = 1.13MHz
for our plasmas, substantially below the plasma frequencyfp ∼ 35MHz. (Note that
proper interpretation of theory [18] givesjmθ−1,mr rather thanjmθ,mr .) At low amplitudes,
these modes areoverdamped, with Landau damping givingγL ∼ 2.4 f∗, following from
vph = 2Lp f∗ ∼ 2.6v.

Despite the strong linear damping, application of resonantoscillating wall voltages
does excite either mode to a large amplitude, long-lived BGKstate. Figure 2 shows the
(upper-mode) eigenfunction amplitudeδn(r) obtained immediately after excitation; the
eigenfunction agrees closely with the

δn(r) ∝ n(r)J1( j0,1 r/Rp) (3)

prediction of linear theory.
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FIGURE 3. Peak mode amplitude and frequency vs. time after excitation.

Figure 3 shows the time evolution of the mode amplitudeA≡ (δn/n)pk and frequency
f1(t), obtained by fitting a local sinusoid to the waveformAw(t) received on a wall
sector. Themθ = 1 BGK mode damps essentially exponentially over 11

2 decades, at a
rateγ1 ∼ 0.99×103sec−1; this will be shown to be TPM collisional damping. At small
amplitude the wave damps much more rapidly.

The mode frequency shows an ill-understood 4% decrease during excitation and
the first 200 wave cycles (200µsec); then shows a characteristic logarithmic increase
[a retreat back tof1(0)] as the amplitude decreases. This latter evolution is well-
approximated byf (A) = f0 [1−α ln(1+ βA)]. We note that the same amplitude de-
pendence is observed with largerα for mθ = 0, mr = 1 BGK states [12, 13] apparently
not mitigated by±θ or radial layer cancellations.

Several experimental manipulations help to characterize the BGK mode. First, the
damping can be greatly and immediately enhanced (5–10×) by lowering the end con-
finement voltageVc, thereby allowing electrons in the wave-trapped phase-space vortex
to escape. The wave then continually accelerates electronsto high velocities where they
escape, and the wave damps rapidly.

This wave-trapped vortex is a “flat” component ofF(Ez) comprising about 0.5%
of the electrons. To obtainF(Ez), the number of escaping electrons∆Ne is measured
as the dump-end confinement voltage is ramped fromVc = −100V to Vc = −30V
(close to the plasma potentialφp) in a time of 100µs, as shown in Fig. 4. One expects
∆Ne =

R

dr
R ∞

φp(r)−Vc
dεF(ε). Before (and long after) the wave is excited, the observed

∆Ne(Vc) is exponential, reflecting a Maxwellian tail withT ∼ 1 eV [19]. During the
BGK wave, the∆Ne(Vc) data reflects this Maxwellian distributionplusa flat distribution
extending fromε = 0 to εmax = 17T. This maximum wave-trapping energy determines
the wave potentialδφtrap∼ 1.8V = 1.8T/e. This corresponds well to the wave potential
δφpk ∼ 2.4 Volts calculated from Poisson’s equation using the peak amplitude of Fig. 3,
noting that the quantitative effects ofr-averaging have not been calculated.

To destroy this wave-trapped vortex (forming the BGK state)it is sufficient to tem-
porarily slightly open a confinement gate by lowering the confinement voltageVc. Fig-
ure 5 shows that temporarily lowering down toVc = −50V (which corresponds to the
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FIGURE 4. Fraction of escaped electrons∆Ne vs. confinement potentialVc (or thermal energyε/T)
with and without wave. The measured difference (crosses) closely corresponds to a 0.5% flat fraction
extending to 17T (dashed).
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FIGURE 5. Enhanced damping of themθ = 1 BGK mode by partial ejection of the wave-trapped vortex.
Solid lines correspond to confinement voltage lowered toVc = −50V, and the dashed lines toVc = −45V.
The reversible dip in frequencyf1 is due to changes in plasma parameters caused byVc(t).

most extreme high energy extent of the wave-trapped vortex at Fig. 4) just barely affects
the damping rate. On the other hand, temporarily opening theconfinement gate a little
bit more down toVc = −45V increases the damping rate dramatically. Due to fast trap-
ping oscillations, a significant fraction of the vortex escapes the confinement region, and
the BGK state shows a rapid decay. At thisVc, there would be negligible losses from the
unperturbed Maxwellian distribution.

A second experimental technique demonstrates that other modes can enhance the
ripple-separatrix crossings and thereby enhance themθ = 1 BGK mode damping. For
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FIGURE 6. Enhanced dampingγ1 of themθ = 1 BGK mode caused by excitation of an axisymmetric
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FIGURE 7. Enhanced dampingγE induced by the negative portion of a ramped wall voltageVsq; theγM
measurement is forVsq= 0.

example, excitation of themθ = 0, mz = 1, mr = 1 (“sloshing”) Trivelpiece-Gould mode
to a moderate amplitude causes a damping increment∆γ1 which is proportional to the
mθ = 0 excitation amplitude. Figure 6 shows a temporary increasein γ1 due to a short-
lived TG mode excitation. The TG mode causes potential variations on±z ends of the
ripple trapping barrier(s), resulting in enhanced ripple-separatrix crossings and enhanced
mθ = 1 mode damping. This technique has been used extensively to characterize TPM
mode damping and particle transport [4], and even to diagnoseF(Ez, r) at the separatrix
velocity vs(r) [20].
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FIGURE 8. Damping rateγE vs. squeeze voltageVsq at various plasma temperatures. Solid symbols
show damping rateγM atVsq = 0.

Third and most incisive, the BGK state damping can be enhanced by application of
near-DC “squeeze” voltages on the mid-plane cylinder: these createelectric trapping
barriers in addition to the always-presentmagneticripple trapping barriers. Moreover,
the effect of the squeeze is observed “instantaneously,” since the wave amplitudeA(t) is
obtained from a sinusoidal fit toAw(t) over a time of only a few wave cycles.

Figure 7 shows the instantaneous effect on damping rateγ1 from a positive/negative
ramped squeeze voltage applied to the mid-plane cylinder. Note that this is at the same
axial position as the predominant magnetic ripple (mirror)of δB/B ∼ 10−3, and is at
the node of the standing plasma wave. The positive squeeze has little effect, whereas the
negative voltage creates an electric trapping barrier which gives strong TPM damping
from the electric trapping barrier.

We interpret the observed damping as due to separate electric and magnetic trapping
barriers, i.e.,γ1 = γE + γM. The electric-TPM componentγE is proportional to the
strength of the electric trapping barrier, as shown in Fig. 8. Here, the instantaneous
damping rateγ1 is plotted versus the instantaneous (negative) squeeze voltageVsq for 4
different plasmas at varying temperatures. That is, the data at eachT is obtained from
γE(t) as in Fig. 7. The different temperatures are obtained by pre-heating with end-
confinement-voltage variations near the electron bounce frequency offb ∼ 1 MHz.

For Vsq = 0, a (more accurate) damping rate is obtained over longer times, and this
is interpreted asγM due to the inherent magnetic ripple. Prior experiments on cross-
field transport and diocotron mode damping clearly isolatedthe magnetic ripple effects
[2, 3, 4]; here, the requirement of 2 sectored cylinders precludes removal of the ripple.

The temperature dependencies ofγE andγM differ markedly. The observations suggest
γE ∝ eVsq/T, which probably reflects a dependence on the number of electric-trapped
particles, i.e.,γE ∝ Ntr/Ntot. This dependence has been observed in prior TPM exper-
iments on damping and transport with electric trapping [3, 4]. In contrast, a weakly
positive dependence is obtained forγM(T), but this has not been interpreted theoreti-



cally.
This TPM damping shows essentially no dependence onB, verified over the range

1≤ B≤ 15kG wherefR/ f∗ ≪ 1. In this regime, the TPM damping rates are essentially
equal for the upper and lower BGK modes.

The measured TPM damping rates are approximately 50× larger than a colli-
sional Zakharov-Karpman estimate, which givesγZK ∼ 20sec−1. This is consistent
with the 80× difference betweenγZK ∝ (ν/ f∗)1 ∼ 1.4 · 10−4 and the (presumed)
γTPM ∝ (ν/ f∗)1/2 ∼ 1.2 ·10−2. However, as yet this(ν/ f∗)1/2 scaling of TPM damping
has been obtained theoretically only for “trapped-particle diocotron” modes [21], and
substantial questions remain as to distribution function discontinuities, dissipation of
equilibrium currents, and radial particle transport. Thus, the scaling remains uncertain.

TPM effects may contribute to the “rotating wall” techniquefor plasma manipulation
and steady-state confinement, in at least some of the regimeswhere it has been applied
[22, 23]. This is because TPM damping ofmθ 6= 0 modes necessarily couples wave
angular momentum into the plasma particles, and causes radial transport of particles.

In conclusion, these experiments demonstrate that weak ripples in magnetic or electric
confinement fields can produce dominant damping effects for non-axisymmetric plasma
waves. These trapped-particle-mediated damping effects are particularly important in
large-amplitude BGK states, where conventional collisional damping is much weaker.
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