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Abstract of the Dissertation 

Experiments on Electron Vortices in a Malmberg-Penning 

Trap 

by 

Travis Buell Mitchell 

Doctor of Philosophy in Physics 

University of California, San Diego, 1993 

Dr. Charles F. Driscoll, Chairman 

Experiments are presented on confined pure electron plasmas. These plas

mas are cylindrical columns contained inside hollow conducting cylinders in an axial 

magnetic field. In the 2-dimensional E x B drift approximation, an electron column 

is a vortex evolving in (r, B) according to the 2D Euler equation. 

The 'diocotron' waves of a single vortex vary as exp(ikzz + iW - iwt), with 

kz = 0. The l = 1 wave is observed to damp at a rate strongly dependent on the 

radial position of the column in the cylindrical trap. The l = 2 and l = 3 waves 

exhibit a decay instability, where the model decays to model - 1. When this decay 

instability is prevented by negative feedback, exponential decay is observed. 

Next, the center-of-mass motions of two vortices symmetric in radius a.nd 

vorticity, and sufficiently well-separated to be stable to merger, a.re characterized. 

Equilibria a.re observed in which the vortices orbit a.bout the center of the cylinder, 

with either oscillations a.bout stable equilibria. or exponential divergence a.way from 

unstable equilibria.. The equilibrium positions, oscillation frequencies, and instability 

xx 



rates for these spatially 8Xtendecl vortices agree well with the predictions of point 

vortex theory, apparently because surface waves and shape distortions do not couple 

significantly to the center-of-mass motion. 

Finally, the merger of two vortices with unequal radii has been quantified. 

The two vortices merge rapidly when they are closer than a critical separation, but 

stay separated for many orbits when the separation is slightly larger. Merger is 

accompanied by the formation of filamentary arms, and results ultimately in an 

axisymmetric central core surrounded by a lower density halo. A simple algorithm 

for defining the core and halo of a merged vortex is found to be consistent with 

experiment. The self-energy of the merged core is found to be roughly the same as 

the sum of the self-energy of the merging vortices. The fraction of the total circulation 

entrained into the core varies from 70% to 90% as the ratio of the initial vortex radii 

is varied from 1:1 to 2:1. This fraction also depen<ls on the initial placement of the 

two vortices. 
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Chapter 1 

Introduction and Summary 

1.1 Overview of Dissertation 

In this work, I describe experiments on confined pure electron plasmas. The 

plasmas studied are electron columns contained inside a trap consisting of hollow 

conducting cylinders in a uniform axial magnetic field. The magnetic field provides 

radial confinement, and electrostatic fields on encl cylinders provide axial confine

ment. Because John Malmberg pioneered use of these traps to study plasma pro

cesses [4.5], whereas Penning [5.5] used a similar geometry to make a cold cathode 

ionization gauge, I refer to the confinement device as a 'Malmberg-Penning' trap. 

In the operating regime of the experiments, where the 2D E x B drift ap

proximation is valid a.nd where fa.st electron motions in the axial direction average 

over axial variations, the columns evolve according to the 2D Euler equation. The 

columns therefore evolve as would patches of vorticity in an incompressible and in

viscid fluid contained in a circular tank. The vorticity of the flow is proportional to 

the electron density, and the sign of the vorticity is given by the sign of the charge 

[42]. 

This 'fluid analogy' adds to the significance of non-neutral plasma experi

ments: while non-neutral plasmas are a subject of increasing interest in their own 

right - ha.viug found homes in such di verse places as accelerators, free electron lasers, 
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atomic clocks and neutron stars - vortices have a tremendous importance due to the 

central role of vorticity in fluid dynamics and turbulence. I will be presenting both 

results which apply only to plasmas and results which also apply to fluid vortices. 

To help differentiate between these, I try to adhere to a convention that when the 

structures are referred to as columns, the phenomenon being described is unique to 

plasmas; when referred to as vortices, it is believed that the phenomenon also applies 

to 2D fluid vortices. 

As will be seen, several of the complications of vortex experiments usmg 

conventional fluids do not apply to electron systems. For example, in the electron 

system there is no boundary layer at the containing wall to complicate the dynamics, 

and the Reynolds number is high: an electron vortex can rotate about its axis over 

105 times before its radius doubles clue to 'viscosity'. Additionally, the vorticity is 

easily manipulated, accurately measured and directly imaged (17). As a consequence 

of these advantages, I have been able to quantitatively study some basic vortex 

phenomena which have not been satisfactorily examined before. 

The dissertation is organized as follows. Chapter 2 consists of background 

information on non-neutral plasmas in· general, and the 'Equilibrium Voltage' (EV) 

containment device in particular. The operation and diagnostics of the EV device 

are described in detail, some relevant previous results on transport and temperatures 

are reviewed, and the fluid analogy (and observed discrepancies from it) is discussed. 

Chapter 3 contains the results of studies of a single vortex/ column. I first 

describe studies of the damping of surface waves characterized by the azimutha.l 

mode number l (i.e. varying a.s cos(!B)), but having no axial variation(/.:=::::::: 0). In 

fluid dynamics, these are referred to as Kelvin waves on a vortex; in plasma physics 

they are referred to as diocotron waves. The l = 1 wave corresponds to a column 

displaced from the center of the cylindrical trap. Measurements of the radius and 
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displacement of such a column show changes at rates strongly dependent on radial 

position. I find that while both angular-momentum-conserving and -nonconserving 

transport is taking place, the data is consistent with an exponential clamping of the 

l=l wave. The measured rates of this damping, however, a.re somewhat higher than 

those predicted by a preliminary theory [11]. 

The l 2: 2 diocotron waves can be damped by a spatial Landau-mechanism 

resonance damping [5, 14]. I have discovered, however, that small amplitude l = 2 

and l = 3 waves, even when stable to resonance clamping, a.re unstable to a decay 

instabiJity. In this instability, the l wave decays to both an exponentially growing l-1 

'daughter' wave and presumably to a resonant band of particles. When the decay 

instability is suppressed by negative feedback on the daughter wave, exponential 

damping on slow 'viscous' timescales is observed to occur. Finally, I have observed 

l = 3 perturbations to grow exponentially on highly elliptical vortex structures. This 

appears to be the first experimental observation of an instability predicted 100 years 

ago by Love [44]. 

I have investigated the use of external electric fields rotating in the 0-direction 

to transfer angular momentum to the column [25] and have achieved significant 

transfer accompanied, however, by a large amount of heating. The central density 

increases by about 50%, and the column becomes somewhat narrower. The coupling 

of the fields to the column is through electron plasma waves. 

Finally, I describe some measurements of the l = 0, 1.~ -=/:- 0 'sloshing' density 

perturbations induced on an off-axis column, when the magnetic field is not aligned 

with the trap axis [:3:3]. I quantify the relationship between the l = 0 signal ampli

tudes a11d the confinement times of the plasma i11 the EV apparatus, and present a 

more complete interpretation of the use of these signals to align the magnetic field 

with the trap. 
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Chapter 4 describes experiments on two vortices symmetric in vorticity and 

radius. The (r, ())drift motions of the 'center-of-vorticity' of two vortices, sufficiently 

well-separated so as to be stable to merger [29], are described first. Equilibria are 

observed in which the vortices orbit about the center of the cylinder, with either 

oscillations about stable equilibria or exponential divergence a.way from unstable 

equilibria. The equilibrium positions, oscillation frequencies, and instability rates are . 

obtained with high accuracy. I find that these results agree closely with predictions 

of a. simple point vortex theory, where the spatially extended vortices are replaced 

with point vortices of the same circulation. I have extended the stability theory 

to the case of equilibria. at unequal radial positions. The wide-ranging agreement 

between experiments and point vortex theory suggests that surface waves and shape 

distortions do not couple significantly to the center-of-vorticity motion, at least at 

the precision of the current measurements. 

I then discuss the lifetime of the 2 vortex state, which is observed to vary by 

5 orders of magnitude depending on the initial placement of the columns. For small 

initial separations, immediate vortex merger is observed when the separation between 

symmetric vortices, d12 , is below a critical va.lue given by d12 "' 3.2pv, where Pv is 

the vortex radius [29]. This high precision measurement is consistent with a range of 

fluid theory and simulation, and improves upon more qualitative fluids experiments. 

Rapid merger is also observed for some large initial separations, because dynamical 

instabilities can result in the vortices imrnediately drifting into each other. 

Vortices injected onto stable equilibrium points at larger separations are 

found to become unstable to merger on long time scales due to the column expansion 

discussed in Chapter 3. The observed rates of expansion are consistent with those 

measured for single columns. Lifetimes are anomalously low, however, for vortices 

injected onto unstable equilibrium points. I believe this is due to a. greatly enhanced 
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rate of column expansion that occurs when the column trajectories move periodically 

in radius. 

In Chapter 5, the merger of two vortices with differing radii, but equal in 

peak vorticity, is quantified. This a.symmetric vortex merger is a topic of current 

interest due to its relevance to the problem of freely evolving 2D turbulence [46] . 

The two vortices merge rapidly when they a.re closer than a. critical separa.tion, but 

stay separated for many orbits when the separation is slightly larger. Merger is 

accompanied by the formation of filamentary arms, and results ultimately in an 

axisymmetric central core surrounded by a low density halo. The peak vorticity of 

the merged core is observed to be roughly the same as that of the merging vortices. 

The vorticity profile of the core and halo, and the lifetimes of the two-vortex state, 

are observed to be dependent on the initial placement of the two vortices. 

The ha.lo can be defined as that pa.rt of the merged profile sufficiently far 

away from the core that it is not bound, i.e. far enough that subsequent encounters 

with other vortices can a.clvect it away. This suggests a. simple, consistent algorithm 

for defining the core and ha.lo of a merged vortex. Using this algorithm, it is found 

that the fraction of the total circulation entrained into the central core after a. merger 

varies from 70% to 90%, a.s the initial vortex radii are varied from 1:1 to 2:1. Addi

tiona.lly, the self-energy of the merged core is found to be roughly the same as the sum 

of the self-energy of the merging vortices. The quantitative picture of a.symmetric 

merger which emerges from the experiments is consistent with some 2D turbulence 

theories ba.secl on direct numerical simulations of the Euler equations [8, 69], but 

inconsistent with results obtained from contour dynamics simulations [21] . 



Chapter 2 

Background 

2.1 Overview 

In this chapter I present some background information on Malmberg-Penning 

traps in general, and the Equilibrium Voltage (EV) trap in particular. Since research 

on non-neutral plasmas has been going on for years, and much of this is of relevance 

to my experiments, I include a fair amount of review of previous work. A liseful 

review of larger scope can be found in Roberson and Driscoll [60]. 

2.2 Description of EV Containment Device 

The EV device is a trap which uses crossed magnetic and electric fields to 

contain clouds of electrons within a cylindrical boundary [26]. The exterior is a 

cylindrical vacuum vessel, constructed of low-permeability stainless steel and main

tained at an operating pressure of ,....., 4 x 10-10 torr. Around the vacuum vessel is a 

water-cooled solenoid, which provides an axial magnetic field Bz of up to 4 70 Gauss. 

This field provides the radial confinement of electrons by constraining them onto 

small Larmour orbits about the field lines. Two small saddle coils provide magnetic 

fields Bx, By perpendicular to the main field, for the purposes of cancelling out the 

Earth's magnetic field and a.ligning Bz with the trap axis. 

vVithin the vacuum vessel, and a.ligned with it, are a series of hollow, cylin-

6 
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drical electrodes. Electrons a.re injected into these electrodes from a. filament source 

consisting of an ohmicaJly heated spiral of tungsten wire. After injection, axial con

finement is ensured with negative confining potentials Ve on 'gate' electrodes, whose 

axial separation Le determines the length of the confined column. The confining 

potential, 11c, is chosen to be sufficiently negative to reflect electrons back to the 

confined region when they move towards the gate electrodes. Since positive ions a.re 

not confined axially, the electron plasma contains a negligible number of ions. 

Fig. 2.1 is a schematic of the EV device interior, showing the arrangement of 

the electrodes. Next to the filament source is a region consisting of eight cylindrical 

electrodes of gold-coated OFHC copper. During confinement of a column, two of 

these are used as confinement gates: the one nearest the filament is the 'inject' gate 

and the other is the 'dump' gate. The electrodes all have an inside radius Rw = 3.81 

cm and a length Lcyl = 7.89 cm, except for one (L2) which is 4.07 cm long. The 

electrode labeled 'S' is azimuthally divided into four 60° wall sectors and a frame, 

which allows pickup and control of 0 - asymmetric waves. 

At the opposite encl of this region from the filament is a positively biased 

collimator plate, with three holes of varying size spaced 120° apart. The collimator 

can be rotated about its a.xis, which is offset from and para.Ile! to the axis of the 

containment electrodes. This allows the desired collimator hole to be positioned 

anywhere along an arc passing through the trap's axis. Only the smallest hole, of 

radius Rcoll = 1 .. 59mm, was used in this work. 

Beyond the collimator plate is a velocity analysis region, consisting of four 

electrodes. Concentric with and centered lengthwise on one of these electrodes ( A3) 

is a small magnetic solenoid. At the end of the analysis region is a charge collector, 

biased to +158 V, which can be used to measure the number of electrons pass

ing through the collimator plate and ana.lyz;er region. The analysis elect.rodes and 
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secondary magnet allow a measurement of both the perpendicular and parallel tem

perature distributions, Tl. a.nd 1J1, of the electrons which pass through the collimator 

hole. 

2.3 Operation of the EV Apparatus 

A typical experimental cycle consists of several different manipulations and 

measurements. There will be at least four phases: injection, manipulation (to achieve 

the desired initial condition), experiment, and dump. These cycles a.re run in a 

repetitive mode at "" 1 Hz; density profiles and temperature profiles are then built 

up from many measurements of plasmas with nearly identical initial conditions. Such 

profiles rely on a high degree of reproducibility: typically, uncontrolled shot-to-shot 

variations in density of less than 0.5% are seen. 

For injection, the inject gate is grounded for "" 100 µsec, during which time 

an electron column forms between the filament source and the dump gate. The 

formed column will have a potential (due to space charge) matching that of the 

source [45]. The inject gate is then ramped to a. containment voltage 1~, which traps 

the column and isolates it from the filament. 

The source was designed to produce an electron column whose charge density 

is radially uniform: the filament source is wound in an Archimedes spiral geometry, 

giving (to lowest order) a parabolic radial potential across it. The column density is 

mainly determined by this parabolic potential, which is set by the filament current 

(normally 9.6 A). The temperature of the column is largely determined by the spacing 

of the filament, i.e. the voltage drop between ea.ch winding. With normal operation 

of the filament, columns with densities of n ""5 x 106 cm-3
, and temperature T"" 0.3 

eV, are formed. The radius of the injected column can be set by changing the bias 

potential Viia.s at the filament center. since the potential at the column center must. 
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equal this potential and the column density is fixed. 

The specific manipulations required to set up an initial condition will depend 

on the experiment. One such manipulation, very often used, is electrostatic 'tilt'. 

To perform tilting, equal and opposite voltages are quickly ( < lµsec) applied to 2 

wall sectors separated in () by 11. The speed of the voltage rise time, relative to the 

l = 1 period, gives rise to a substantial amplitude l = 1 wave after the voltages have 

reached their maximum value. The combination of the l = 1 motion and the voltage 

perturbations results in fast radial transport of electrons. This transport results in 

a smoo~hing of the density profile and a quieting of density fluctuations. The speed 

of the transport is dependent on the length of the column, and on the amplitude of 

the l = 1 wave present. The smoothing and quieting is qualitatively similar to that 

given by magnetic tilt [26], but faster by a factor of ten. After the desired density 

profile is achieved, the perturbation is turned off and the l = 1 wave clamped before 

further manipulations. Other manipulations, such as multiple column creation and 

adjustment of initial column positions, will be described later. 

After the initial condition is created, an experiment phase takes place during 

which a desired evolution time t is allowed to elapse. Because measurements of the 

charge induced on the wall sectors, Qsector, are relatively non-perturbative, observa

tions of Qsector allow the evolution of the system to be monitored non-destructively. 

In the dump phase, the containment voltage on the dump gate is quickly 

( ,...,_, 0.1 psec) brought to ground, and the electrons stream out to either be collected 

on the collimator plate, or to pass through the collimator hole and be collected on 

the charge collector in the analysis region. By measuring the voltages induced on 

these collectors, and knowing their capacitances, the charge clumped on them can 

be obtained. }or example, the total number of electrons within the trap, Ne, is 

the sum of the charge dumped on the collimator plate and charge collector. In the 
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next sections, I describe how electron density and temperature distributions can be 

determined. 

2.4 Density Measurements 

The 3D electron density at a particular time, ne(i·, 0, z ), is diagnosed with 

both Gauss' law measurements of the total charge within a conducting cylinder, and 

with measurements of the charge that after clumping flows along Bz and through a 

collimator hole at the encl. 

2.4.1 Gauss' Law Measurements 

The line density N Le( z) of a density distribution ne ( r, 0, z) is defined by 

{Rw {21' 
NLe(z):= Jo dr Jo rdOne(r,O,z). (2.1) 

Use of equation 2.1 requires precise knowledge of ne(r, e, .::), however. The Gauss' 

law measurement measures the total image charge induced on an interior cylinder to 

obtain a quick determination of the average NLe of a 3D column about its middle, 

i.e. z = 0. 

To obtain this image charge measurement, a central cylinder is switched to 

a high impedance amplifier. Since the cylinder was connected to ground previously, 

the charge of the plasma within, Q cyl, is ba.lan ced by positive image charge on the 

cylinder. After the cylinder is switched, it is only capacitively coupled to ground. Its 

capacitance Ccyl is the sum of the capacitance of the lead connected to the cylinder 

and the distributed capacitance of the cylinder to ground, and is known. \Vhen the 

plasma is clumped, the cylinder's voltage drops by a value Vcauss = Qcyt/Ccyl· Careful 

calibration of the amplifier gains and of the capacitances yields measurements of Qcyl 

accurate to rvl %. The Gauss' law line density is then given by 

NL = Qcyl (electrons/cm) . 
-flcyl 

(2.2) 
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This line density is used with the total number Ne to define a column length LP: 

(2.3) 

2.4.2 Radial Density Profile Measurements 

Taking many density measurements with the collimator hole at different po-

sitions permits a density profile n( r) to be constructed at any desired evolution time. 

The basic measurement is the charge Qcou(r, 0) which flows along Bz through the 

collimator hole of area Ah = 7.94 mm2
• This is the z integral of the plasma density: 

Qc0 11(r,8) = -eAh j dz ne(r,8,z), (2.4) 

where -e is the electron charge. 

The possible collimator hole positions are limited by the geometry to an 

arc which transects the trap axis. Thus, the hole can be rotated to any radial 

position, but only two IJ-positions are available at each r. vVhen the density profile 

is 0-symmetric this restriction does not matter, and it is straightforward to construct 

'radial profiles' consisting of Q cou(r ). An example of such a radial profile is figure 3.19. 

A z-averaged density is then obtained ·as n(r) = -Qc0 11(r)/eAhLp· 

In order to image densities in both rand IJ, however, it is necessary to do the 

scanning in 0 by varying the 0-phase of the electron column at the time of the dump. 

The technique to make plots of Qc0 11(r, 0) at arbitrary 0 requires that the plasma 

within the tra.p be rotating about the axis with a single frequency. This produces 

a voltage signal on the sector probe at the same frequency (plus harmonics, which 

can be filtered out). By triggering a computer-controlled pulse delay generator off a 

specific phase of the signal and then delaying a specific fraction of a period before 

the clump, any desired 0-position of the density distribution ca.n be se1. [26], and 

phased-locked 2D density plots can be constructed out of measurements of many 

iclentica.lly evolving plasmas. 
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3D Density Distributions 

If the density profile's temperature is known, it is in principle straightfor-

ward to calculate 3D density ne(r,O,z) and potential </>e(r,O,z) distributions from 

Qcou(r, 0). In my data ana.lysis, I have often used a code which does this calculation 

for 0-symmetric densities [26]. Assuming 0-symrnetry, and that the plasma maintains 

a Boltzmann distribution along each field line, Poisson's equation becomes 

2 (e</>e(r, 0, z)) 
\7 </>e(r, 0, z) = 47rene(r,O, z) = 41l'eno(r) exp kBT(r) , 

with boundary conditions 

</>e( Rw, (), Z) = 0 
</>e(Rw,O, z) = \1c 

for -Lc/2 < Z < +Lc/2 
for Lc/2 <I Z I 

(2 .. 5) 

where Le is the length of the containment cylinders. The code uses an iterative 

technique to find a function n0 (r ), and hence ne(r, 0, z) and </>e(r, 0, z), which satisfies 

both Eq. 2.5 and Eq. 2. 7. The solution also yields the 3D electrostatic energy 'hq,e 

of the column from: 

1; . 'h,pe = 2 ne(r,O,z)</>e(r,O,z) r dr 27r dz. (2.6) 

2D Density Distributions 

Given the length Lp of the column from the Gauss' law measurement, I define 

a z-averaged 2D electron density n(r, 0) by 

n( r, O) = Qcou(1·, 0) . 
-cAhL7i 

(2.7) 

With Poisson's equation, \7 2 </> = 47rne, a. 2D potential </>(r, 0) can be calculated. The 

2D electrostatic energy H,µ is given by 

'hq, = ~ j n(r,O)</>(r,O) r dr 27r. (2.8) 

These 2D quantities are important in my data analysis, as it is often not necessary 

(or possible) to generate the full 3D density distribution. 
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2D Density Plots 

Figure 5.2 is an example of a phase-locked 2D plot of n(r, 0). This plot also 

has dots indicating the points at which density measurements were taken, and a circle 

which indicates the collimator hole size. The 2D plots in this dissertation have all 

been produced with the same format: there are 6 solid contours linearly increasing 

from zero to the maximum density, with 4 grey scales between the solid contours. 

Thus, the lowest grey scale indicates densities between noise and 4.2% of the peak 

density. This format does a good job of revealing the details in the data, but note 

that at large density gradients only the solid contours are apparent. The noise of 

the density measurements is typically ""' 0.1 % of the peak density. I calibrate the 

density scale by indicating, in the caption, the density between solid contours. 

2.4.3 Sector Probe Signals 

I 
2500 pF 1 M 

Figure 2.2: Schematic diagram of the circuit connected to a sector probe. 

The charge induced on the 60° wall sector probes reveals much a.bout the 

dynamics of the confined electron plasma. I measured the induced charge with 

the circuit shown in figure 2.2. High-impedance amplifiers were used exclusively, 
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to give a capacitive coupling to the sector. Some previous work on non-neutral 

plasmas [15, 38] used low-impedance (i.e. resistively coupled) amplifiers; however, 

high-impedance amplifiers signals provide much greater signal-to-noise ratios and are 

easier to interpret. The internal capacitance of the sectors is ~ 300 pF, and thus 

including the added C = 2,500 pF and R = 1 MD, the real part of the impedance is 

given by: 

(2.9) 

The approximation of the second term is a goo<l one since 1 < < w2 R 2 C 2 = 310 at 1 

kHz, which is the lowest frequency of interest. The voltage measured on the sector is 

then simply proportional to the amount of charge induced on it: Vsector = Qsector/C. 

The sector probe signals Vsector ( t) obtained from electron columns with finite 

(r - 0) area are observed to be very similar to those that would be induced by 'line' 

charges with zero (r - 0) area. This is because the electric field outside a circular 

column is identical to that of a line charge of the same NL positioned at the column's 

center. It has been observed that the narrow electron columns used in this work are 

usually quite circular. A knowledge of the Q sector induced by a line charge, as a 

function of its position, is therefore useful. The calculation of this is straightforward 

since the method of images can be used in this cylindrical geometry to easily obtain 

the electric field at any point. 

The image charge density (per unit length) on the conducting wall is propor

tional to the electric field E(Rw, 0), and a11 integral over the sector probe's angular 

width then gives the total induced charge per unit length. For a sector with angular 

width !:l.O and center at 0 = 0, the charge induced by a line charge of density NL 

and position ( d, (}) is: 

N1f( (l+d)sin(B+1¥) 
Qscctor(d,O,NL) = -- arctan( .· ( 0 )) 

r. ( J - d) 1 + cos ( B + ~ ) 
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( 
(1 + d)sin(B- ~8 ) )) + arctan . 

(1 - d) (1 + cos(B - ~0 )) 
(2.10) 

Here, d is the normalized displacement of the column from the axis, i.e. d _ D / Rw. 

(Note that as a convention I define length variables normalized to the wall radius to 

be the lower-case versions of the unnormalized variables.) 

An alternative expression can be obtained from an integration of the Kape-

tanakos and Trivelpiece [38] result for the current induced on a sector probe, when 

the right hand side of their Eq. 22 is corrected with a multiplication by 2 [26]. This 

gives the equivalent result: 

(2.11) 

The sector probe signals are easy to interpret in terms of the dynamics of 

the electron column(s) inducing them. When only one vortex is contained, it either 

remains on axis - resulting in no signal - or is displaced from the axis, where inter-

actions with its image produce a circular orbit about the axis at the l=l diocotron 

frequency ft=l [26]. The 0-variation, for all displacements, is thus 8( t) = 27r f1=1 t. 

At small column displacements, Vsector(t) is simply a sinusoid at the fun

damental l=l frequency, due to the d1 amplitude dependence of the harmonics (see 

equation 2.11 ). As dis increased the harmonics appear, but with capacitive coupling 

these are in phase with the fundamental. (When the sector is resistively coupled, 

the phases of the harmonics are a function of frequency, and interpretation becomes 

harder.) In figure 2.3 I show observed Vsectoi· ( t) signals generated by a single col-

umn at three different displacements, along with the waveform predicted by the 

equations 2.10 and 2.11. 

Fine [26] has previously shown that measurements of the induced current for 

various displacements d from the axis of an electron column are in good agreement 

with the predictions of Kapetanakos and Trivelpiece [:38]. I have found similarly 
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good experimental agreement with the predictions of equations 2.10 and 2.11 and 

measurements of induced charge. I therefore routinely use measurements of Vsector 

to measure displacement. Equation 2.11 gives for the ratio of the fundamental's 

amplitude A/~1 and the first harmonic's amplitude Af !)1 the relation 

A)~1 _ sin ( l:J..0 /2) d 

Ai~1 - sin (/:J..O) (d2 /2) 

1.1.54 

d 
(2.12) 

using l:J..0 = 60°. Since these amplitudes can be measured from a Fourier transform 

of a single Vsector(t) waveform, this way of measuring the column displacement dis 

much faster than the alternative method of creating a density plot of n( r, 0). 

When more than one column is present, the wall charge signal will (from 

the superposition principle) be the sum of the signals that either column generates. 

Thus, even when the dynamics of the motions are more complicated, a picture of how 

the columns are moving can be deduced from the signal. Examples of such signals 

and their interpretation are given in Appendix B. A quantitative method of analysis, 

currently under development, obtains the positions of several contained columns 

from instantaneous llsector measurements taken from many different sectors. For n 

columns there are 2n free variables (the position coordinates), which suggests that 

the simultaneous measurements of 2n different llsector signals can yield the positions of 

the columns at each point in time that the signals are digitized. Problems arise from 

symmetries and measurement noise, however, so more independent sector signals are 

required to obtain reliable position <la.ta. 

2.5 Temperature Issues 

As will be discussed in section 2.8, the dynamics of electron columns are 

often well-described by equations of motion isomorphic to the 2D Euler equation. 

This isomorphism breaks clown, however, when the columns have different parallel 

temperatures. Since most manipulations of the columns produce some change in 
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their temperatures, it is important to have an ability to measure temperature, and 

to predict how temperatures will change during manipulations. In this section, I 

describe the various temperature diagnostics available on the EV apparatus, and 

detail how some commonly used manipulations heat or cool the plasma. 

2.5.1 Perpendicular Temperature Measurements 

The Tl.. diagnostic on the EV apparatus operates by measuring the change in 

the para.Bel energy of the dumped electron when a secondary magnetic field causes 

some perpendicular energy to be transferred to the parallel direction. This is com

monly called a 'magnetic beach' analyzer [37]. After the end gate has been lowered, 

the plasma. expands ('disassembles') towards the collimator. During this disassem

bly, the plasma electrostatic energy increases the parallel velocities in a complicated 

fashion. However, since the time for a gyro orbit ( ,._, 1 nsec) is small compared to the 

disassembly time ( ,._, 111.sec), the gyromagnetic momentµ = rnv'i/2Bz is conserved, 

and the collimated beam that passes through the hole enters the analyzer region 

with its perpendicular energy distribution unchanged. 

The collimated beam then encounters a potential barrier caused by the sec

ondary magnetic field Bs of the analyzer solenoid. Since the space charge of the 

diffuse beam is small, ea.ch electron conserves its total kinetic energy 111.. + 1111 = 

~m(vi + vo) a.s well as the gyromagnetic moment. Jn order to conserve both quan

tities, the average parallel energy must change by ~1111 = -(Bs/ BJkBTl.. within 

the analyzer solenoid. This change is parallel energy is measured by applying re

tarding voltages to the analyzer electrodes. If an electron's vu drops low enough, 

it will not ma.kc it through cylinder A:J. By measuring the density collected at the 

end as a. fundion of the voltage on A3, and repeating with different Bs values, the 

perpend irnlar energy distribution can be constructed to ,..,_, 5% accuracy. 
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2.5.2 Parallel Temperature Measurements 

In many of the experiments of this dissertation, it was important to measure 

the parallel temperature 111 of two columns to ensure that they had the same value. 

A 111 diagnostic has been developed for Malmberg-Penning traps [23], which obtains 

the temperature from measurements of the number of electrons sufficiently energetic 

to escape past the end confinement potentials. However, this approach doesn't work 

for off-axis columns, since it requires that the columns being measured be stationary 

for times longer than a diocotron period. 

A different way of measuring T11 is to measure T.L at the time of interest, and 

also to measure the final temperature T.Leq after the two temperatures have equilib

riated. As described by Hyatt [37], temperature anisotropies relax on a collisional 

timescale. Due to the conservation of thermal energy on the millisecond collisional 

timescale, T11, T.L and T.Leq are related by 

111 + 2T.L = 3T.Leq (2.13) 

While this method yields accurately calibrated temperatures, it requires a 

great deal of time - typically, 15 minutes for each temperature measurement. There

fore, when creating an initial condition of two columns which had to have the same 

{arbitrary) T11, I used a method based on observations of the Tn-dependent finite

length contributions to the l=l frequency. This fa.st method will be discussed in 

section 3.2.1. 

2.5.3 Cooling/Heating from Expansions/Compressions 

The electron column cools during a slow axial expansion of the column, and 

heats during a slow compression [:37]. 'Slmv' is relative to the time Tbounce = 2Lp/v11 it 

takes for an electron to 'bounce' once in z. This results in the axial bounce adiabatic 

invariant 111 = §vii dz remaining a constant, as the electrons exchange energy with 
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the confinement power supplies. A useful first order estimate of the new temperature 

711 as a function of initial and new plasma lengths is given by: 

(2.14) 

2.5.4 Cascade Heating 

I ha.ve often found it necessary to let a column expand beyond a 'cut' gate 

into an electrode at ground potential. This manipulation, which I term 'cascading', 

results in both adiabatic expansion and disassembly expansion of the column. Fig-

ure 2.4 shows a schematic of the process. A single plasma is confined in cylinder 13 

by potentials on an encl gate and on a 'cut' gate 14. Cylinder S, on the other side 

of the cut gate, is at ground. When the cut gate is lowered, the plasma will initially 

expand adiabatically into 14. When the cut potentia.l is low enough, however, some 

electrons will no longer be confined and will cascade into 13. This process does 

not preserve the adiabatic invariant 111 1 aiid some of the electrostatic energy of the 

column will go into the vii of the escaping electrons. As the cut lowering continues, 

more plasma spills over until ultimately 14 is at ground and the column is confined 

in 13-S. The final state has had a mix of adiabatic cooling and electrostatic heating 

of the parallel velocities. 

Density transport can also occur during this cascading. A column being cas-

cadecl is often off-axis, so there are no symmetries during the cut, and the dissimilar 

O-directio11 drifts on the two sides of the cut gate can result in a changed final density 

profile. 

Cascade heating has been experimentally studied with a single on-axis col-

umn, and in Appendix A I discuss this study in depth. My main conclusions are: 

• The amount of adiabatic cooling or cascade heating caused by expansion of a 

column into a cut gate depends on the speed of the cut gate lowering time Tcuti 
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Figure 2.4: Schematic of expansion into a grounded electrode, which will result in 
cascade heating. 

relative to Tbounce. 

• For the column expansion past the cut gate, the amount of heating can be 

predicted from energy conservation of the electrostatic and thermal energies. 

• The presence of another column on the opposite side of the cut gate, at a 

different B-position, is estimated to lower the amount of cascade heating done 

by ,..., 10%. 

• Density transport from cascading can be reduced by decreasing Tcut, although 
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the transport ca.n not be made negligible. 

2.6 Transport Issues 

In this section, I briefly review some of the results of previous experiments 

on plasma. transport in Malmberg-Penning traps. It is useful to conceptually di-

vide transport into externally-induced transport (where external torques cause non-

conservation of angular momentum), and internal transport. 

2.6.1 Angular Momentum Conservation 

Non-neutral plasmas have exceptional confinement properties, as compared 

with neutral plasmas. One reason for this is that angular momentum conservation 

strongly constrains the radial transport [52]. The total canonical angular momentum 

Pe is the sum of a mechanical a.nd a. vector potential contribution: 

Pe= L [me VojRj + 
J 

eBz (R2 _ R2)] 
2c w 1 ' 

(2.15) 

where Rj is the distance of particle j from the a.xis, Vej is its velocity in the 0-

direction, me is its mass, and the sumrria.tion is over all particles. In my experiments, 

the mecha.nica.l contribution (first term) is,....., 104 times less than the electromagnetic 

pa.rt, and can be neglected. If there a.re no external couplings applying torques and 

hence changing the angular momentum, the constraint on radial positions is then 

Lj RJ = constant, which implies that only a fraction of the contained electrons can 

reach the wa.11 a.nd be lost. 

Po-conservation does not necessarily constrain the rate of expansion of an 

off-axis column's radius. This is because Po-conserving processes ca.n result in the 

column expanding its radius while simultaneously moving closer to the axis. Experi-

mentally, I have found that the rate of radius expansion dramatica.lly increases when 

the column is off-axis {section 3.2.2). 
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2.6.2 Externally-Induced 'Iransport 

The operating parameters of the EV apparatus result in negligible couplings 

with processes known to cause transport. These processes include electron-neutral 

collisions [15], electromagnetic radiation [53] and finite wall resistances [71]. The 

remaining observed transport is known as 'anomalous' transport, and is believed 

caused by couplings with the small intrinsic electrostatic or rnagnetosta.tic field errors 

of the apparatus. Applied field errors a.re well known to cause transport [25, 24]. EV 

was designed with the goal of minimizing field errors in mind, and has anomalous 

transport rates about 25 times less than those of the prior V' apparatus [19]. 

2.6.3 Internal 'Iransport 

·when the external couplings are small enough, electron-electron interactions 

will result in an on-a.xis plasma. evolving to a. confined thermal equilibrium before 

appreciable expansion of the column radius. This transport to global thermal equilib

rium has been experimentally studied [60, 20], and the equilibration time was found 

to sea.le roughly as B 2 for monotonic profiles, and as B 1 for short non-monotonic 

profiles. These scalings are in general agreement with the predictions of theory 

[54, 22]. 

·when the plasma. is unstable, however, much faster cross-field transport takes 

place (100 /tSecs instead of seconds). Examples of such instabilities are the vortex 

pairing instability (see section 4.5.l and the Kelvin-Helmholtz shear-flow instability 

(16). 

2. 7 Transport and Equilibration Timescales 

The electron plasma has kinetic times, such as the time for an axial electron 

oscillation, Tbounce, which determine the times required for Pquilibria.tion or trans-
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port. Here I give expressions for these times scaled to the typical parameters of my 

experiments, and then relate them to the time for approach to equilibrium. 

The fastest time is that for an electron to make a cyclotron orbit a.bout a 

field line, Tc: 

- 27rm.C -9 (375 G) 
Tc = -;;:a-= 10 secs ~ . (2.16) 

The time for an electron to 'bounce' once axially through the column of length Lp is 

_ 2Lp ( Lp ) -1;2 
Tbounce = -- = 1 µsec -2-- 711 . 

vii Ocm 
(2.17) 

Here, 111 is measured in electron volts. The electron column will rotate about its z 
axis due to E x B drifts arising from its self electric field. At the low densities of 

these experiments, a column of uniform density ne will have a rotation time of 

B ( B ) (5 x 10
6
cm-

3
) 

Trotation = nee = 5.2 µsec 375 G n (2.18) 

Finally, the time between electron-electron collisions [4], Tee, is 

· (5 x 106cm-
3

) 
Tee = 6.8 msecs T 3

/
2 n . (2.19) 

We can use these timescales to characterize the approach to equilibrium. 

Suppose an electron column with no initial symmetries ha.s just been contained by 

the close of the inject gate electrode. The ( 0 - z) motions will quickly smooth 

over the bulk of the ( 0 - z) density asymmetries through passive scalar aclvection,. 

leaving intact only those perturbations corresponding to stable modes or nonlinear 

coherent structures [36]. Thus, the column will symmetrize in n(z) on a timescale of 

,...., 10 Tboimce, and in n( 0) in ,...., 10 Trotation, perhaps leaving behind plasma. or diocotron 

waves which will clamp on slower timescales. 

The temperature distributions 111(0, z) a.nd Tl.(O, z) will similarly be symme-

trizecl by this passive sea.Jar mixing. These separate temperature distributions will 
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then relax to an equilibrium distribution Teq on a collisional timescale of several Tee 

[37]. 

Relaxation of monotonically decreasing density profiles n(r) to the confined 

thermal equilibrium profile is much slower. Theory [54] predicts an equilibration 

time Teq, from transport steps caused by binary interactions, going roughly as 

Teq = 0.68sec r-1
/

2 (3~ G) 
2 

D~m ' (2.20) 

where Dmm is a typical length for the radial asymmetry, in millimeters. Only pre-

liminary experiments have been done on this process to date, but a magnetic field 

dependence of B2±.s has been found, in agreement with the predicted scaling [31]. 

Finally there is the 'anomalous' transport believed caused by the small but 

inevitable electrostatic field errors present in the apparatus. Anomalous transport 

has been quantified by measuring the 'mobility' time, Tm, required for the central 

density of an on-axis column to decrease by a factor of two. Driscoll, Fine and 

Malmberg found that Tm scales as (Lp/ Bzt2 over five decades in Lp/ Bz, with one 

decade of scatter. The best slope-2 logarithmic fit to the EV data gave 

( B )
2 

(20cm)
2 

Tm= llOsec -- -- . 
375 G LP 

(2.21) 

2.8 Drift Dynamics and the Fluid Analogy 

The electron dynamics are observed to be well approximated by 2D guiding 

center theory. The dynamics are 2D because the axial bouncing of the individual 

electrons averages over any ::: variations at a rate fast compared to r - 0 variations; 

typically, Trotation > 5Tbounce· Guiding center theory is valid because the gyroraclius 

(typically""""' :30 microns) is smaller than the other lengths of the system. Deviations 

caused by finite-length effects will be discussed in section 3.2.1, but these effects a.re 

observed to result only in t!te 2D dynamics ta.king place in a rot.a.ting frame rather 

than the lab frame. 
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Using the 2D approximation, the unneutralized electron charges give rise to 

electrostatic potentials </>(r, fJ, t) through Poisson's equation, '\72 </> = 47ren. These 

potentials result in cross-field drifts, given by 

v(r,fJ,t) = -c\l<f> x z/B2 • (2.22) 

These velocities a.re well defined even where there are no electrons. Taking the curl 

of the velocity gives the vorticity n: 
47rec. 

n--z. 
B 

(2.23) 

The vorticity of the electron system is thus proportional to the density. Using this 

fact, the continuity equation is also a statement that the convective derivative of the 

vorticity is zero, which is an evolution equation for the system: 

an -+v. vn = 0. at (2.24) 

These 2D drift-Poisson equations are isomorphic to the 2D Euler equations 

for an inviscid fluid of uniform density p [41, 5, 17]. This is displayed in Fig. 2.5. 

The electric potential </> is analogous to the streamfunction 7/J, a.nd the drift velocity 

analogous to the fluid velocity. The momentum equation for fluids gives the same 

evolution equation for the system, and the boundary conditions are also equivalent, 

namely ¢ = const and 'lj.1 = const on the walls. Thus, an initial distribution of 

electrons n(r,O) in a cylinder, having vorticity n ex n, will evolve exactly the same 

as a.n identical initial distribution of vorticity O(r, 0) in a uniform fluid. 

There have been many experimental results which have shown striking quan-

titative agreenwnt with predictions of fluid theory. These include prior observations 

of: 

• elliptical distortions caused by wall interactions [28, 63], 

and my observations of 
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2D Drift-Poisson 2D Euler, p = constant 

Poisson 

\72 <P = 47ren 

E x B Drifts Stream Function 

Vorticity Vorticity 

(:=Vxv (:=\7xv 

- "72,.J.. .£. ;C 
-v'f'B~ 

_ 
1
, 47reC ;e 

- , B -

Continuity Momentum 

fJg[ + v · Vn = 0 

electric potential ¢ +--+ V' stream function 
velocity v +--+ v velocity 
density, vorticity n,( +--+ ( vorticity 

Figure 2.5: Isomorphism between the 2D drift-Poisson equations and the 2D Euler 
equations for a constant density fluid. 
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• symmetric vortex mergers (29, 48] (see section 4.5.1), 

• stability of equilibria of two vortices [50, 34] (section 4.3), 

• inviscid relaxation of distorted vortices via a decay instability (66] (section 

3.2.3), 

• 1=3 surface wave instabilities of highly elliptical vortex structures [44] (sec-

tion 3.2.4). 

There are, of course, aspects of the 3D physical system which are not within 

the framework of the 2D fluid analogy, and plasma parameters where the analogy 

does not hold. These can result in discrepancies between the observations and the 

predictions of 2D fluid predictions. An example of a discrepancy is that Driscoll [16] 

has observed an exponentially growing l = 1 instability in a hollow column, where 

2D fluid theory predicts only an algebraica.lly growing instability. This has been 

attributed to temperature-independent shears caused by the axial variation of the 

3D column [65]. 

Another discrepancy is that there are temperature-dependent drifts caused 

by finite-length effects. These drifts have been invoked by Peurrung and Fajans 

[57] to expla.in observations of abnormally low growth rates of the Kelvin-Helmholtz 

instability of an annular electron plasma [56]. The impact of the drifts on my exper-

iments is cliscussecl in section 3.2.1. 

Peurrung and Fa.jans [57] have experimentally investigated the question of at 

which plasma. para.meters the finite-length drifts begin to produce deviations from 2D 

fluid predictions. They found that a fast azimuthal smearing of the plasma column 

begins to occur when 0.75 < A < 3.0, where 

). 2 

A - 1. D 
-"R L ' v p 

(2.25) 
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with Rv the radius of the column, >..n its Debye length, and k a parameter near unity. 

I note that the parameter A was less than 0.1 for all of the experiments discussed in 

this dissertation, and that I did not observe any fast smearing of the columns. 



Chapter 3 

Single Vortex Studies 

3.1 Overview 

This chapter describes wave and transport experiments on a single confined 

electron column. Some of the phenomena have 2D fluid analogues, so the electron 

column will be referred to as a vortex when appropriate. 

Low frequency plasma waves are observed on non-neutral columns [14]. For 

an infinitely long column, their dispersion relation is the same as that for a neutral 

plasma column except for a Doppler shift due to the E x B rotation [12]. They are 

characterized by potential perturbations of the form 15¢> = 'efJ( r) exp( ilO + ikzz - iwt) 

[58]. The modes with l-/=- 0 and kz = 0, and thus 8E perpendicular to B, are known 

as the diocotron waves. Modes with kz -/=- 0 are called electron plasma waves. 

Section 3.2 includes the results of experiments with diocotron waves. Dio

cotron waves have been the subject of years of experimental and theoretical study (see 

Davidson [13) and references therein). In fluid theory, the waves are known as Kelvin 

waves [43]. In their small amplitude limit, they are tho:,;e 2D density perturba.tions 

whose E-field and consequent E x B drifts self-consistently rotate the perturbation 

about the column (but always slower than the column's E x B rotation). 

I first present some results on the l=l diocotron wave, which is a special case 

among the diocotron waves. A cos((}) perturbation at small amplitude is equivalent 

:31 



32 

to displacing a rigid column a distance D off axis. The displaced column then or

bits about the trap axis due to the E-field of the asymmetric image charges [26]. 

However, finite-length and temperature effects will in general be substantial. Fine 

has established that, to first order in displacement, these effects result in a con

stant frequency offset to the infinite-length l = 1 frequency [27, 28). I have studied 

whether the frequency offset varies at large displacements, and find that within the 

experimental uncertainties, it does not (section 3.2.1). 

The l = 1 wave is also different from l -=/:- 1 waves in that it is not susceptible 

to a spatial Landau-like damping where electrons in resonance with the wave are 

transported out [5, 14]. The reason for this difference is that the resonant point for 

the l = 1 is at the wall, where there is no density. However, there are other mecha

nisms which could cause it to damp. One recent theory is that 'rotational pumping' 

will result in an angular-momentum (Po) conserving expansion of the electron col

umn's radius Rrms, giving an exponential damping of the displacement from the axis 

(i.e. the l=l amplitude) [11]. 

In section 3.2.2, I present direct measurements of Rrms(t) and D(t) for a 

variety of experimental parameters. I find that while both Po-conserving and Po

nonconserving transport is taking place, the data is consistent with an exponential 

damping of the l= 1. My measured rates are higher, however, than those crudely 

estimated for rotational pumping. 

The l 2 2 diocotron waves can be damped by the aforementioned resonance 

damping [14]. I have discovered, however, that small amplitude l = 2 and l = 3 

waves, even when stable to resonance damping, are unstable to a decay instability. 

In this instability, the l mode wave decays to both an exponentially growing l - 1 

'daughter' wave and presumably to a resonant band of particles. ·when the decay 

instability is suppressed, by negative feedback on the daughter wave, exponentia.l 
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damping on slow 'viscous' timescales is observed to occur (section 3.2.3). 

A final new diocotron wave result is an observation that l = 3 perturbations 

on highly elliptical vortex structures can grow exponentially (section 3.2.4). This 

appears to be the first experimental observation of an instability predicted 100 yea.rs 

ago by Love [44]. 

In section 3.3 I describe the use of a phased electric field perturbation to 

drive electron plasma waves and couple angular momentum to and from the column. 

Eggleston, O'Neil and Malmberg [2.5] have previously demonstrated radial density 

transport with this technique, with the direction of the transport dependent on the 

characteristics of the induced plasma wave, but were not able to demonstrate a 

net Lj R] decrease. I have been able to cleanly demonstrate a transfer of angular 

momentum to the column, but have also found that the heating associated with the 

technique limits its usefulness. 

In section 3.4 I describe an investigation of l=O 'sloshing' modes. These are 

z-dependent motions of electrons which occur when the magnetic field is not aligned 

with the confinement walls, and the image fields from the l=l diocotron orbit of an 

off-axis column cause a time-dependent z-motion of the column density [3:3]. I have 

made a detailed study on the EV apparatus of the signals induced on the confinement 

rings by these modes, as a function of the misalignment of the magnetic field. 

At large misalignments I see the features predicted for a single 'sloshing' 

mode [33]. At small misalignments, however, the signals from different rings lose 

coherence, suggesting the existence of local sloshing motions. As a consequence, I 

find that the magnet alignment given by minimizing the differential signal from the 

two end rings does not correspond to that given by plasma transport minimization. 

Better agreement with this latter alignment is given by minimizing the sum of the 

signal power off all the rings. 



2 
t--------~ ---i 

0 -
D 

A 
~ 

Figure 3.1: l=l Diocotron Mode Coordinates 

3.2 Diocotron Waves 

3.2.1 l=l Finite Length Effects 
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The l=l diocotron is different from the other diocotron waves, in that it is 

much better modeled as the dynamical equilibrium of a displaced column than as a 

mode [26]. This permits an easy calculation of the effects of finite-length in z [27]. 

Infinite Length l = 1 Diocotron 

The variables of a diocotron mode are as shown in figure 3.1. A z-independent 

column of line density NL and radius Rv is displaced a distance D from the axis of 

the containment walls. When the column remains circular, its field outside is that 

of a line charge at radial position D, and the image field is that of a line charge of 

opposite sign and the same NL at radial position R~/ D. The electric field at the 
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column center is then 

-2NLe A 

E( r = D) = ( R! / D) - Dr . 
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(3.1) 

The force F~1 arising from the infinite length l = 1 image field, and the resultant 

drift velocity VE from this force, are 

and 
c F~1 x B 

VE= NLeB 2 

This gives for the in:fini te length l = 1 frequency fi~1 : 

Finite-Length Effects 

c F[~1 x B 
27rD NLeB2 

cNr,e [ 1 l 
7rB R2 - D2 

w 

(3.2) 

(3.3) 

Often, the predictions of equation 3.3 for f1~1 and the measured l = 1 fre-

quency fl=l are substantially different. The reason for this is that finite-length effects 

are often substantial, relative to the forces from the image field. A first order model 

for the finite-length effects have been developed by Fine [27). The important effect, 

for columns with my experimental parameters, is a radial magnetron force which the 

electrostatic end fields exert in addition to, and proportional to, the axial confine-

ment force. This radial force will produce drifts in the 8-direction which, like the 

axial force needed to contain the column, will have a component proportional to T11. 

The magnetron force for hot columns can be of the same order as image charge forces, 

and can thus result in very substantial increases to the l = 1 frequency, relative to 

the infinite-length prediction. 

Happily (for the use of electron plasmas to study 2D interactions), the mag-

netron force is found to be, to first order in displacement, proportional to displace-

ment. This is true both of the model and of experiments [27]. This proportionality 

suggests that finite-length effects will only produce an orbit of the column about 

the containment axis, at a constant frequency independent of D. Therefore, for any 
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general configuration of charges with the same T]1i the prediction of Fine's model is 

that the configuration will evolve as 2D vorticity would, only within a rotating frame 

produced by the magnetron motion. 

Finite-Length Effects At Large Displacements 

I have experimentally tested whether this result, that finite-length effects 

produce only a constant frequency orbit in B, breaks down at large displacements. I 

find it to be valid out to displacements of d < 0. 73. I moved a narrow (Rv/ Rw = .15) 

and cold (T11 ,....., 0.25 eV) column with an on-axis line density NL = 4.8 x 106 cm-1 

to various displacements d, where its l=l frequency fl=I and off-axis line density NL 

were then measured. The measured d and NL were then used in equation 3.3 to 

calculate the infinite length fi'~1 , and the frequency shift tlfl=I due to finite length 

effects was thus known: 

(3.4) 

I then repeated these measurements on a hotter (111,....., 2.0eV) and less dense (NL= 

2.4 x l06cm-1) column. I plot tlfl=I versus d, for both the hot and cold column, 

in figure 3.2. No strong dependence of the frequency shifts on displacement in the 

region .36 < d < . 73 is seen. 

Variations of Column Length vs. Displacement 

The electron column changes its length LP when it is moved to a different 

radial displacement. This is a finite-length effect due to the containment geometry of 

Malmberg-Penning traps. The reason for it can be seen in figure 3.3, which shows the 

vacuum confining potential surfaces. The cylinder walls are either at the confining 

potentia.I \.'~ or grounded. The flat contour at the midplane between the grounded 

rings and the gate ring is at Ve /2 (as it must be, from the symmetry). Unless the 
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Figure 3.2: Finite length frequency shift ll.f1=1 for two parameters of NL and T. 

column is reflected at the potential \/,)2, it seems clear that LP has to change as the 

column is displaced from the axis. 

I have measured this effect by moving a column off axis and measuring its 

Gauss' law line density NL, which gives LP through equation 2.3. Lp versus d, for 

a column of on-axis length LP = 19. 7 cm, is shown in figure 3.4. To first order, the 

variation with displacement goes as d2
: the line is a plot of 1 + .054d2 , obtained from a 

fit. Since the confinement potential used here was close to the lowest possible without 

losses being observed, this resulted in the effect being small, with LP increasing only 

about 4 % at the largest displacements. Greater changes in L,, were observed to 

result when 1~ was increased relative to Vbias· I generally used the lowest possible 

confinement fields in my vortex experiments to minimize this effect. 
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Figure 3.3: Confining potential surfaces within a Malmberg-Penning trap. The 
10 potential contours are linearly spaced between 0 and 1~.. There is no contained 
plasma. 
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Figure 3.4: Measured Column Length LP vs. Displacement, for l1c = -lOV and Ybias 

= -3.3V. Lp(O) =19.7 cm. The line is a fit to d2
• 

3.2.2 Column Expansion and l = 1 Damping 

An electron column in a Malmberg-Penning trap will be subject to various 

types of transport, which will result in a gradual expansion of its radius. This 

expansion is responsible for (among other things) limiting the lifetime of the two-

column state (section 4.5.2). In this section, I present some direct measurements of 

the expansion, and establish that both Po-conserving and P0-nonconserving transport 

takes place. The transport rates are observed to be strongly dependent on the 

displacement D of the column from the axis. 

Figure 3.5 shows column expansion taking place at a low magnetic field of 

Bz = 94 Gauss. The column was displaced from the axis to D = ] .35 cm., and a. 

phase-locked n(r, 8) plot was taken of it. It was then contained for 100 msecs, and 

a. second plot made using a phase-lock on the still-present l = 1 signal. As can be 

seen by eye, the column has expanded and moved slightly toward the a.xis during its 
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.·· 

Figure 3.5: Expansion of an off-axis column. B= = 9-1 Gauss, LP ,...., 23 cm, 
\~ = -100 \!and D.t = 0.1 seconds. Density bet.ween !'olid contours: 5.5 x 10.scm-3

. 
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Figure 3.6: Displacement D and radius Rrms versus containment time. Bz = 94 
Gauss, LP '""23 cm and Ve = -100 V. The solid curve is D(t) measured from wall 
sector signal analysis. 

confinement. 

Figure 3.6 shows, for the initial condition of figure 3.5, the evolution of column 

radius Rnns and displacement D with containment time. Rrms is defined below in 

equation 3.7. D(t) was determined by both density plots (D) and wall sector signal 

analysis (--). The results of these two measurement techniques agree in shape but 

a.re offset a small amount which increases with time. The expanding column begins 

losing density to the wall at a.bout t = 0.5 seconds. 

As can be seen, the rates at which D and Rrms change vary with time. 

I therefore focused on a study of the rates at early times, before any substantial 

changes in the plasma parameters has occurred. The rates a.re measured by fitting 

the early data points, where the change is linear in time, to a. straight line. In 

figure :3.6, for example, I have used the first 6 points of Rrms(t) to calculate an initial 

slope, shown in that figure with an arrow. 
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Before proceeding, it is useful to consider how column expansion relates to the 

angular momentum Pe. When a column is off-axis, angular momentum conservation 

does not restrict the rate of expansion of the column's radius, since the column can 

conserve Pe by both expanding and moving towards the axis. One can thus separate 

any observed column expansion into transport which does, and transport which does 

not conserve Pe. To facilitate this separation, I define the following quantities. 

The sum over the j particles, of the square of their radial positions I: RJ, 
can be written in terms of Pe (see equation 2.15) by 

(3.5) 

As a consequence, I: R] is conserved when Pe is conserved (i.e. when no particles 

are being lost to the wall). I therefore define a normalized angular momentum L of 

a continuous 2D density distribution n( r, B) by : 

L = fr 2 dr frdB n(r,B) 
- J dr J rdB n(r, B) 

(3.6) 

It is useful to similarly define a root-mean-square radius Rrms of the charge distri-

bution by 

_ (I r'2dr J r'd(} n(r', 0)) t 
Rrms - J dr J rd(} n( r, B) 

(3.7) 

where the primed coordinates are about the distribution's center-of-charge. 

From these definitions, for a density distribution symmetric about its center 

we have the relations 

. . . 
and L = 2RrmsRrms + 2D D 1 (3.8) 

where D is the displacement of the center-of-charge from the axis. The column 

radius and displacement are thus free to change while conserving L, as long as 
. . 

RrmsRrms +DD = 0. Therefore, given measured values of Rrms(t) and D(t), I can 
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F_igure 3.7: Expansion rate (2RrmsRrms), displacement ra.te (2DD), and their sum 
( L) versus displacement, as measured from density plots. Bz = 94 Gauss. 

. . 
decompose expansion rates 2RrmsRrms into a Pe-conserving rate -2DD and a Pe-

. . . 
nonconserving rate L = 2RrmsRrms + 2DD. Such changes in Rrms and D will not 

necessarily, of course, conserve the energy of the system. 

Returning to the B = 94 Gauss data of the previous figures, in figure 3. 7 
. . . 

I plot the initial rates 2DD, 2RrmsRrms and their sum L versus the displacement 

d = D j Rw of the column. The general result is that the expansion rate 2Rrms Rrms 

increases very strongly with D. Expansion can be divided into three separate regions, 

based on the displacement of the column. 

On the axis, the expansion rate is at a minimum, and consists entirely of Pe-

nonconserving transport (as it must, since D = 0). The transport rates of this region 
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have been studied previously by Driscoll, Fine and Malmberg [18], who dubbed the 

transport 'anomalous transport'. It is believed caused by the small residual electro-

static or magnetostatic field errors of the apparatus, which break the B-symmetry 

and thus permit Pe to change. 

For small displacements, 2D D is found to increase at nearly the same rate 
. . 

as 2RrmsRrms, and thus there is little change in L from the on-axis value. To a good 

approximation, therefore, the expansion rate for displacements of 0 < d < 0.36 is 

given by the sum of a Pe-conserving transport process and a constant value L of 

anomalous transport. The Pe-conserving transport is currently under experimen-

tal investigation by Cluggish et.al [10] and theoretical investigation by Crooks and 

O'Neil [11]. It is believed to be caused by 'rotational pumping' of the column by the 

confinement fields. 

In the rotational pumping mechanism, column expansion is driven by thermal 

heating of the column at the expense of its electrostatic energy, 1t</>· (See section 4.5.3 

for a further discussion of this.) I have measured the 1t¢( t) of the expanding columns 

of figure 3. 7, and observe that 1t</> always decreases with time at rates increasing with 

d. This result is consistent with rotational pumping. 

For large displacements (d > 0.36), I find that while the expansion rate 

continues to strongly increase with d, the movement of the column back towards 

the axis slows or even changes sign. The result is large changes in the measured 

values of angular momentum. The cause of this dramatic increase in i is currently 

unknown, although a reasonable speculation is that it is related to the column's 

closer proximity to the wall and field errors [26]. 

I have repeated my measurements of expansion rates for .S different initial 

conditions, and with each have found a similar sharp increase of expansion rates 

with displacement. The measured expansion rates are plotted in figure 3.8, and the 
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parameters of the different data sets are tabulated at the bottom. 

I have established that the expansion rates at small displacements are consis

tent with other experimental studies. Previous studies have found an (Lp/ B) 2 scaling 

for the on-axis L transport [18], and an exponential damping of D(t) for the Po

conserving transport [10]. This latter result implies the proportionality RrmsRrms ex 

D2 • I have fit the data of figure 3.8, for small displacements of 0 :S d < 0.36, to the 

equation RrmsRrms = a + / D2 • These fits are shown (solid curves) in figure 3.8. I 

find that the data at small displacements is consistent with the predictions: the fit 

of the data to D 2 is reasonable, and the on-axis transport characterized by a scales 

roughly as the square of the column length and magnetic field. 

The measured damping rates / = -iJ / D are tabulated below figure 3.8. A 

comparison of these rates with values from a rough calculation of Crooks and O'Neil 

[11] finds that the measured rates are between 6 and 38 times higher than predicted 

for rotational pumping. I have tabulated this ratio as 1//pred· Rates from data taken 

at significantly higher densities and magnetic fields by Cluggish [9] are about 4 times 

higher than predicted. Further studies on both the theory and experimental fronts 

are begin undertaken, and I feel that it is likely that rotational pumping will be shown 

to be the mechanism for the Po-conserving expansion seen at small displacements. 

This still leaves the large P0-nonconserving expansion seen at large displace

ments unexplained. It is interesting that although it has been generally believed that 

different mechanisms and scalings will characterize Po-conserving and nonconserving 

transport, data sets 1 and 3 show almost identical changes in expansion rate ver

sus d, in spite of their dissimilar magnetic fields. Further measurements of Rrms( t) 

and D(t), preferably made with a. phosphor screen and camera. diagnostic to reduce 

data-collection time, will be required to understand transport at large displacements. 
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Figure 3.8: Expansion rates 2R,.msRrms versus displacement 1 for the tabulated 
plasma parameters. The solid curves are fits of the 0 ::; d < 0.36 data to a + / D 2

. 

The dots are continuations beyond d > 0.36. 
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3.2.3 Damping of l >l Diocotron Waves 

I have studied the damping of the l = 2, 3 and 4 diocotron/Kelvin waves, 

and found evidence for mode couplings which have not been previously reported 

in the literature. At large amplitudes, the l > 1 diocotron waves are damped by 

a non-linear resonance damping process, where particles resonant with the wave 

drift into low-density filamentary arms [14, 17]. On vortices with 'sharp' radial 

vorticity profiles, however, small amplitude l = 2 and l = 3 waves are stable to this 

resonance damping. I have found that these small amplitude waves are unstable to 

a decay instability, where the l mode wave decays to both an exponentially growing 

l - 1 'daughter' wave and (presumably) to a resonant band of particles. This decay 

instability can be suppressed with negative feedback on the daughter wave, and 

exponential damping on slow 'viscous' timescales is then observed. 

The experiments of this section were done on electron columns whose vorticity 

profile was adjusted to 'sharpen' the edge and reduce the number of particles resonant 

with the diocotron waves. The calculated position of the l = 2 resonant layer was 

beyond the edge where the density went to zero. The positions of the l = 3 and 

l = 4 wave resonant layers occurred where the density was nonzero, but the densities 

at these layers were low enough that the waves were readily observable, presumably 

because so few particles were resonant that the resonance damping mechanism was 

saturated. 

Calibration of the l = 2 Wave Amplitude 

The diocotron wave amplitudes can be measured with phase-locked plots of 

the vorticity distribution, or with measurements of the signal Vl=;(i) induced by the 

I = i diocotron wave on a wall sector probe. I have calibrated the l = 2 wave case, 

and find that the amplitude of the wall sector signal Vi= 2 is proportional to the 
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l = 2 wave amplitude, at least until the resonance damping process has resulted in 

significant transport. 

The l = 2 wave amplitude can be characterized by the distribution quanti-

ties of eccentricity E, aspect ratio a/b, or quadrupole moment q2• These are easily 

calculated from phase-locked plots of n(r, B) [26]. In the frame of the Cartesian coor-

dinates ( x, y) where the origin is at the center of mass of the distribution, I calculate 

the moments 

xx ~jdA n x 2 

Ne 
yf} = ~ j dA n y

2 

Ne 
xi} = ~ j dA n x y . 

Ne 
(3.9) 

These moments are used to solve for the angle </>q where a Cartesian system ( u, v) 

with the same origin, but rotated from ( x, y), satisfies ii:v = 0. The eccentricity is 

then 
2 uu - vv 

E =--
UU 

(3.10) 

where </Jq is the orientation angle of the quadrupole moment. A top hat profile (i.e. 

step function radial profile) ellipse with an aspect radio of a/b has an eccentricity 

given by t:2 = 1- (b2 /a2
), so I define an aspect ratio a/b for an elliptical distribution 

with a physical (non-top hat) radial profile by 

( )

-1/2 
ajb := 1 - E

2 
, 

and a quadrupole moment q2 by 

_ a/b- 1 
q2 = a/b + 1 · 

(3.11) 

(3.12) 

In figures :3.9 through 3.10 I show 2 phase-locked plots of vortices with an 

l=2 wave, along with the measured aspect ratio and quadrupole moment. At low 

amplitudes the l = 2 is an elliptical distortion of the column. At large amplitudes, 

the electrons at the tip of the ellipse do not rotate as fast as the rest, and fall behind 

in e, forming distinctive arms. These can be seen in figure 3.10, where 0.23% of 



49 

Figure 3.9: Density plot of an 1=2 diocotron wave. Eccentricity E = 0.44, a/b = 
1.11 and q2 = .052. Density between solid contours: 1.1 x 106 cm-3

. 

the total density has been transported into the arms. This transport constitutes a 

(spatial Landau-type) mechanism for resonance damping of the mode [14, 17]. In this 

case, the resonance only occurs at large elliptical distortions, so it would be termed 

nonlinear damping. The details of the transport depend on the radial profile of the 

vortex - top hat profiles are not susceptible to it, for example - and the damping 

saturates when all of the resonant particles have been transported. 

I find that the amplitude of the sector probe signal l'i=2 (t) is proportional to 

the quadrupole moment q2 . The linearity can be seen in figure :3.11, where I plot the 

received l=2 signal amplitude versus q2• The proportionality begins to break down 

at the largest amplitude shown, which had "'1.:3% of the total density in the arms. 

Decay Instability of Diocotron Waves 

I find that the fastest damping of small amplitude I = 2 and l = 3 wa\'es 

occurs due to a previously unknown decay instability, \\'here an I - 1 'daughter' 
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Figure 3.10: Density plot of an 1=2 diocotron wave of aspect ratio a/b = 1.38 and 
quadrupole moment q2 = 0.16. Resonance damping has transported 0.23% of the 
total density to the arms. 
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Figure 3.11: Amplitude of 1=2 signal recein~d on sect.or probe versus q2 . 
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Figure 3.12: Exponentia.l growth of an 1=2 diocotron wave during a. decay insta
bility of an l = 3 wave. The I= :3 is grown at the time marked by the arrow. 

wave grows exponentially a.t a rate/ while the decaying wa.ve's amplitude damps as 

( 1 - e-,.t ). Figure 3.12 shows an l = :3 wave decaying into a.n l = 2 da.ughter wave. 

Presumably, transport of resonant particles is simultaneously occurring, and analytic 

theory and simulation results by Smith support this idea [66]. 

The shapes of the decaying and daughter wave amplitudes 111 figure :3.12 

differ because wall ~ector probes of angular extent t::.0 couple a.s f sin(1~ 8 ) to waves 

with an angular dependence of c.il 8• When this effect is corrected for, a. plot of the 

wave amplitudes show that the decaying wave and growing wave amplitudes vary 

symmetrically as (1 - e"l 1
) and e, 1 respectively. I define a. time for the decay rates 

by, using the l = 3 decay for an example: T3_ 2 = I/~1. 
The decay times are observed to be strongly dependent. on t.he amplitude of 
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Figure 3.13: Decay time T2--+ 1 for the decay process, versus the quadrupole moment 
q2 of the damping l = 2 wave. 

the decaying wave. This can be seen in figure 3.13, where I plot some measured 

decay times T 2->I, versus the quadrupole moment of the damping l = 2 wave. I 

additionally found, although I don't plot them, that the times T3-t2 for the decay of 

an l = 3 wave showed a similar dependence on the l = 3 wave amplitude. 

Exponential Damping of the Diocotron Waves 

The l = 4 wave, whose resonance layer was deeper within the vorticity profiles 

than the l = 2 and l = :3 waves, was found not to be susceptible to the decay 

instability, but rather to damp exponentially with a time constant T1=4 = 0.065 

seconds. Similarly, I have also observed exponentia.l clamping of the l = :3 and l = 2 

waves, with time constants at small amplitude of T1= 3 = 2.7 secs and T1= 2 = 5.1 .. 
secs. (With these waves, it was necessary to suppress the decay instability with a 

continuous application of negative feedback on the daughter mode. Filtration of the 

feedback signal prevented any inadvertent growth or damping of the original mode.) 
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Figure 3.15: Time constant of l=2 damping, r1= 2 , versus initial quadrupole moment 
of the l=2. The dotted lines indicate the amplitudes of the 1=2 waves displayed in 
figures 3.9 and 3.10. 

I have measured the variation of the l = 2 exponential damping with its 

amplitude, and found the clamping to be independent of amplitude until resonance 

damping at large amplitudes became effective. Figure 3.14 shows the logarithm of 

the l = 2 signal amplitude versus time, for 9 different initial amplitudes. Damping 

rates were measured from the slopes of such wavesignals, and the time constant of the 

damping r1=2 is plotted versus the initial amplitude of the l=2 wave in figure :3.15. 

The damping is observed to be roughly independent of amplitude with a T/=2 of 

5.1 ± 0.5 seconds, until the amplitude reaches the resonance damping regime of arm 

formation, where the damping rate becomes greater with increasing initial amplitude. 

An explanation of the observed exponentia.l damping consistent with previous 

experimental work is that the wave is clamped by interparticle ('viscous') interactions. 

According to this view, velocity shears present in the initia.l profile and shears caused 

by the l=2 wave relax exponentially clue to collisional particle transport. Driscoll has 

.( 
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measured the eguilibriation time Teq at which monotonic profiles relax, and found 

Teq of 10 ± 4 seconds [31]. The observed small amplitude 1=2 damping time of 

5.1 seconds is within the experimental uncertainties of this rate. If this hypothesis 

holds up under further investigation, the 1=2 damping rate (when decay damping 

is inhibited) could serve as an easily measurable quantity with which to investigate 

viscous interaction rates. 

3.2.4 Love's Instability for Elliptical Vortices 

I have observed l = 3 perturbations to grow exponentially on highly elliptical 

vortex structures. The growth of these perturbations can be measured directly with 

n(r, 0) plots. While the initial conditions required for this instability are those of a 

very large amplitude l = 2 diocotron wave, I was unable to simply grow an l = 2 

mode to large enough amplitudes because of resonance damping on the non-zero 

edge of the vorticity profile. However, I was able to create highly elliptical initial 

conditions by injecting two circular vortices next to each other and allowing them to 

merge (section 4.5.1). 

Figure 3.16 shows the time evolution of an elliptical vortex with an aspect 

ratio a/b > 4 and little initial l = 3 perturbation. By t = 76 Jtsecs the l = 3 

component has saturated with an amplitude 80 times greater than that at t = 

20 µsecs. 

Jn figure 3.17 I plot the measured l = 3 amplitude versus time, for the same 

data sequence. The solid symbols correspond to the two plots of figure 3.16. The 

ratio of the l = 3 growth rate to the l = 2 frequency is found to be/'/ fi= 2 ~ 4.9. (I 

note that the instability would not be observed if it were significantly slower, because 

the elliptical structure is heavily damped by resonance damping.) I have also found 

that the instability can be seeded. Specifically, the phase of the 1=3 wave resulting 

after merger can be changed 7r radians by reversing the sign of an initial vorticity 
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Figure 3.16: Density plots of an elliptical vortex unstable to Love's inst.ability. 
Times: t = 20 and 76 JISecs. Density between solid cont.oms: 2.9 x 10.scm-3. 

,• 
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Figure 3.17: Amplitude of an l=3 perturbation versus time. Density plots corre
sponding to the solid symbols have been shown in figure 3.20. The result of a fit, 
giving a growth rate I/ f1= 2 = 4.9, is also shown (dashed line). 

perturbation. This is done by slightly altering the containment voltages of the setup. 

This appears to be the first experimental observation of an instability pre-

dieted 100 years ago by Love, who investigated the stability of top hat profile elliptical 

vortices in 1893 [44). (Ironically, he found the subject of elliptical vortices to be a 

'somewhat ancient matter' since Kirchhoff [40] and Hill [35] had been working on it 10 

years before.) He found that elliptical vortices were stable for aspect ratios a/ b < 3, 

and unstable to l 2': 3 perturbations for a/b > 3. In the range of 3 < a/b < 5.8, he 

found that the l = 3 perturbation was the fastest growing. For aspect ratios of 4.2:1, 

which is about the aspect ratio of the data of figure 3.17, Love's predicted growth 

rate for l=3 perturbations is "I /f1=2 = 4.44. 
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Figure 3.18: Experimental setup to investigate transport from 0-phased electric 
field perturbations. 

3.3 Rotational Compression from l 
Perturbations 

1 Phased 

Eggleston, O'Neil and Malmberg [25] have established that transport induced 

by a.symmetric perturbing fields is enhanced by collective effects involving electron 

plasma modes. Interestingly, they found that the characteristics of the induced mode 

determined the transport; for example, modes rotating faster and in the same direc-

tion as the column transported density in. They were, however, only able to obtain a 

maximum 25% increase in central density from this effect, and did not demonstrate a 

net angular momentum increase (i.e. Lj R] decrease). I have investigated the effect 

further to determine whether it can be used as a technique for getting useful density 

increases. I have been able to demonstrate a net transfer of angular momentum to 

the column, but have also found that associated heating limits its usefulness. 

Figure 3.18 shows the experimental setup. A frequency generator provided 

a perturbation signal of variable frequency fpert and peak-to-peak amplitude l~ert 

(Volts). In order to give the perturbation a direction of rotation, the signal was put 
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through one 90° a.nd two 180° phase splitters to produce 4 signals goo apart in phase. 

These were then connected to the four wall sectors, also goo apart, to give an l = 1 

perturbation rotating either in the +8 or -0 direction (where the +B direction is 

defined as being the direction that the column rotates a.bout its axis). 

The frequency response of transport ca.used by those l = 1 perturbations was 

scanned by measuring the central density as .f~>ert wa.s scanned. This revealed the 

presence of modes transporting density in or out of the center. The kz = 0 ( diocotron) 

modes were found to ca.use outward radial transport only. The kz '/:- 0 plasma modes 

were foQnd to produce inward transport from perturbations rotating faster than the 

·column in the +8 direction, and outward from those in the -0 direction. 

I then focused on maximizing angular momentum transfer with the appli

cation of perturbations at the resonant frequency of +8 plasma waves. To achieve 

maximal radial transport, I found it necessary to adjust the frequency of the per

turbation, since the plasma. mode's frequency shifts due to changes in the density 

profile. In figures 3.19 through 3.21 I show the collimated density a.n<l temperature 

profiles resulting from 1, 2 and 3 successive perturbations (of 0.5 seconds duration 

ea.ch) at an amplitude of \/pert= 0.3.5 Volts. The profile when the perturbation wasn't 

switched on is also shown. The temperature points shown were measured from the 

perturbed column, and the initial (unperturbed) column ha.cl a temperature of 0.9 

eV. 

My conclusions a.bout rotational compression a.re as follows. The genera.I 

idea that induced waves can impart angular momentum to (or from) the plasma is 

correct - the figures show this happening very cleanly. However, there is a strong 

correlation between the a.mount of transport and the a.mount of heating ca.used by 

the driven wave. The large rate of heating - more than 4 eV /particle for a decrease 

in L:j R] from .973 to .924 cm2 
- limits the usefulness of this technique, since at 10 
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Figure 3.19: Radial collimated density and temperature profiles of column with 
and without an applied l = 1 perturbation of Vpert = 0.35V at 9.5 MHz for 500 
msec. 
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Figure 3.20: Same as figure 3.2, with second perturbation of 0.35 l~ert at 11.3 MHz 
for 500 msec. 
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Figure 3.21: Same as figure 3.3, with third perturbation of 0.35 Vpert at 11.75 MHz 
for 500 msec. 

e V ionization of the background gas is appreciable. 

3.4 Bz Misalignment and l=O 'Sloshing' Signals 

Misalignments of the magnetic field with the axis of the containment region 

are known to strongly impact transport and hence confinement times in Malmberg-

Penning traps [26]. The EV apparatus has two magnetic field correction coils to 

create Bx and By fields, which enable the angle of the magnetic field to be changed. 

Measurements of confinement time are normally used to find the best alignment. This 

technique, 'confinement alignment', requires measurements of the plasma density 

remaining (usually central density) after long times, as a function of the correction 

field strengths. The correction coils are afterwards kept tuned to the fields which 

maximize the confined density. 

Misalignment is also observed to result in 1=0 signals off the containment 
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Figure 3.22: Density perturbation in z when an l=l mode is present and Bz is 
misaligned. 

rings, at the l=l diocotron frequency, when an l=l mode is present [33). The reason 

that these signals are produced can be seen in figure 3.22, which is a schematic for 

what is happening at one instant in time. The column has a displacement D, and 

Bz is misaligned by an angle o:. Due to the position of the wall surfaces relative to 

the column, one expects a density surplus on one end, and a density deficit at the 

other. (Because the l = 1 diocotron frequency is so much smaller than the plasma 

frequency or the bounce frequency, one can view the perturbation as a quasistatic 

change in the equilibrium rather than as a driven oscillation [33].) When the column 

has rotated about the trap axis by 7r radians, the perturbation will have changed 

sign, and the amount of charge within a ring will have changed. Hence one expects, 

as a consequence of the misalignment, to pick up an l=O signal at the same frequency 

as the l=l. 

Because the signals are functions of the misalignments, it is plausible that 

the best alignment of the magnetic field with the trap can be identified through their 

analysis. Hart [33] has asserted that minimizing the difference between signals on 

the end rings (next to the confinement gates) provides an easier and more accurate 

way of aligning Malmberg-Penning traps than the traditional method of tuning the 

----------------------- --
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correction fields to minimize transport. He did not present any comparison between 

confinement alignment and this 'signal null' alignment, however. 

I have made a study, cin the EV apparatus, of the l = 0 signals as a function 

of alignment, and have found that at small misalignments the signals from different 

rings lose coherence. This suggests that local sloshings due to individual ring mis

alignments are ta.king place, rather than the single sloshing mode observed at large 

misalignments. This in turn suggests a technique for identifying the best alignment 

through the minimization of the sum of the signal power off all the rings. I find that 

this 'summed power' alignment technique yields closer agreement with confinement 

alignment than the signal null technique does. 

3.4.1 l = 0 Signals from Large and Small Misalignments 

Figure 3.23 shows the l = 0 signals measured from the rings for an l=l 

amplitude of cl = .06 and a. Bz misa.lignment of 2.2 x 10-3 radians. The column, of 

radius R7> ""' l/3Rw, wa.s contained within the rings L3, L4, S, L5, G2; here listed 

in order of increasing distance from the filament. The oscilloscope was typically 

triggered off a. specific phase of the l=l signal, producing recordings of the l=O 

signals phase-locked to the l = 1 mode. This was not possible for the recording 

of the S ring signal, as all its sector probes and its frame had to be connected 

together to measure the l=O signal off it. The rings were capacitively coupled to a 

high-impedance low-noise amplifier. 

These signals a.re consistent with the model shown in figure 3.22. The end 

rings (L3, G2) have the largest amplitudes (being closer to the end of the column 

than L4 and L.5). There is little signal from the S ring, clue to its central position in 

z. Additionally, the signals from rings on opposite sides of S are of opposite phase. 

In figure 3.24 I plot the l=O signal amplitude from an end ring as a function of 

displacement d. It is linear in d near the a.xis, as has been predicted by Hart [33). 
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Figure 3.23: 1=0 signals recorded with (large) misalignment a= 2.2x10-3 radians 
and displacement d = .06. The S signal alone is not phased to the I = 1, and has 
amplitude 5 m V / diYision. 



65 

......-.. 0.010 p.. 
I 

p.. 

> 0.008 '-"' ~ 0 
cu 

"d 0 
~ 0.006 ~ +) ..... ..... 
~ s 0.004 ~ < 0 

..... 
cd 0 
~ 0.002 ~ 0 bD ..... 0 00 

00 0 0.000 l l I 
II ..... 0 0.1 0.2 0.3 

I I 
0.4 0.5 0.6 

d 

Figure 3.24: l=O signal amplitude from an end ring, versus displacement of the 
column 

In figure 3.25 I show the l = 0 signals resulting when the difference in the 

signals off the end ring are minimized, i.e., the signals (13+14) and (15+G2) are 

closest to being identical. This 'signal null' alignment has a small misalignment of 

1.2 x 10-4 radians from the confinement alignment value. The l = 0 signals here 

show important differences from their behavior at large misalignments. The signal 

amplitudes are smaller than those shown in figure 3.23, as expected, but are still 

appreciable ( > 20 dB above noise), and do not display the phase coherence seen 

previously. Indeed, the amplitudes and phases of the signals are now observed to be 

complicated functions of the geometry of the different rings and misalignment angle 

a:. 

I have concluded that there is a single 'global' mode of density sloshing only 

for large misalignments, and that at small misalignments there are 'local' sloshings 

between the individual rings. While this is hardly surprising - any containment 
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Figure 3.25: The l=O signals recorded when the signal (L:3+L4) - (L5+G2) was 
minimized ('signal null' alignment). l\Iisalignment from 'confinement alignment' was 
,....., 1.:2 x io-4 radians. 
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region broken up into rings is bound to have small asymmetries in z after it is 

assembled - it suggests that 'signal null' alignment (at least on the EV apparatus) is 

not a likely prescription to identify the alignment given by transport measurements 

(confinement alignment). 

An alternative alignment approach is to minimize the sum of the signal power 

(i.e. signal amplitude squared) off all of the containment rings. The reasoning behind 

this is that since the signal amplitude off a ring indicates the proximity of the electron 

column to that ring, a minimization of the sum of the squared amplitudes should 

give a 'least-squares' alignment within all the rings. I term this alignment technique 

'summed power' alignment. 

3.4.2 Quantitative Comparisons of Alignment Techniques 

I have quantified the differences between the alignments which minimize 

transport (confinement alignment) and those which minimize end signal differences 

(signal null alignment). For one particular confinement geometry (rings 11 to S), I 

have measured these Bx, By alignments as a function of B::. A linear dependence of 

alignment values versus Bz implies that alignment is given by a specific angle within 

the trap. The measured values are plotted in figures 3.26 and 3.27, along with a 

least-squares fit through the data. My conclusion is that the confinement alignment 

and signal null alignment techniques both define angles, but that these are different 

angles. 

In figure 3.28 I show the tuning curve given by the summed-power alignment 

(line) along with that given by confinement alignment (dots). The dashed lines show 

the measured signal pO\ver from individual rings. Each ring has its individual ()~. 

value at which its signa.l is minimized. The solid line is the sum of the signal power, 

and the dots show the central density (arbitrary units) remaining after 10 seconds. 

As can be seen, the minima of transport (i.e. the peak of the remaining central 
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density) and the minima of the summed signal power are at close to the same value 

of Bx. 

To quantify the differences in alignment between the summed power and 

the signal null methods, with reference to the confinement method, I have plotted 

(figure 3.29) their measured difference in angle (~Bx, ~By) from the confinement 

alignment values, for three different confinement regions. I conclude that summed 

power alignment is closer to confinement alignment than signal null alignment is, 

by about a factor of two in angle. In terms of how big a difference this makes to 

confinement times, I estimate that use of signal null alignment will result (depending 

on which signals are nulled) in about a 5% reduction of remaining density, compared 

to the confinement alignment values. Summed power alignment is about a factor of 

2 better by this criteria, as well. 
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Chapter 4 

Symmetric Double Vortex Studies 

4.1 Overview 

This chapter describes experiments on two confined vortices which are sym

metric in density and radius. At small separations, the vortices are observed to 

merge by flowing towards and wrapping around each other. At larger separations, 

the vortices orbit about each other until merger occurs at times up to > 100,000 

orbit periods after merger. I have investigated both of these phenomena, and find 

that the two vortex electron system can be well characterized by a combination of 

results from both 2D fluid theory and plasma physics. 

I describe the creation of the two vortex state, and its analysis, in section 4.2. 

The electron vortices used here were relatively narrow (radius Rv/ Rw "' 0.15), hot 

(711 ,...., l.8eV), and long (LP > 5Rw)· Their dynamics were investigated with two 

complementary diagnostics, wall sector signals and time series of n( r, B) electron 

density plots. The density plots give direct measurements of vortex motions, but 

can usually only be taken within 500 /lSecs of the injection of the vortices. The wall 

sector signals can be measured about 400 /lSecs after injection (the delay is due to a 

voltage spike caused by injection), but are limited in what they reveal of the motions. 

The dynamics of well-separated (i.e. not merging) vortices is described in 

section 4.3. I find that there exists equilibrium orbits in which each vortex orbits 
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about the center of the ·cylinder at constant radius. Some of these equilibria are 

linearly stable, and others are unstable. I have measured both oscillations about 

stable equilibria and exponential divergence from unstable equilibria. 

The equilibrium positions, oscillation frequencies, and instability rates for the 

spatially extended vortices agree well with the predictions of a point vortex model 

(section 4.4). In this model, the extended vortices are replaced with point vortices 

of the same circulation r, positioned at their centers. Because this approximation 

eliminates the degrees of freedom describing shape distortions and surface waves, the 

good agreement of the model with the observations suggests that these effects do not 

significantly couple to the center-of-vorticity motions. This is useful because, unlike 

a system of 2 extended vortices, a system of 2 point vortices within a cylindrical 

boundary is integrable. Because of this integrability, 2D phase space maps can be 

constructed (section 4.4.4) which permit visualization of the fully nonlinear motions, 

as well as provide an understanding of the overall stability of the system. 

In section 4.5 I discuss the various 2D fluid and electron plasma effects which 

cause the lifetime of the 2 vortex state to vary by 5 orders of magnitude. At small ini

tial separations, immediate merger of the vortices into a single larger core is observed 

(section 4.5.1). Merger is a fundamental vortex property which I find to conserve the 

energy, angular momentum and vorticity of the electron vortex system, as predicted. 

Immediate merger occurs when the separations between the vortices, d12, is below a 

critical value given by d12 "-' 3.2pv, where Pv is the vortex radius [29]. I present some 

density plots of merging vortices in figures 4.10-4.11: these closely resemble plots of 

vortex merger from simulations [48, 68). Immediate vortex merger can also occur at 

large initial separations (section 4.5.3), because the previously discussed dynamical 

instabilities can result in the vortices immediately drifting into each other. 

For initial conditions giving scaled separations d12 /2Pv > 1.8, the two vortex 
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state can be terminated "by either d12 decreasing or Pv increasing. For vortices in

jected onto stable equilibrium points (section 4.5.2), I find that Pe-conserving column 

expansion of both vortices ultimately results in them being unstable to merger. The 

observed rates of expansion are consistent with those measured for single columns 

(section 3.2.2). 

Lifetimes are anomalously low, however, for vortices injected onto unstable 

equilibrium points. In section 4.5.3 I present the evidence for this, and argue that it 

is due to a greatly enhanced rate of column expansion that occurs when the column 

trajectories move periodically in radius. Simple rate estimates are given, in support 

of a hypothesis that an effect I term 'orbital pumping' is responsible. 

4.2 Creation and Analysis of Two Vortex State 

I create the two vortex state by cutting a single electron column in half 

axially, moving the two halves to different 0-positions, and then cascading them 

together. This procedure is required since only a single column can be injected from 

the filament source. Figure 4.1 shows a schematic of the manipulations involved; 

there are sometimes additional steps required to generate phase-locked plots. 

A two vortex experiment begins with a slow ("' 200µsec) lowering and rising 

of the injection gate. After the rise pinches off a column from the filament, the column 

is displaced a distance D from the axis, by the growth of an l=l diocotron mode to 

the desired amplitude. The wall sector signal induced by the l = 1 rotation can be 

used at this point to set the 0-phase of the column, by, for example, phase-locking 

to a zero-crossing of the waveform. 

At the desired 0-phase, the column is cut in half longitudinally with a negative 

voltage applied to the central 'cut' ring. Equal density of the two cut columns is 

ensured by having the containment voltages on both ends equal. The 0-position of 
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Figure 4.2: l\leasured plot of z-averaged density (or vorticity) showing two vortices. 
The small +marks the center-of-vorticity of the vortices, and the large + is the axis 
of the cylindrical conducting wall. The arcs indicate the \\'all radius. For these 
columns, LP ,....., 21.8 cm. Density between solid contours: .5.6 x 1 o.scm-3

• 

one column with respect to the other is then changed so as to produce the desired 

initial condition when the columns are cascaded together. The position change is 

accomplished either with additional I = 1 feedback, or with a temporary reduct.ion 

of Ve on an end ring, which will lengthen the column contained by it, thus lowering 

its I = 1 frequency and resulting in dephasing between the colunms. 

Finally, the cut gate is quickly (,....., 0. i 11sec) lo\\'ered, and the 2 columns cas-

cade into the original containment region and begin interacting with each other. The 

cascading results in a heating of T11 to ,....., 1.8 eV. Figure 4.2 is a contour map at one 

time of z-aYeraged density n ( r, 0) (i.e. vorticity) for typical columns, showing bell

shaped rnrticity profiles extending oYer a radius Rv "-'0.5 cm. The density n( r, 0) 

gi,·es rise to a potential </J(r, 0) through Poisson's equation. This results in Ex B 

drift velocities l'E(r,O) (see section 2.8). P.lutual adYection in this flow field results 
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in the two vortices orbiting around the cylinder axis, with typical frequencies !orb ~ 

10 kHz. Additionally, each column rotates about its center of mass, at a frequency 

.frotation ~ 100 kHz. 

Immediate merger of the 2 symmetric vortices is observed if they are put 

together with a separation less than 1.6 times their diameter [29, 48]. At larger 

separations, the vortices are observed to orbit about each other, in a. complicated 

fashion, until merger occurs at times up to > 100,000 orbit periods after injection. 

I have extensively studied these orbital motions of well-separated vortices, using 2 

complementary diagnostics: measurements of wall sector signals and time series of 

n(r, 0) density plots. 

The wall sector signals are measurements of the charge induced on the sectors 

by the electron vortices. Their analysis gives a fast determination of the frequencies 

of the two-vortex state, as well as useful qualitative information on the dynamics 

of the two vortices. In Appendix B I describe the interpretation and analysis of 

wall sector signals induced by two vortices. Unfortunately, solving for the 2 vortex 

positions from the sector signals is a non-trivial exercise in signal processing and 

calibration, and accurate position measurements have yet to be extracted from this 

approach. 

The density plots give direct measurements of the positions and shapes of 

extended vortices. The basic measurement here is of the z-averaged electron density 

which flows a.long B.z through a collimator hole after the end gate ha.s been quickly 

brought to ground. As discussed previously in section 2.4.2, I build up plots of 

n(r, 0, t) from many measurements; the temporal dependence is obtained by varying 

the evolution time t, and the spatial dependence is obtained by varying the position 

r of the radially scanning collimator hole and the 0-phase of the initial condition. 

After the creation of the two vortex state, I am able to create density plots 
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for several orbital periods, after which uncertainty in the initial conditions results 

in loss of phase-coherence and consequent noisiness in the plots. In my analysis of 

vortex motions using these plot, I reduce them by characterizing the positions of 

the spatially extended vortices by the coordinates (r1, 01 ), (r2 , 02) of the centers-of

vorticity. A time series of vortex positions can then be examined and fit as desired; 

the details of this analysis are in Appendix C. 

4.3 Equilibrium Orbit Observations 

I have observed equilibrium orbits about the center of the cylinder, with 

either r 1 = r 2 or r 1 =/:- r 2 , but always with 02 = 01 + 7r. In equilibrium, each vortex 

orbits the center of the cylinder at a constant radius and with the same frequency 

!orb, so the two vortices remain diametrically opposed. For r 1 = r 2 , both stable and 

unstable equilibria are observed. That is, if the vortices are initially displaced from 

the equilibrium positions, they either oscillate around the equilibrium points with 

frequency lose, or diverge from the equilibrium points at an exponential rate /· 

Figure 4.3 shows the observed equilibrium points ri, r 2 for two identical 

vortices with 02 - 01 = 7r. Both stable ( o) and unstable ( o) equilibrium points are 

observed. Two conventions are used here: the positions ri are normalized to Rw, 

i.e. ri = R/ Rw; and for the equilibrium points with r 1 =/:- r 2 I specify r 1 > r 2 • The 

lines indicate the predictions of point vortex theory, discussed below in section 4.4. 

The clashed line indicates stable r 1 = r 2 equilibria, the solid line unstable r 1 = r 2 

equilibria, and the clotted line stable r 1 > r 2 equilibria.. 

I plot 3 examples of observed center-of-vorticity positions, relative to a. frame 

rotating about the axis, in figure 4.4. The three classes of equilibria, two stable and 

one unstable, are each represented. The positions have had the orbital motion about 

the cylinder axis subtracted out as described in Appendix C. The directions (i.e. time 
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Figure 4.3: Equilibrium points for two identical vortices in a cylindrical boundary. 
The radial coordinates are normalized to Rw, and 02 - 01 = 7r. The symbols indicate 
observed stable ( o) and unstable ( o) points. The lines are the predictions of point 
vortex theory, with the solid line indicating instability and the dotted and <la.shed 
lines stability. 

ordering) of the oscillations about, or exponentiation away from, equilibrium points 

are indicated with arrows. The <la.shed line at radial position TJ-I = 0.462 marks the 

theoretically predicted (and observed) boundary between stable and unstable r 1 = r2 

equilibrium points [34]. 

I have measured the frequencies lose a.t which vortices oscillate a.bout the 

r 1 = r 2 and r1 > r2 stable equilibria .. Similarly, for the r1 = r2 unstable equilibria I 

have measured the rates / at which the vortices exponentiate away from the unstable 

points. In figure 4.5 I plot these frequencies and rates, as measured in the frame 

rota.ting a.bout the axis, versus r1 • Data points from both density plot analysis and 
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wall sector signal analysis are included, as are the predictions of point vortex theory 

(dashed, dotted and straight lines). 

The plotted frequencies and rates are normalized by the theoretical orbit 

frequency f'/:b, defined below in eq. 4.2. For r1 = r2, lose varies from approximately 

l;:b down to zero as r 1 is increased from 0.23 to rH. (With separations r 1 = r 2 < 0.23, 

merger occurs in a few orbits.) For small r 1 , lose is approximately l;:b because the 

vortices orbit about the center of (total) charge, independent of where this center 

is relative to the cylindrical wall. As r 1 approaches rH, lose approaches 0, since 

the restoring forces go to zero as the influence of the images charges in the walls 

becomes important. For r 1 = r 2 > TH, initial displacements ~x = ( ~r, r~O) from 

an equilibrium point are observed to grow exponentially as ~x = Ax+e"Yt + Bx_e-"Yt, 

where X+ ( x_) is the growing (decaying) eigenvector. Over the accessible range of 

unstable equilibria, I observe growth rates I /27r l;:b :::::: 0.2 to 0.4, as shown by the 

diamonds of figure 4.5. For r 1 =J r 2 , lose increases monotonically as r1 increases, due 

to the increasing forces from the image charges. 

4.4 Point Vortex Model 

The observed motions of the spatially extended electron vortices are well-

described by a point vortex model, where each extended vortex is replaced by a 

point vortex of the same circulation r placed at its center-of-vorticity. (A useful 

review of point vortex dynamics, which has been studied for over 100 years, is given 

by [1].) The circulation is given by 

( 
27rce) r::: 13 2NL. ( 4.1) 

where the line density NL is obtained experimentally either from a. Gauss' law mea

surement or an integration of a 2D n(r, 0) distribution. 

The point vortex model ignores the degrees of freedom describing extended 
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vortex distortions and surface waves, since distorted vortices would have external 

fields which differ from the fields of a point vortex. As can be seen in the figures of 

the previous section, the agreement between the predictions of the point vortex model 

and the observed equilibrium positions and frequencies/growth rates is quite good. 

This suggests that surface waves and sha.pe distortions of the extended vortices do 

not significantly couple to the center-of-vorticity motion, at least when the vortices 

are sufficiently well separated that they are not susceptible to merger. 

4.4.1 Predictions for Equilibria 

The equilibrium positions for point vortices in a cylindrical boundary of ra-

dius Rw a.re easily solved for. For a point vortex of circulation f 1 at position (R1 , 81), 

the method of images says that the image charges on the cylindrical wall give the 

same fields as those of a fictitious point vortex of circulation -f1 at (R!/ Ri, 81 ). 

Thus, the velocities of the point vortices can be readily calculated. 

In equilibrium there are no radial velocities, and both vortices have the same 

orbit frequency about the axis of the cylinder. These requirements can only be 

satisfied if the two vortices are at opposite sides of the axis, i.e. 02 - 01 = 7r. Using 

this, one can solve for the radial positions which give the same orbit frequencies. 

The orbit frequency .f'::b of point vortex 1 is given by 

where the three terms in the square brackets are the contributions from vortex 2, 

vortex 2's image, and vortex l's image respectively. The orbit frequency of point 

vortex 2 is given by the interchange of the subscripts 1 and 2. The equilibrium 

points are therefore those which satisfy .f'::b(r1, r2) = .f'::b(r2, ri), or equivalently the 
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express10n 

Putting the left hand expression over a single denominator gives the numerator 

( . . ) (1 . 2 2 ') 2 2 2 4 4 2 4 ,2 2 'l ,2 3 ,:3 3) 
11 - 12 - 1112 - 11 - ~12 + 1 1 1 2 + 1 1 + r2 - 1 1 1 2 - 1 2 7 1 - 1 1 1 2 ( 4.4) 

and the roots of this expression are the equilibrium positions. 

One set of roots is given by 1 1 = 1 2 , but there are additional equilibrium 

points where 1 1 =/. r 2 . All of the physical equilibrium points (i.e. 0 ~ 1 1 ~ 1, 

0 ~ r 2 ~ 1, and 1 1 , r 2 real) have been previously plotted in figure 4.3 as lines (solid, 

dotted and dashed), with the convention 1 1 2: 1 2 . To first order in x, these new roots 

are given by 1 1 = .4623 + x and r 2 = .4623 - x, where x is an arbitrary value. 

4.4.2 Predictions for Frequencies and Growth Rates 

The stability of circular or bi ts of two (or more) point vortices within a cir

cular boundary was first analyzed by Havelock in 1931 [34]. He did a linear stability 

analysis of the 1 1 = r 2 equilibrium points. For two vortices, Havelock found oscilla-

tions about stable equilibria when 1 1 = 1 2 < rH, and exponentiation from unstable 

equilibria when 1 1 = r 2 > IH, where iH = 0.4623. Specifically, he found that 

perturbations from the r 1 = 1 2 equilibrium points evolved as e'\t, where 

,\ 2 - -- 1 - ] 7 - ] ( r ) 
2 

( 4r
2 

) ( s 41
2 

) 

- 47rR1 (l+ri) 2 1-rf+(l-d)2 

which is negative (giving stability) for 1 1 < .4623 and positive for r 1 greater than 

this. Havelock's predictions for frequencies and growth rates have been previously 

shown, in figure 4.5. 

I have extended Havelock's analysis to the equilibria with r1 =/. 1 2 , and 

find stable oscillations about these points. The details of the calculation are in 
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Appendix D. While in ·principle it is possible to display analytic expressions for 

these oscillation frequencies, as in equation 4.5, it is not practical to do so here. 

The reason for this is that the analytic expression for the r 1 =/:- r 2 equilibrium points, 

about which the analysis is done, is given by the roots of the fourth order polynomial 

of equation 4.4. The analytic expression for these roots alone is too large to be worth 

reprinting! However, the stable oscillation frequencies predicted by the linear analysis 

are shown in figure 4.5. 

4.4.3 Extension To Temperature Asymmetric Case 

I have found that T11 asymmetries between the two electron columns can have 

a strong impact on their dynamics. For example, I have injected columns with an 

asymmetry of .6.T11 ~ 1.0 eV onto r 1 = r2 = 0.36 stable equilibrium points. The 

columns were found to oscillate not about these points, a.s would be expected for 

point vortices and for 111-symrnetric columns, but about rcold = .319 and r110t = .405. 

The effect of temperature asymmetries can be incorporated into the point vortex 

model, however, and good agi:eement is seen between the predictions of this extended 

model and the observed dynamics. 

As has been discussed in section 3.2.1, changing the 111 of a column will 

change the frequency shift between the measured and infinite-length l = 1 fre

quency, C:i.f1=1 = fL=l - f1~1 , due to finite length effects. The simplest model for 

111-asymmetric columns, therefore, is one which uses the point vortex approximation 

but additionally gives the hotter vortex a. frequency shift C:i.f/~i, arising from the 

difference in the orbit velocities of the columns. 

The equili bri urn points ( r1i01 , r cold) predicted by this extended model are 

found, as in the Tu-symmetric case, by solutions to 

Joo ( r 1' ) r= ( . r ) - "!hot o1·b hot' cold - . orb 1 cold' hot - U l=l · ( 4.6) 
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When the measured frequencies of the experimental example were plugged in, the 

predicted equilibrium points were at rcold = .323 and rhot = .393, in reasonable 

agreement with the measured values. 

I have also checked the agreement of the extended model for the orbit shapes 

about the new equilibrium points. This was done using a numerical simulator of point 

vortex motions, which integrates the equations of motion forward in time using a 

Bulirsch-Stoer algorithm [59]. I found that adding the measured frequency offset to 

one of the two vortices results in orbit shapes very similar to the ones observed. 

Temperature asymmetries can obviously play a large role in the dynamics, 

and it is one which has no counterpart in the fluid analogy. In the experiments of this 

dissertation involving several vortices, I have always been careful to put the vortices 

together such that they both have the same frequency shifts. With the symmetric 

vortices of this chapter, this is done automatically if the vortices have the same 

lengths before and after they are cascaded together. With the asymmetric vortices 

of Chapter 5, it was found necessary to measure the frequency shifts and equalize 

them by adjusting the confinement potentials, which alters the column lengths. 

4.4.4 Energy and Angular Momentum Plots 

Interestingly, the fully nonlinear motion of 2 point vortices within a cylin-

drical boundary can be understood from 2D phase space maps, since the system is 

integrable. This is because there are four variables ( r 1 , 01 , r2, 02) and two constants 

of the motion (Po, 'H), the angular momentum and the interaction energy per unit 

length. 

Angular momentum conservation [.52] has been discussed in section 2.6.l. 

One can define a simple scaled angular momentum Po for two point vortices by 

Pe 
Po == - = L (1 - rT) , 

Po 
(4.7) 

i=l,2 
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where Po = ( eB /2c)R!NL is the angular momentum of an on-axis line charge (point 

vortex). Similarly, from the 2D energy 'H<1> (equation 2.8) of point vortices one can 

define a scaled interaction energy H with 

(4.8) 

where r12 = lr1 - r21 and 'Ho = e2 Nl is a characteristic energy. H and Po are, of 

course, also conserved for fluid point vortices [l]. 

The predicted motions of the point vortices can be visualized from repre-

sentations of H(ri, 01 - 02 , P0 ). For a. contour map at a given P0 , the 2D contours 

of energy H display the (r1 , 02 - 01 ) values that a two-vortex system with that en-

ergy will trace out during its evolution. (There is no information on the absolute 

8-positions, since as a consequence of the rotational symmetry of the system, only 

the difference in the 0-coordinates matters in H.) 

There are three distinct map topologies over the accessible range of 0 < Po < 

2. I display examples of these in figures 4.6 through 4.8. For P0 > 2(1 - ri ), 
there is a minimum energy stable equilibrium (an 0-point) with the two vortices 

symmetrically opposite each other, at 01 - 02 = Jr and r 1 = r 2 • There is also an 

infinite energy point where the vortices are at the same radial and 0 coordinates. 

This topology can be seen in figure 4.6. 

When Po is decreased (i.e. the vortices are moved radially outward), the 

0-point becomes shallower. For 1 < P0 < 2(1 - rJ-1 ), the symmetric equilibrium has 

become an unstable saddle point (an X-point ), with two new 0-points existing at 

r1 =/:- r 2 values (see figure 4. 7). As P8 is decreased further, the 0-points move further 

from the X-point, until for P0 < 1.0 there are no stable equilibria (as in figure 4.8). 

Also plotted on the phase space maps are the experimentally measured center-

of-vorticity coordinates ( r;, O; - Oj) for evolutions with the corresponding Po. (vVhen 

these coordinates are plotted, the two sets of vortex coordinates are distinguished 
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by using different symbols.) In figure 4.6, the centers are observed to oscillate once 

around the stable equilibrium while the vortices orbit 2. 7 times around the cylindrical 

center, with a measurement error corresponding to bH :::; .01. In figure 4.7, 3/4 of an 

oscillation about an asymmetric equilibrium is observed, with a larger measurement 

error of bH "' .02 due to the additional uncertainties introduced while creating the 

r1 =f. r 2 initial condition. In figure 4.8, the vortices exponentiate away from the 

unstable equilibrium, with the displacements being largely in the 0-direction. The 

large measurement errors at long times reflect the difficulty in repeatably following 

the exponentially unstable trajectories with density plots. 

Distortion Energies 

For spatially extended vortices, the 2D energy H<P will include self-energy 

and interaction energy terms which depend on the shapes of the vortices. Experi

mentally, I observe elongations away from circularity of :::; 10% in general, and up to 

30% for r 1 = r 2 "' 0.23 (near merger). These time-varying eccentricities have not, 

however, been observed to cause noticeable departures from the predictions of the 

point vortex model. This result is perhaps because the energies involved in elonga

tions are relatively small: using a moment model [48], I estimate Ml ,...., 0.002 and 

0.02 for elongations of 10% and 30% respectively. 

I have addit.ionally found that intentionally induced elongations do not sig

nificantly affect the orbit dynamics, as diagnosed by the wall sector signals. Before 

putting the two vortices together, I grew an l = 2 diocotron wave on one vortex, 

on both, or on neither. The wave gave elongations of about .5%. I then looked 

for changes in the sector signals depending on whether or not the l = 2 mode was 

present. I failed to discern any changes in the wavesignal resulting from the l = 2 

perturbation. 
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Energy and Angular Momentum Manipulations 

The double vortex state can be manipulated by external control of the overall 

energy and angular momentum of the system. Previous work on the dynamics of a 

single vortex has established that resistive destabilization [71] and active feedback 

[70], which change Pe and JI, cause the observed motions to evolve accordingly. I 

find similar effects for the double vortex state. 

For example, a resistance between azimuthal sections of the wall will dissi

pate the energy of the system. If a resistance is switched on when two vortices are 

near stable equilibrium points, the vortices will remain near stable equilibria while 

the equilibrium orbit radii vary with time. During an evolution with initial vortex 

positions of r 1 = r 2 "' 0.3, the radii were observed to increase to r 1 = r 2 = TH, 

after which r 1 increased until vortex 1 was pressed against the wall, while r 2 had 

decreased to r 2 "' 0.1. This technique has been used to shift two vortices from one 

stable equilibrium to another with lower Pe. 

4.5 Lifetime of the Two-Vortex State 

I observe that, depending on the initial conditions, the two-vortex state can 

last anywhere from less than one orbit period to > 105 orbits. It is terminated by 

merger of the two vortices, resulting in a single vortex core surrounded by filaments 

which eventually form a low-density halo about the core. It is straightforward to 

diagnose the time it takes to merge, Tmerge· For short merger times ( < 300;tsec), 

TmErge is defined from density plots as the time where the vortex cores have fused; at 

longer times, it is defined to be the time at which the !orb components of the sector 

probe signal abruptly disappear. 

In figure 4.9, I plot Tmei·ge versus r 1 for two symmetric vortices injected at 

equilibrium positions r 1 = r 2 , at a magnetic field of B:: = 188 Gauss. For the 
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Figure 4. 9: Merger time versus separation for two vortices injected at r 1 = r2. The 
observed statistical scatter was smaller than the symbols except for the separation 
with the displayed error bar. Bz = 188 Gauss. 

smallest separations, the vortices are immediately susceptible to a pairing instability 

(see section 4.5.1). As the separation is increased, the lifetime jumps up 4 orders 

of magnitude, reaches a maximum near r 1 :::::: rH, and then precipitously drops. At 

these separations, the two-vortex state is terminated by the previously discussed 

(section 3.2.2) column expansion, which results in the expanded columns becoming 

susceptible to the pairing instability. The drop above rH is believed caused by a 

strong increase in the rate of the expansion, due to motions of the columns in the 

radial direction. These points will be discussed in section 4 .. 5.2. At the largest separa-

tions, the previously discussed Havelock clynamica.l instability results in trajectories 

which have the vortices quickly approaching each other close enough to merge. This 

boundary effect, as well as other influences the boundary can have on merging, will 

be discussed in section 4.5.3. 
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4.5.1 Pairing Instability 

Merger is a fundamental vortex property. When two like-signed spatially 

extended vortices approach close enough, they are susceptible to a pairing instability 

which causes them to wrap into a single larger core, accompanied by the ejection of 

filaments. There have been many theory papers on this instability (see, for example, 

[61, 64, 48, 49]), which have used analytic theory, moment models and numerical 

simulations to investigate it. These have established that the equilibrium solution 

of closely-separated vortices consists of them elongating towards and orbiting about 

each other. As the separation between them is decreased, the elongation becomes 

more pronounced until ultimately a separation is reached where there isn't any stable 

equilibrium. At this point, the two vortices flow towards and wrap around each other, 

ejecting narrow filaments of vorticity in the process. This merger of inviscid vortices 

is, in theory, predicted to conserve the energy, angular momentum, and all moments 

of the density. The enstrophy Z2 is the second moment, given by 

Z
2 
= J dr J rd() n2 (r,())

2 [f dr J rd() n(r,e)] 
(4.9) 

Figure 4.10-4.11 is a series of density plots showing the merger of two electron 

vortices initially placed close together. There is close agreement between these plots 

and the results of simulations [ 48, 68]. Note that the merger is a 'wrapping around', 

and that the cores of the merging vortices at t = 76 psecs still retain their separate 

identities. 

For these merging vortices, I have plotted the observed variations versus time 

of total electron number Ne, angular momentum P9, energy H<f>, and enstrophy Z2 in 

figure 4.12. The solid symbols correspond to the density plots shown in figures 4.10 

and 4.11, and the quantities have been normalized to the values measured at t = 0. 

The energy, angular momentum, and total density all appear to be conserved 

within the scatter (±1%) of the experimental measurements - there is a hint that 
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Figure 4.10: Density plots of two symmetric rnrt ices unstable to the pairing insta
bility. Times: t = 0 and 16 11secs. Density between solid cont.ours: 2.9 x J0·5c·m-3

. 
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Figure 4.11: Pairing instability at t = 41 and 76 /LSecs. 
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total density drifts upward a percent or two, but this is certainly instrumental. The 

enstrophy, however, decreases to 82% of its initial value. Much, if not all, of this 

decrease is due to the 'coarse-graining' of the increasingly fine spatial scales by the 

collimator hole. The size of this hole is indicated in figure 5.2; its size sets the 

minimum spatial scales resolved. The evolution of enstrophy in electron vortices 

undergoing instabilities is an interesting topic which I do not have the space to go 

into here - see, however Huang (36]. 

Two simulations of vortex merger, with very similar initial conditions to those 

of figur~ 4.10, have been published in the literature. They are figure 1 of Melander 

et. al. (48], from a high-resolution direct numerical simulation, and figure 1 of 

Waugh (68], from a contour dynamics simulation featuring 8 contour levels. These 

simulations closely resemble figures 4.10-4.11. 

\Vhile vortex pairing has been often observed in conventional fluids experi

ments, with perhaps the first clear evidence for it from Freymuth (30], viscous and 

boundary effects have usually resulted in non-ideal behavior being observed. One 

example of this is the experiments of Cardoso, Marteau and Tabeling (7], who used 

thin layers of electrolyte to study decaying quasi-2D turbulent flows and found strong 

dissipation of energy and peak vorticity to occur. Another example is the rotating 

water tank experiment of Griffiths and Hopfinger [32], where for one sign of vortic

ity merger was observed to occur for all initial separations. In contra.st, a merger 

experiment with electron vortices has found significantly better agreement with the 

predictions of theory [29]. 

This experiment, which studied the onset of the pairing instability for electron 

vortices, injected vortices of varying radii onto Havelock-stable (i.e. r 1 = r 2 < 0.46) 

equilibrium point, and measured Tmerge as the separation was increased. The vortices 

were observed to merge immediately for separations of less that 1.4 vortex diameters, 
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Figure 4.13: Typical measured radial profile of an electron vortex before merger, 
plus top hat (dashes) and Gaussian (dots) profiles fitted to it. 

and to orbit for more than 105 orbits for separations greater than 1.8 diameters. The 

theory work has predicted critical separations for this instability in the range of 1.43 

to 1.7 vortex diameters [64, 62]. 

The experiments also established that the vortex diameter was the relevant 

lengthscale, since the merger curves for vortices with different radii overlay each 

other when the separation between them was scaled by their radius. Before showing 

this result, it is necessary to discuss how the radius of a vortex is determined. In 

figure 4.13 I show a typical measured radial profile, plus the top hat (step function) 

and Gaussian profiles that are the best fit to this profile. One can see that the 

observed profile is neither Gaussian nor top hat; I call it a 'bell-shaped' profile. 

There is no obvious uniformly applicable definition for the radius of a vortex 

with a profile like the one shown. The vortex radius Rv definition of a 2D distribution 
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n(r, 0) decided upon by Fine et.al [29] is 

3 1 1Tcut 
Rv = 2 NL 

0 
r' dA n(r, 0) , ( 4.10) 

where the (r - 0) integral is over the area of the vortex and r' is centered on the 

center-of-vorticity of it. This is simply a density-weighted radial integral from the 

center of the vortex, ending at '/'mt, defined to be the vortex edge. With sharp-edged 

profiles the position of r cut is given as the point where the density goes to zero; in 

Chapter 5 I discuss rcut for less sharp profiles. The factor of 3/2 is included to ensure 

that a top hat profile with radius R has Rv = R. The symbol I use for Rv normalized 

to Rw is not rv, but Pv = Rv/ Rw, since rv could be confused with center-of-vorticity 

positions, and since pis a symbol which has been commonly used for vortex radius. 

Figure 4.14 shows merger curves for vortices with different values of Pv, where 

the separation D;1 between the vortices has been scaled by 2Pv· I define d;j to be the 

(normalized) distance between vortices i and j, i.e. d;j = D;j / Rw. The vortex radius 

is indicated by the different symbols. The data shown had Bz = 375 Gauss and 

r1 = r 2 < 0.46, except for the circles, which is the r1 = r 2 < 0.46 data of figure 4.9, 

and had Bz = 188 Gauss. 

It is apparent that the scaled merger curves for different Pv overlay each 

other, and give a. critical separation for immediate merger of d12 "" 1.6 · (2pv)· As 

the separation is increased, the two-vortex state lifetime increases dramatically until 

it reaches a maximum and levels off. In the next section I discuss the lifetime of 

vortices not immediately unstable to the pairing instability. 

4.5.2 Column Expansion and Lifetime of the 2 Column 
State 

I have determined that the lifetime of columns injected into stable equilibrium 

points opposite e~ch other is limited by expansion of the individual columns, which 

~--------------------------------------------
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ultimately causes them to be susceptible to the pairing instability. The process can 

be directly imaged under certain conditions. For stably orbiting vortices, the sector 

probe signal is a sinusoid at frequency 2farb (as shown in figure B.l). By switching all 

sectors and containment rings to ground, and only at a later time switching a sector 

to an amplifier, it is possible to monitor the evolution of the wall signal without 

unnecessarily perturbing the two-vortex state. I have found that no other frequency 

components develop, which means that it is possible to extend the density imaging 

technique to late times by phasing off 2forb. 

Figure 4.15 show a plot of two vortices injected at r 1 = r 2 = 0.3:3, and 

the same vortices 3 seconds later. During the containment time, column expansion 

and movement towards the axis has occurred to the vortices, exactly as has been 
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Figure 4.15: Density plots showing the long-time evolution of the stable t.wo Yortex 

st.ate. The first shows the vortices after injection, and the second is 3 seconds later. 
Density between solid contours: 7.:3 x 105cm-3
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described for single columns in section 3.2.2. At t = 3 seconds, low-density arms and 

a 'bridge' between the vortices have formed, characteristic of vortices barely stable 

to the pairing instability. Measurements of the scaled separation d12 /2pv show that 

it has decreased from 2.24 at t = 0 to 1.60 at t = 3 seconds. Merger was observed 

to take place ,...., 3.15 seconds after injection. 

The observed rates of column expansion for the stable 2 column case are 

consistent with those measured for one column. Since column expansion was found 

to increase very strongly with r 1 , it is to be expected that the stable two-vortex 

lifetime. curve will show the leveling off it does beyond immediate merger. This 

is because columns further apart will have a greater initial separation, inhibiting 

merger, but the d12 increase will be more than offset by the faster radius expansion 

rates. 

4.5.3 Boundary Effects 

Merger From Point Vortex Motions 

The presence of a cylindrical boundary in the experiment can greatly decrease 

the lifetime of the two-vortex state. For example, vortices injected near Havelock 

unstable equilibria may move on trajectories which bring the two closer together. 

The vortices essentially drift into each other. 

The phase space plots of H ( r 1 , fh - 01 , Po) discussed in section 4 .4 .4 allow 

one to visualize an example of this. Figure 4.8 showed the energy contour map for 

point vortices injected at r1 = r 2 = 0. 758. After injection at 01 = fJ2 + 7r, the vortices 

will move along the energy contour passing through the X-point. vVhen the vortices 

drift in 0 towards fJ 2 = 01 , the separation d12 between the t.wo will drop from the 

initial value of d12 = 1.516 to d12 = .:36. With vortex radii of Pv = 0.12, one then 

has d12 /2pv = 1.5, so one expects that merger will occur; in fact, this was observed 
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to happen in the data set of figure 4.8. It is thus the Havelock dynamical instability 

which is responsible for the short ( < 1 msec) lifetimes seen at large initial separations 

in figure 4.9. 

Merger From 'Orbital Pumping' 

I have found strong, but indirect, evidence that the rate of column expansion 

is greatly enhanced when the column trajectories move periodically in radius. Evi

dence for this can be seen in figure 4.9, where Tmerge drops by a factor of 70 when the 

initial placement of two columns is shifted from r 1 = r2 = .46 to ri = r2 = .5. As we 

have seen, single column expansion rates increase strongly with radial displacement, 

but not enough to account for this factor of 70. Similarly, the dynamical instability 

can not account for it: the point vortex model predicts that the columns will exe

cute large orbits from their initial points, but in such a way that the minimum di2 

decreases only 9%, as compared to the r 1 = r 2 = .46 initial condition. 

Similar evidence can be seen in figure 4.16, which shows Tmerge versus scaled 

separation d12 /2pv for two different initial conditions. The circles were measured 

for columns injected at stable equilibrium positions, i.e. 'equilibrium placement'. 

The squares were injected with one column on-axis (r2 = 0) and the other at a. 

variable displacement r 1 = d12 , i.e. 'on-axis placement'. While the circles display a 

normal equilibrium placement Tmerge curve, the on-a.xis placement vortices never had 

lifetimes greater than 10 msecs. I have fleshed out the on-a.xis placement curve from 

memory (dotted line). The point vortex model again predicts that the separation as 

the vortices orbit about each other will not change that much, certainly not enough 

to explain decrease in lifetimes seen. 

I believe that the effect causing this is an enhancement of column expansion 

produced by 'orbital pumping'. As was discussed in section 3.2.2, the ca.use of single 
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column expansion is believed to be 'rotational pumping' [11]. Rotational pumping 

occurs with single off-axis columns because as an electron rotates about the column 

center clue to the self-field, the electrons confinement length will change due to the 

curved shape of the electrostatic confinement fields. This oscillatory change by an 

amount !1L once each Trotation will result in heating [2]. The heating can only come 

from the electrostatic energy 'H</> of the column, which implies that column expansion 

should occur. 

Radius expansion rates from rotational pumping have been calculated by 

Crooks [11] to go as (!1L/Lp)2
. An examination of the dependence of Lp on dis

placement (see figure 3.4) reveals that a column orbiting from r 2 = 0 to r 2 '"" .5 

will have a pumping of its length given by !1L/ Lp :::::: .013. This is roughly a factor 

of 5 increase in 1:1£ / Lp compared to that experienced by a stationary column at 

r 2 ,....., .25, which according to theory would increase its expansion rate by a. factor 

of 25. This is the sort of increase in expansion rate which is required to explain 
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the experimental data. While my evidence for orbital pumping to date is indirect, I 

find the mechanism for it plausible, and believe it will shortly be proved to have an 

important effect on 2 vortex lifetimes. 



Chapter 5 

Asymmetric Double Vortex 
Studies 

5.1 Introduction and Overview 

In this chapter I describe experiments on two vortices which have different 

radii but equal central vorticity. The focus here is more on merger and less on 

equilibria, in large part because no discrepancies from point vortex theory were 

noted in these experiments on vortices asymmetric in circulation but symmetric in 

111· The object was not just to study the dynamics of two interacting asymmetric 

vortices, but also to obtain predictions about the more complicated system of many 

interacting vortices. 

Experiments and simulations have long established that vortices can emerge 

from both laminar flows [30] and structureless initial conditions [46]. When sufficient 

time has passed, an undriven 2D turbulent state can therefore evolve to a conceptu

ally much simpler system of many vortices (of both sign), sufficiently well-separated 

that merger takes place relatively infrequently. The subsequent evolution of this sys

tem will then be dominated by the dynamics of the vortices, which includes merger 

of like-signed vortices and mutual advection. 

Recently, studies of this many-vortex state, using direct numerical simula

tions of the Euler equations, have supported the hypothesis that the essential fea-

107 
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tures of the evolution are contained in a simple 'punctuated Hamiltonian' model 

[8, 3]. In the punctuated Hamiltonian model, the motions of the spatially extended 

vortices are calculated by the point vortex approximation, and simple rules are used 

to replace two vortices with one bigger one when they occasionally approach close 

enough to merge. These models have resulted in predictions for timescales which are 

in qualitative agreement with the results of simulations [8, 3, 69]. However, the as

sumptions of the punctuated Hamiltonian model have not previously been supported 

by detailed studies (experimental or theoretical) of the validity of the point vortex 

approxi:r;nation, or of the details of the asymmetric merger process. On the contrary, 

one recent paper [21] on this subject, where contour dynamics simulations of top 

hat (i.e. uniform vorticity) profile vortices were used to study the merger of vortices 

asymmetric in radius, found that the conditions for and the products of merger a.re 

very different than has been assumed in the punctuated Hamiltonian models. 

In Chapter 4, I showed that the point vortex approximation results in accu

rate predictions for the equilibrium positions, oscillation frequencies, and instability 

rates of two spatially extended identical vortices. This result provides some support 

for the vortex motion hypothesis of the punctuated Hamiltonian model. In this chap

ter, I present the results of experiments on merger, where I have varied the radius 

of the vortices and studied both the time to merger and the final state produced by 

merger. I find that merger, once started, quickly results in a central core surrounded 

by a diffuse halo. The peak vorticity of the core is observed to be roughly the same 

as that of the merging vortices. The fraction of the total circulation entrained into 

the central core varies from 70% to 90% as the initial vortex radii are varied from 1:1 

to 2:1. This fraction, as well as the time required before merger (rmerge), depends on 

the initial placement of the two vortices. I also find that the self-energy of the central 

core is roughly equal to the sum of the self-energies of the merging vortices. These 
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results are in reasonable agreement with the premises of the punctuated Hamiltonian 

models, but disagree with the contour dynamics results in that partial merger events 

(where two cores persist after merger) are not observed. 

The chapter is organized as follows. I first show density plots of two asym

metric vortices undergoing rapid merger, and a radial profile of the final merged 

state. Section 5.:3 presents results on merger time versus initial position. I display 

merger curves (i.e. Tmerge vs. separation d12 ) for vortices with different relative 

radii. Very long lifetimes ( > 104 orbit periods) can be achieved for well-separated 

vortices injected at stable equilibrium positions, but as was seen in the symmetric 

case (section 4.5.3), the placement of the initial condition impacts the time required 

to merge. 

The evidence that merger events are complete and not partial is discussed in 

section 5.4. In section 5.5 I quantify the evolution of the two-vortex system during 

merger. Since the vortex profile after a merger is monotonic but does not have a 

sharp edge, it is necessary to determine a cutoff length for the purpose of calculating 

the quantities of interest for the merged core. In section 5.5.l I present a simple 

algorithm for establishing this cutoff, and present experimental evidence that this 

algorithm yields radii that are physically reasonable. Then, in section 5.5.2 I show 

how the central vorticity, self-energy and bound circulation of the vortices change 

after a merger. 

5.2 Example of Asymmetric Vortex Merger 

In figures 5.1 and 5.2 I show an example of two vortices, asymmetric in radius 

but with the same peak vorticity (peak, merging. The initial placement is 'vortex on

axis', and the ratio of radii is 2: 1. The final plot has dots which indicate where the 

data has been taken - the plot is then generated by interpolation between the data 



110 

grid. I've also indicated on that plot the size of the collimator hole. These plots are 

quite similar to those of figure 7 of McWilliams [46], which shows a numerical sim

ulation of an a.symmetric merger event where, however, the (peak of the two vortices 

is not the same. 

After the merger had taken place, I allowed the system to evolve for 5 msec, 

then damped the l=l wave for 15 msec to move the merged core on-axis. (I have 

established that this movement does not appreciably affect the radial profile.) The 

resultant radial profile of n(r) versus radial position is shown in figure 5.3. This is a 

typical example of the profile resulting from an asymmetric merger event. 

Several features should be noted about these merger pictures. First, the 

smaller vortex is strained out into a filament whose observed width is about the 

same as that of the collimator hole. This observed filament width is the result of 

convolution, by the hole, of a substantially narrower filament. Although the actual 

structure of the filament is not resolved, when deconvolution is done on the 2D plots, 

it has been found that the data is consistent with filaments being as narrow a.s a 

delta function. It is clear tha.t the effects of the collimator hole size and of the density 

of data points have to be ta.ken into account when interpreting the 2D plots. 

Second, it is apparent that the smaller vortex has been pretty well dissipated 

(i.e. merged) by 60 ftsecs. The largest vorticities measured in the filamentary struc

ture at this point a.re about 12% of the initial (peak· There is no indication of a 

long-lived secondary core in the subsequent evolution, either in the later-time radial 

profiles (which would reveal the presence of a large (peak core) or in the observed 

sector probe signals. This result is in disagreement with the prediction of Dritschel 

and Waugh [21] from contour dynamics simulations of isolated top hat vortices. For 

the initial conditions of figure .5.1, they found that a secondary core with a radius 

65% that of the smaller vortex's radius persisted after merger. I will return to this 

• 
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Figure 5.1: Density plots of two asymmetric Yort.ices merging. Times: t. = 0 and 
15 11secs. Density between solid contours: -L9 x l05cm-3
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Figure 5.2: Asymmetric merger at. t = :30 and 60 /LSecs. The positions where the 
data has been taken, a.nd the collimator bole size. a.re indicated on t.he t = 60 /tsecs 
plot.. 
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Figure 5.3: Non-pha.se-locked ra.dial profile taken 20 rnsecs after merger shown in 
figures 5.1 and 5.2. 21 measurements of density were taken at each radial position. 

question of the completeness of merger again in section 5.4. 

Finally, note that the final profile (figure 5.3) consists of a core surrounded 

by a low-density halo. If this profile were surrounded by many other vortices, the 
,, 

ha.lo would be stripped away by vortex interactions, while the core would remain 

intact unless merger takes place. To answer such questions as how much circulation 

is bound in a. merged profile, it is necessary to have an algorithm for defining what 

constitutes the core. This problem is addressed in section 5 . .5.1. 

5.3 Merger Times for Asymmetric Vortices 

Merger curves ( Tmerge vs. separation d12) have been measured for five dif-

ferent initial conditions. The initial conditions are tabulated in table -5.1, where 

the corresponding symbol is also indica.tecl. As was seen in the symmetric merger 

case (section 4.5.3), the initial placement of the vortices has an important impact 
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p1 I initial placement I symbol II 
1.0 0.147 equilibrium D 

0.92 0.173 equilibrium x 
0.6.5 0.228 equilibrium + 
0.8.5 0.176 vortex on-axis \7 

0.67 0.181 vortex on-axis 6 

Table 5.1: Initial conditions for merger curve data. 

on Tmerge· Vortices injected in stable equilibrium positions have significantly longer 

lifetimes than those injected with the same separation, but with one vortex on-axis. 

Two of the initial conditions have the same radius asymmetry of p2/ P1 ,....., .66, but 

differ in the initial placement, which permits the effect of the placement to be iso-

lated. As previously discussed, the decrease in lifetime is conjectured to be from 

orbital pumping. 

In figure 5.4 I plot the measured Tmerge versus d12/(p1 + P2). These merger 

curves clearly do not overlay each other. The great difference in lifetime caused by 

the initial placement can easily be seen here - for the same scaled separation of 

,....., 2.4(p1 + P2), vortices with p2/ P1 ,....., .66 injected into equilibrium positions had a 

lifetime 350 times greater than vortices injected with one vortex on-axis. 

In two papers on the punctuated Hamiltonian model, the critical separation 

de for immediate merger used was de = 1. 7(p1 + p2) by Benzi et. al. [3] and de = 

l.6.5(p1 + p2 ) by Carnevale et. al. [8]. These criteria for merger are indicated (dashes 

and dots) on figure .5.4. A more recent paper by Weiss and Mc \Villi ams [ 69] has used 

an elliptical moment model to determine the critical separation de for merger, and 

found a good fit to the results of the numerical integrations with 

de = 1.6 (l + PI - Pz) . 
P1 + P2 P1 + P2 

( 5.1) 

I can use my data to compare these competing predictions for de directly. 

'------------------------------------------

•. 
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Figure 5.4: Merger curves, where the separation d12 has been normalized to 
(p1 + P2). The radius ratio p2/ P1 is indicated. 

Experimentally, I consider the critical distance to be that which results in merger 

in about one orbit. In figure 5.5 I have plotted the measured separations, as a 

function of relative radii, which bracket the critical distance. The smaller distances 

(at each p2 / p1 value) resulted in merger in less than one orbit period, while the 

larger distances resulted in at least one orbit before merger. The merger predictions 

of Weiss and McWilliams, Carnevale et. al. and Benzi et. al. are shown, and the 

data shows better agreement with \Veiss and McvVilliams' prediction than with the 

others. 

5.4 Completeness Of Merger 

The question of whether there are significant differences between merger of 

symmetric vortices and merger of vortices asymmetric in radius is an important 

and controversial one. Dritschel and Waugh [21] recently used contour dynamics 
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Figure 5.5: Separations giving merger in less than an orbit period (D), and in more 
than an orbit period (<>), versus relative radii p2 / p1 . The merger criteria used by 
Weiss and Mc Williams (line), Benzi et. al. (dots) and Carnevale et. al. (dashes) are 
also shown. 

simulations of two isolated top hat profile vortices to investigate this, and found that 

many unexpected interactions were seen. The picture of asymmetric merger expected 

from the symmetric studies was that either two vortices would stably orbit about 

each other (elastic interaction) or merge, forming a merged core larger than either 

vortex (complete merger). Dritschel and Waugh found that for some separations, 

partial merger took place where vorticity would be exchanged, but both vortices 

survive and elastically interact after the partial merger event. In addition, they also 

found that there could be hoth partial and complete straining out events, where the 

vorticity ejected by the smaller vortex does not become associated with the larger 

vortex. They thus found that smaller vortices were often produced by asymmetric 

merger, and concluded that it "is therefore inappropriate to talk of the 'merger' of 

unequaJ vortices, since over a large range of initial conditions the two vortices do not 

.. i 
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join together to form a single compound vortex." 

The electron vortex experiments obviously have many differences from the 

ideal theoretical system investigated by Dritschel and Waugh. To enumerate some 

of these: 

1. The electron vortices are not isolated, but are contained in a circular boundary 

and thus interact with image forces. 

2. The vortices do not have top hat profiles, but rather have bell-shaped radial 

profiles (figure 4.13). 

3. The system is bounded (contained) in z. 

4. The individual electrons execute Larmour orbits about their guiding center. 

Because of these differences, little correspondence is seen between the ex

periments and the predictions of Dritschel and Waugh. In particular, I have found 

little evidence for partial merger events resulting in two altered and stable vortices. 

Additionally, while I do find that the structure of the merged vortex core depends 

on the initial separation, I have always found merger to result in the merged core 

being larger than the larger vortex, and hence do not observe 'straining out' events. 

Merger of asymmetric vortices thus is not observed. to be significantly different from 

merger of symmetric vortices. 

Since the EV apparatus does not have a camera diagnostic, our knowledge of 

merger will be improved when merger is studied on the nevv Cam-V machine. The 

evidence from EV, however, appears fairly conclusive that our asymmetric vortex 

merger is a. quick and complete process. The density plots a.re able to follow merger 

for several orbit periods before they become too noisy to be useful. These plots always 

show merging vortices to join, and any filaments to rapidly become strained and 

reduced in (peak· Occasionally, small coherent patches of vorticity become ejected: an 
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example of this for symmetric merger can be seen in figure 4.10, where the filaments 

show maxima. These maxima, however, are observed not to persist a.s the filaments 

wind a.bout the merged core. 

If persistent vortex cores were common stable structures of the post-merger 

system, I would expect to detect them on the non-phase-locked radial profiles, where 

they would show up as higher values of density seen intermittently in the ha.lo. Such 

anomalously higher values have not been seen, either in the many profiles taken to 

characterize the final state of merger (i.e. after,...., 20 msecs), or profiles ta.ken just 

after merger specifically to look for this effect. 

Finally, I would expect the presence of persistent cores after a partial merger 

to show up on the sector probe signals. What is actually seen on the signals is the 

complicated but unevolving waveform of the two asymmetric vortices orbiting a.bout 

each other, followed by a single l=l frequency after merger. The transition between 

the orbit waveform and the l=l waveform occurs in about one orbit period, and the 

waveform a.fter merger only rarely shows frequencies in addition to the l=l frequency. 

In figure 5.6 I have replotted my asymmetric merger data., a.long with the 

predictions of Dritschel and vVaugh. The symbols mark my data, with the squares 

indicating (complete) merger with one orbit period, and the diamonds indicating 

merger at time greater than one period. The curves a.re from figure 5 of [21 J, trans

formed to my variables, showing the predicted region of non-merger events. One 

can see that many of my data points are in regions where partial merger or partial 

straining out is predicted, yet only complete mergers were observed. 
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Figure 5.6: Merger curve data plotted with the predictions of Dritschel and Waugh 
for top hat isolated vortices from contour dynamics simulations. Squares (D) indicate 
complete merger observed within one orbit period, and diamonds ( <>) lifetimes greater 
than this. 

5.5 System Evolution During Merger 

5.5.1 Definition of Vortex Radius 

The density plots of merger that I ha.ve taken, of which figures 5.1 and 5.2 

are an example, reveal that the detailed evolution during merger sensitively depends 

on the initial conditions, but always results in a central core surrounded by filaments 

winding about it. This distribution then axisymmetrizes, on a timescale of tens of 

rotations (msecs), into a core surrounded by a halo. Figure 5.3 is an example of a 

typical merged profile. 

In order to quantify the evolution of the system during merger, for each initial 

condition detailed in table 5.1 above I have taken radial profiles of the vortices both 

before and ,...., 20 msecs after the merger. (This particular time after merger was 

selected because the noise then was sufficiently low to allow a good average of the 
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merged profile to be taken with 20 shots at each radial position.) This approach to 

studying the merged state can be contrasted with the method used by Waugh [68], 

who quantified the efficiency of symmetric merger by integrating contour dynamics 

simulations of top hat profile merger forward in time until the filaments began to 

'pinch off' the central vortex. He then considered the filaments to have been ejected 

from the core, and removed them. I feel this procedure adds an arbitrariness to the 

measurement, since the filaments can be seen to wrap tighter around the core as 

time progresses, and can reattach. 

The final state profile depends on the sizes and separations of the two vortices. 

In figure 5. 7 I show the radial profiles resulting from merger with P2/ Pi = .67 and 

three different initial separations (with one vortex on-axis). The initial radial profile 

of the larger vortex before merger is also shown by the dotted line. One can readily 

see the effect of the initial separation: the smaller d12 is, the more compact the 

merged profile. 

It is useful to conceptually divide the profiles into a 'core' and a lower density 

'halo'. The distinction between the two is that fluid in the core is bound, while the 

fluid in the halo is sufficiently far from the core that it may be advected away by 

subsequent near encounters with other vortices. Merger will result, therefore, in 

some initially bound vorticity being ejected into the background. To quantify this 

process, it is necessary to define an algorithm for determining the cut-off point ( rcut) 

between the core and halo. The profile resulting from D12 = 2.67 in figure 5. 7 is 

a case where one could perhaps determine a cut-off point by inspection at about 

1 cm. In general, however, the merged profiles do not have obvious cut-off points, 

and inspection for minima is therefore an unsatisfactory prescription. However, a 

self-consistent algorithm has been developed for determining r cut. 

The algorithm uses the idea that the onset of the pa.iring instability can be 
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used to define the dynamically important regions of vorticity. In section 4.5.1, the 

vortex radius Rv was defined by 

3 1 lrcut 
R = -- r' dA n(r B) 

v 2 NL 0 ' 
(5.2) 

where rcut was defined to be (for sharp profiles) the point where the density went 

to zero. With this definition, symmetric vortices were observed to be immediately 

unstable to the pairing instability when the separation d12 < 3.2Pv· Given this 

fact, it seems intuitive that fluid at separations greater than l.6pv from a vortex 

center should not be considered bound: a second like-signed vortex can pass by at 

a separation greater than would cause merger, but such that it will be close enough 

to advect or capture the distant fluid. I therefore define r cut for a haloed profile by 

(5.3) 

Of course, since Pv depends on Tcut through equation 5.2, equations 5.2 and 5.3 must 

be self-consistent. 

While this definition is based on considerations of merger with other vortices 

symmetric in (peak and radius, and an evolving many-vortex system will in general 

have vortices of arbitrary (peak and radius, this algorithm is perhaps the most logical 

one which yields a single value for the vortex radius. 

Figure 5.8 shows a determination of Pv (and rcut) for a haloed profile which 

has itself resulted from a prior merger. The solid line is the vorticity profile, and the 

dashed line is Pv from equation .5.2, where the integration is clone out to normalized 

radius r = rcut. The clotted line is r / Pv, and is a monotonically increasing function 

which has the value 1.6 at the point where the arrow is. The arrow is thus at rcut· 

Using this cut-off, we find that this particular profile has about 8.5% of its vorticity 

in the core . 

...._ _____________________________________ _ 

•. 
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Figure 5.8: Determination of cut-off between core and halo for a haloed vortex 
profile. 

Experimental Test of Vortex Radius Definition 

As a test of the vortex radius definition, I have measured the Tmerge vs. 

separation curve resulting from using the haloed vortex with the profile of figure 5.8 

a.s the initial condition. This profile has a. radius of Pv = 0.192 for rcttt = l.6pv, 

and would have a. radius of Pv = 0.303 for rcut = oo. In figure 5.9 I have plotted 

the measured merger curve with the separations scaled by both of these values. In 

addition, I've also included the merger data of figure 4.14. It can be seen that the 

vortex radius algorithm lea.els to an accurate prediction of when a haloed vortex will 

be susceptible to the pairing instability, as the merger curve overlays the other data 

for short Tmerge values when the cut-off is imposed. 

5.5.2 Measurements of Asymmetric Vortex Merger 

In this sect.ion I discuss how peak vorticity (peak, core circulation r, and core 

electrostatic self-energy H </> are observed to change after a vortex merger event. The 
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Figure 5.9: Measured merger curve using a haloed profile as the initial condition. 
The diamonds o are the separations scaled to a vortex radius calculated without 
using a cut-off. Use of rcut = l.6pv generates a smaller vortex radius which shifts the 
merger curve, as indicated by the arrow. 

values are quantified from radial profiles measured before and after merger. The 

data set is the same as discussed in the previous sections on asymmetric merger and 

tabulated in table 5.1. 

Peak Vorticity Measurements 

In figure 5.10 I plot the ratio of the measured (peak after merger to its value 

before merger. (Before merger, the two vortices had the same (peak.) While there is 

a fair amount (up to 8%) of scatter, there is no strong evidence that it is anything 

except measurement noise, as the average of the data yields 0.994 ± .026. 

A theory prediction for the evolution of (peak for asymmetric merging vortices 

is that (peak should be the same after merger. In a study of merger using both 

numerical and contour dynamics simulations, Melander et. al. [47] found that the 
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Figure 5.10: Ratio of peak vorticity (peak, measured after and before merger, versus 

pif P1 · 

core after symmetric merger has a 'jelly roll' structure with entrained lower vorticity, 

as can be seen in figure 4.11. However, for asymmetric merger the larger vortex 

(which they dubbed the 'victor') becomes the central region of the core, which implies 

that its original (1Jeak will be the final (peak of the core. 

Bound Circulation Measurements 

The line density NL(r) contained with r is given by the total line density NL 

of a z-averaged density n(r, 0) profile is given by 

NL(r) = j 2Jrr1dr' n(r') (5.4) 

and the circulation is f(r) = (27rce/ B) 2NL(r). For the merged core, I designate 

the circulation within r = l.6pv by I' core, and the total circulation by I'total· Hence, 

r halo = r total - r core. 

In figure .5.11 I plot the ratio of the measured circulation after merger with 

the value before merger. The data marked by (X) indicate I'totai/(f1 + f2), and 

are thus expected to be equal to 1, since vorticity (charge) is well conserved. The 
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measurement of f total is .noisy because the final profile has a significant amount of 

charge at very low densities. The average of the data is 1.00 ± .02, which suggests 

that the scatter is random noise. 
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Figure 5 .11: Ratio of the circulation measured after and before merger, versus 
p2/p1 • The line is a prediction used by Carnevale et.al. and Benzi et.al. 

The data marked by circles indicates f core/(f 1+f2), and thus indicate how 

much circulation is bound by the core after merger. I find that between 70% and 

90% of the circulation remains bound in the core after merger, with some indication 

that this percentage increases as p2/ p1 decreases. The scatter at each p2/ P1 value is 

systematic, depending on the initial separation of the vortices. 

These results can be compared with the merger rules used by Carnevale et. 

al. [8] and Benzi et. al. [3]. Using arguments involving conservation of kinetic energy 

... 

•· 
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per unit area [8], or invofving enstrophy dissipation [3), these authors independently 

came up with a simple merger rule of 

4 4 4 
P core = P1 + P2 · (5.5) 

This gives that the ratio of circulation bound in the core is given by P;oref (pi+ PD· I 

have plotted this prediction (solid line) in figure .5.11, as well as a prediction (dashed 

line) based on a merger rule of 

This latter rule takes into account the effect of the wall on the energies of top hat 

vortices. 

While the data shows a large amount of scatter, it is apparent that the 

measured values are systematically higher than those predicted by the merger rules 

for top hat vortices. I discuss a possible reason for this discrepancy in the next 

section. 

Self-Energy Measurements 

Merger is observed (and predicted) to conserve the total electrostatic energy 

H<P of the system. Before merger, the energy can be conceptually broken into 'self-

energies' of the vortices, H11 and H,µ 2 , and terms due to their interaction with ea.ch 

other and with the image charges, summing to H,pint· After merger, there are no 

interaction energy terms between vortices, but we can consider both a total electro-

static energy of the merged system H,pei and a core self-energy H<ficore where rcut is 

used to discard the halo. 

Carnevale et.al. [8], in order to derive their above merger rule (equation .5.5), 

used as a conserved quantity the self-energy of the merging vortices, i.e. H,µ1 + 

H¢i2 = 11,pcore· This is equivalent to asserting that the interaction energy between 

the merging vortices gets dispersed into the halo. 
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Figure 5.12: Ratio of the electrostatic self-energy Ht/> measured after and before 
merger, versus {J2 / P1. 

I have tested Carnevale's conjecture with my data, by calculating the self 

energies of the merging vortices, and of the merged profile with and without using 

rcut to discard the halo. The self-energies are calculated as described in section 2.4.2: 

the 3D potential </>(r, 0, z) and density n(r, B, z) distributions were solved for using 

the measured on-axis axisymmetric density profiles, and the energies were then given 

by eq 2.6. 

In figure .5.12 I plot the quantities H<t>c/(H<1>1 + H<1>2) and H</>core/(l{p1 + H<1>2). 

As in the bound circulation data, the scatter at each pif p1 value is systematic. As 

expected, the initial interaction energy is missing: from all the points, H¢e/(H¢1 + 

H¢2) = 1.20 ± .Oi. I find, however, that the mean of the Hrf>core/(J-1<1,1 +H4,2) points is 
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1.02 ± .07. While the measurements show a great deal of scatter, and are of course 

dependent on my particular definition for the core and halo, this result seems to 

indicate that Carnevale's conjecture is not an unreasonable one. 

Returning now to the question of the amount of circulation bound in the 

halo, I note that merger rules 5.5 and 5.6 are derived from the principle that the 

self-energy of top hat vortices is conserved during merger. Since self-energy is found 

experimentally to be roughly conserved, this suggests that the discrepancy seen in 

figure 5.11, between the measurements and predictions based on these merger rules, 

might be simply due to the non-top hat profile of the electron vortices . 



Appendix A 

Heating from Cascading 

A.1 Introduction 

In this appendix I present the results of studies on the heating done by 

'cascading'. The objective was to understand the heating done as a function of the 

cut gate rise time ( Tcut), and of the length of the region the column has been cascaded 

into. 

Cascading has been described previously in section 2.5.4, and a schematic 

of the process is shown there in figure 2.4. In order to put two (or more) columns 

together when only one filament source is available, it is necessary to lower a cut gate 

between them and let them stream into a common containment region. Unless the 

two are at the same 0-position (which will result in only one column after cascad

ing), they freely expand into the vacuum beyond the cut gate. This free expansion 

causes heating of the parallel temperature, and can additionally cause r - (} density 

transport. This heating is acceptable for vortex interaction experiments as long a.s 

the same heating occurs for all the columns, since the fluid analogy breaks down 

when the electron columns have different parallel temperatures. 

Figure A. l shows the experimental setup used to study cascading. The col

umn is initially confined in electrode S, with temperatures 711,...., Tl.,...., 0.:3 eV, density 

n ,...., 6.5 x 106cm-3 and length LP ,...., .5.:3 cm. The cut gate 14 initially is at a con-

1:30 

. ' 
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Figure A.1: Experimental setup for study of cascading. 

fining potential -18 V, and can be linearly raised to ground with any desired rise 

time greater than rv 0.23p sec. The electrodes Gl through 14 are either at confining 

potentials or grounded, while the front grid is at -80 V. 

A.2 Variations with Speed <;>f Expansion 

This first study examined the effect of the speed of expansion by varying the 

cut gate rise time ( Twt)· 11-L3 were kept at -20V, so the column expands only from 

S to S-14. (This is not a. cascade because the column does not 'fall' into a grounded 

ring beyond the cut gate.) After expansion, the column was held until 1]1 and TJ. had 

equilibrated, and then TJ.cq was measured. Since TL is known at the beginning of 

the equilibria.tion, knowledge of TJ.cq permits a calculation of 1]1 from equipartition 

of energy: T11 = 3Tl.eq - 2TJ.. 

There a.re two extremes of rise time where simple predictions can be ma.de. 

For Tcut very long compared to Tbouncc' the axial bounce adiabatic invariant is good, 

and the column will adiabatically expand (and cool) such that [37] 

(A.l) 

At the other extreme, for Twt very short compared to Tbouncf there should be no work 
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done on or by the electrostatic gates. In this case, energy conservation requires that 

1i,pe + 1i11 = constant, where 'H¢>e is the electrostatic potential energy and 1i11 = 
!mv11 = !kBTIJ is the thermal energy in the parallel direction. Since the initial 

plasma has about 10 times more energy in 1f¢>e than in its initial 'H11, a great increase 

in T11 will occur as 'H,pe decreases. 

In figure A.2 I show the measured total thermal energy ( ~kTl.eq) of the ex

panded and equilibriated column, as a function of Tcut· The dashed line marks the 

estimated Tbounce. The behavior of the curve is as expected: for short Tcut the column 

has been greatly heated, while for long Tcut the thermal energy reaches a plateau at 

a low thermal energy consistent with the column adiabatically expanding into S-L4. 

The bend between heating and cooling occurs for a Tcut near the estimated Tbounce of 

0.47 µsec. I note that the shortest Tcut (0.23 µsec) still resulted in some expansion 

cooling of the column, since energy conservation from the initial state would have 

resulted in a thermal energy of,...._, 2.4 eV /electron. 

A.3 Energy Conservation during Free Expansion 

This second study sought to verify the idea that beyond the cut gate the 

column freely expands, and thus H1e and H11 will be conservatively exchanged. The 

initial conditions were as described above, with the shortest Tcut (0.23 psec) possible 

used to minimize density transport. Selected cylinders on the other side of the cut 

gate ( G 1-13) were grounded to provide a progressively longer confinement region for 

the column to expand into. After expansion, the column was held long enough for the 

temperatures to equilibriate, and then its thermal energy (~l.:BTl.eq) was measured 

with the perpendicular temperature diagnostic. The electrostatic energy (H¢e) after 

the expansion was calculated using the 3D density solver previously described in 

section 2.4.2. 
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Figure A.2: Thermal energy (~kT.Leq) of column after expansion from S to S-14 
and equilibriation of T. 

Figure A.3 shows the measured electrostatic and thermal energies before and 

after expansion to different final containment regions. The expansion from S to S-14 

does work on the confinement gates, resulting in some loss of total plasma energy. 

The final states S-14 to S-Gl all have roughly the same total energy ~kBT.Leq + Hq:,e, 

however, corroborating the idea that the free expansion into grounded cylinders 

beyond the cut gate conserves energy. 

A.4 Cascade Heating When Two Columns Are 
Present 

When setting up an initial condition for a two-vortex experiment, it is im-

portant to adjust the confinement gates such that the same amount of heating is 

done to both columns. For experiments with symmetric columns the setup is also 
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before and after cascading from containment S to S-X, where Xis as indicated. The 
line through the data has a slope of unity . 
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usually symmetric, which automatically results in equal heating. For experiments 

with asymmetric columns, such as those with different radii, it is necessary to adjust 

the confinement gates because the potential energies of the two columns will be dif

ferent. The way this is done is by discarding one of the columns and measuring the 

l = 1 frequency offset of the other. By doing this repeatedly for different confinement 

voltages, these voltages can be adjusted to values which give both columns the same 

frequency offset and hence the same 111 · 

One problem with this procedure is that during the actual experiment, the 

columns will be expanding into containment regions with another column present. In 

this section, I use a simple model to analytically estimate the reduction in the amount 

of heating done. I find that there is a decrease in heating of at most 11 % (where 

the columns are put together very closely). While this is a significant correction, 

breaking the symmetry of the two columns line density or position does not break the 

symmetry of the reductions in heating, and I conclude that the presence of another 

column during cascading should not result in significant changes to the balancing of 

the parallel temperatures. 

The three stages of the model are as shown in figure A.4. Before cascading, 

the two columns are in different cylinders, and do not interact with each other 

{shown in A). They have line densities Ni and radii Pv, and are circular and of 

uniform density. B shows one of the columns having freely expanded into the full 

containment region, when the second column has been dumped. The line density is 

now N i/2, and the difference in potential energy between A and B gives the increase 

in thermal energy resulting from the expansion. C shows both of the columns having 

been cascaded together. The presence of column 2 increases the potential energy of 

column 1, thus lowering its increase in thermal energy. It is this difference in heating 

between B and C that I wish to estimate. 
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G2 

Figure 2.6: Model of Cascading. A: 2 columns before expansion. B: Final state of 
1 column. C: Final state of 2 columns. 

It is necessary to make some approximations in order to get a simple analytic 

estimate of the amount of heating done by cascade heating, and the effect on this 

of another column. I first make the approximation that the energy which goes into 

heating, as a result of a 3D cascade, is equal to the energy lost when the line density 

is halved. The idea behind this is that when the cut gate lowers in a time Tcut = 0. 75 

µsecs ,...., 2Tbounce, the column will adiabatica.lly expand until it is halfway through the 

cut gate, and then freely expand until its length doubles. This picture is consistent 

.• 
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with the above measurements. 

This approximation greatly simplifies things by changing the problem into a 

2D one. It is now merely necessary to calculate the electrostatic energy (per unit 

length) of a 2D column as a function of the relevant variables, and the amount of 

heating is given by the energy differences before and after cascading. For the one 

column case, the energy difference will be given by simply halving NL. For the 

general two column case, however, there will be interaction terms between the two 

columns after (but not before) the cascade, which will have to be taken into account. 

I model the columns as circular, constant density columns of radius Pv and 

line density NL (hence density n = NLf 7rp~). The notation for lengths is the same 

as used in the previous chapters, and summarized in Appendix E. I use subscripts 

1 and 2 to designate the two columns: and I use primes to designate their images. 

Normalized distances are labeled by dij, and displacements from the axis are labeled 

by ri. With the density and shape constraints, it is straightforward to do the integrals 

to calculate the 2D electrostatic energy 'Hrt> of a single displaced column: 

H1 = ~ j dr j rd() n(r,O)<f>(r,O) 

= e2 N},1 [[~ - ln(pi)] + [ln(l - ri)J] (A.2) 

The prediction of the amount of energy 6.H1 going into heating of 711 1 therefore, is 

(A.3) 

Since the containment voltages are adjusted to give both columns the same T11 

after cascading without the other column present, it is the value 6.H,1, of equation A.3 

which has been equalized for both columns. I now estimate the effect of cascading 

into a containment region with a second column present, to check both the magnitude 

of the effect and its asymmetry. 

_____________________________________ __J 
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The first column- after cascading will have an additional energy term Hq, 12 

due to interaction with column 2 and its image: 

(A.4) 

where 

H 2 [NL1] [l'h2] l [ d12 l q,12 = e -- -- n -- . 
2 2 r2d12 1 

(A.5) 

Similarly, column two will have an additional term Hq,21 given by 

Hq,21 = e2 [NL1] [NL2] ln [~] . 
2 2 r1d21 1 

(A.6) 

An examination of these terms reveals that the change in the amount of cascade 

heating will be the same for both columns, independent of either line density or 

displacement. The symmetry in r 1 and r 2 follows from the identity r2d12' = r1r2+1 = 

r 1d 21,, which is valid when 02 = 01+7r. As an estimate of how large the effect can be, 

when r1 = r 2 = 0.26 and Pv = 0.15 (i.e. the columns are near merger), the columns 

are heated about 11 % less than predicted by equation A.3. 

Impact of Electron Plasma Waves 

In a recent relevant study, Moody and Malmberg (51] studied the free ex-

pansion of a single on-axis column with similar plasma parameters to mine. They 

observed that a. rarefraction front propagates through the plasma, eventually emp-

tying the confinement region, at the phase velocities of long wavelength electron 

plasma. waves. I have observed that naturally damped electron plasma. waves are set 

up in the final confined state by free expansion during cascading. However, I found 

that the dynamics after cascading were not changed when resistive damping of the 

plasma waves was added, and have concluded that these waves do not impact the 

subsequent 2D dynamics. Driscoll [16] has similarly studied the plasma waves set up 
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during the hollowing of a ·column, and found no impact on the subsequent instability 

evolution to be caused by the waves. 

Density Transport During Cascading 

Rearrangement of the r - B density profile was often observed to occur as 

a consequence of cascading, with the amount dependent on the experimental pa

rameters during the cascading. The mechanism, presumably, is that z-dependent 

drifts occur while part of the column is spilling over the cut gate. This suggests that 

increasing B 2 or decreasing Tcut should reduce the amount of transport, which has 

been seen to be the case. This is why a value of Tcut ~ 0. 75µsecs was used for the 

experiments of this dissertation: it is fast enough to keep the transport low, while 

slow enough to avoid unnecessary heating. 



Appendix B 

Analysis of the Wall Sector 
Signals From Two Vortices 

I have described the sector probe signals resulting from a single vortex in 

section 2.4.3. The signal when two vortices are contained is simply the superposi

tion of the signals from each. The more complicated dynamics of the two vortex 

system result in the signals being harder to interpret, yet with practice a qualitative 

knowledge of the state of the system can be had with a glance. In addition, spectral 

analysis of the signals permits a quick quantitative measurement of the frequencies 

of the motions. 

Oscillations About Stable r 1 = r 2 Equilibria 

Figure B. l shows 2 examples of wall sector signals induced by vortices at 

or near stable r 1 = r 2 equilibrium points. The top signal is from two vortices 

very near the equilibrium points. In the rotating frame of the orbit motion, these 

vortices are stationary, and the resultant waveform is a sinusoid at twice the orbit 

frequency, 2forb· The second signal is produced by two vortices injected somewhat 

away from stable equilibrium points. These then oscillate at frequency lose about 

the equilibrium points, and their oscillatory radial motion produces the amplitude 

modulation visible on the 2.forb signal. 

140 
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Below the second waveform is a Fourier transform of it; the two largest 

components are the 2.forb peak and a peak at .forb - .fosc· Fourier transforms of sector 

signals thus provide a fast determination of !orb and .fosc· The values determined 

by this method have been compared with those derived from time series of density 

plots, a.nd found to be consistent with them. 

Oscillations About Stable r1 > r 2 Equilibria 

I have also observed equilibrium points where r1 and r 2 are not the same. 

I use a convention that r1 is the larger radial position, and term these r1 > r 2 

equilibrium points. Figure B.2, analogous to figure B.l, shows the sector signals 

resulting from unperturbed and perturbed motions about these equilibria. 

The Fourier transform (also shown) of the perturbed motions has a large 

component at .forb because of the a.symmetry of the radial positions of the vortices. 

The oscillatory motions at frequency fosc appear in the spectra. here a.s as sidebands 

about the !orb frequencies. The. reason for this difference from the spectra of the 

r 1 = r 2 oscillatory motions it that the vortices oscillate differently in the rotating 

frame; this can be seen in figure 4.4 whe"i·e I have indicated with arrows the directions 

of the oscillations. 

Exponential Growth From Unstable r 1 # r 2 Equilibria 

I show an example of a sector probe signal from vortices injected near unstable 

r1 = r 2 equilibrium points in figure B.:3. As the H( r1 , 01 - 02 , Po) plots described 

in section 4.4.4 show, such vortices execute large orbits a.way from the unstable 

equilibrium points. Fourier transforms of these waveforms show many frequencies, 

but can not be used to determine the rates / at which the vortices exponentiate 

away. I have marked the peak belonging to one of the vortices: the large changes in 
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C. time (500 µsec / division) 

B. time (100 µsec / division} 

A. Frequency (20 kHz / division) 

Figure B.1: Sector probe signals and Fourier transform, for two Yortices at and 
near stable r1 = r 2 equilibrium points. A: signals from vortices on equilibria. B: 
signals from vortices oscillating about equilibria. C: Fourier transform of B. 
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Figure 2.6: The sector probe signal when two vortices are injected onto unstable 
r1 = r 2 equilibrium points. 

r a11d 02 - 01 of the system are apparent. 

The wall sector signals permit a determination of the position of the unl:ltable 

equilibrium points. As the 0-pha.se of the initial condition is varied, the signals change 

accordingly. At a specific 0-pha.se, it is observed that the signal randomly displays 

one of two forms. This initial condition corresponds to the vortices being injected 

at the X-point of the energy cont.our plots; the shot-to-shot noise of the system 

determines which vortex moves out and which moves in radially. \Vhen the initial 

condition of this state is measured, it is found to be at r 1 = r 2 and 02 ~ 01 = 7r, 

within the measurement uncertainty. 

.• 



Appendix C 

Analysis of Vortex Motion Data 

The most direct way of investigating vortex motions is to take a series of 

phase-locked plots showing the vortices at various times tk. The 2D plots are then 

reduced to yield a set of center-of-vorticity positions h(tk), Oi(tk)], where the sub

script i denotes vortex 1 or 2. This has been done for a wide variety of initial 

conditions with a focus, however, on vortices with small perturbations from known 

equilibrium points (ri, Oi) orbiting about the center with a frequency !orb· The po

sition data sets have then been analyzed to determine the time evolution of the 

perturbations bri(t) and bOi(t): 

ri(t) = Ti+ 8r;(t) (C.1) 

The analysis (as shown above in section 4.3) reveals that the evolutions of 

the perturbations a.re well-described a.s either oscillations about stable equilibrium 

points at a. frequency .fosc, or a.s exponentiation a.t a. rate ±1 from unstable points. 

This is in agreement with the predictions of point vortex theory. In this appendix I 

describe the reduction of the position data. to yield frequencies and rates, and display 

examples of evolution about stable and unstable equilibrium points. The analysis 

consists of fitting a trial function to the data set, using a non-linear fitting subroutine 

(DNLSl) from SLATEC. DNLSl uses a. modification of the Levenberg-Tv1arqua.rdt 

algorithm to minimize the sum of the squares between the data set and the trial 

14.5 
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function. 

C.1 Oscillatory Motion Analysis 

An example of data showing oscillatory motion about stable equilibrium 

points is shown in figure C.l. (This data set has previously been plotted in (r, 8) 

coordinates in a rotating frame in figure 4.4a, and on contours of Hh(t), 8;(t)-8.i(t)] 

in figure 4.6.) The vortices were initially injected at the same radial position r 1 = 

r 2 = .36, but with a 8-perturbation from the stable equilibrium point at 82 = 01 + 7r. 

Oscillatory motion can clearly be seen. 

In fitting an oscillatory motion at a single frequency Jose to the data, there 

will be 18 unknowns since each of the four variables will have its own frequency, 

amplitude, phase, etc. However, an examination of the raw data suggests that the 

perturbations at each of the four coordinates are oscillating not only at a single 

frequency, but also with specific amplitude and phase relations between each other. 

It has in fact been found that a fit to a more constrained function, which imposes the 

symmetries seen in the data, results in residuals not significantly larger than those 

when these symmetries are not imposed. The constrained function is 

ri(t) = r; +A; cos (27r !osct + 7r</>1) ' 

O;(i) = B; + 27f forbt + B; COS ( 21ffosci + 7r</>; + %) (C.2) 

with the constraints A1 = -A2 , B1 = -B2 , and </>1 = ¢>2 . This is then a fit to 

9 unknowns, the four equilibrium position variables (r1 , 01 , r 2 , 02 ), two frequencies 

Uosci !orb), 2 amplitudes (A 1 , Bi) and one phase ( </>1 ). The function resulting from 

the fit has been plotted (lines) in figure C. l. I have also plotted there the 81( t) 

position residuals when the orbital motion and equilibrium positions are subtracted 

off. (This subtraction allows easier viewing of the 0 oscillation motion.) 
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Figure C.1: Ra.dia.1 positions, 0 positions~ a.ncl fJ residuals versus time, for two 
vortices oscilla.ting about stable equilibrium points. The lines are fits to the data, as 
described in the text. 
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I can now make comparisons between the fitted motion and the predictions 

of point vortex theory. Let me first note that several point vortex predictions have 

automatically been incorporated into the fit by the constraints, such as the predic

tions that radial and 0 perturbations will oscillate at the same frequency and be 7r /2 

out of phase with each other, and that the two vortices will have equal perturbation 

amplitudes. For these predictions, the goodness of the fit (of the constrained trial 

function to the data) is the evidence that they are valid. When the constraints are 

relaxed, the resultant decrease in the fit residuals is not sufficiently great to indicate 

that the constraints are not appropriate. 

One prediction of point vortex theory is that the equilibrium positions will 

be at r 1 = r 2 and 0 2 - 01 = 7r. The measured values are r 1 = .362, r 2 = .358, and 

01 - (Ji = l .0007r. These values agree, within the measurement uncertainties, with 

the theory prediction. 

Another point of comparison is of the relative size of the perturbation am

plitudes 8ri and Mi. The fit gives a value 8rif 80i = 0.4114, which agrees with the 

point vortex theory prediction of 0.4109. In general, the experimental agreement of 

the measured eigenfunctions with theory is good. 

C.2 Exponential Motion Analysis 

In figure C.2 I show an example of two vortices moving away from unsta

ble equilibrium points. This particular data set has previously plotted, in ( r, 0) 

coordinates in a rotating frame, in figure 4.4c. The initial condition consisted of 

rl = r2 = .572, and 02 - 01 = 0.9237r. 

When using an unweighted least-squares algorithm to fit an exponentially 

growing function, it is not feasible to keep the values from which the perturbations 

grow as free parameters: the fitter will typically reduce the residuals by moving the 
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Figure C.2: Radial positions, () positions, and () residuals versus time, for two 
vortices exponentiating away from unstable equilibrium points. The lines are fits to 
tbe data, as <lescri bed in the text. 
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solution a.way from the known initial values. However, the (unstable) equilibrium 

points have previously been determined to be at r 1 = r 2 and 02 - 01 = 7r from other 

observations, as discussed in Appendix B. 

The constrained fit function is then 

ri(t) = ri +A exp (It)+ Ci exp (-J't) 

Oi(t) = Oi +Bi exp (J't) +Di exp (-J't) + 27r forbt . (C.3) 

In addition to not fitting tori, Oi, an additional constraint has been applied by setting 

A/ Bi = Ci/ Di. This constraint causes the growing and decaying eigenvectors to 

have the same form, which is a prediction from point vortex theory is seen to be 

valid in the data. The fit is thus to 5 unknowns, Ai, Bi, Ci, !orb and 1'· The function 

resulting from the fit is shown (lines) on figure C.2. Examining the eigenfunctions 

again, the fit shows that brif 80i = 0.27 4, while point vortex theory predicts 0.299. 

... 



.. Appendix D 

Linear Stability Analysis of Two 
Vortices in a Circular Boundary 

In this appendix I determine the stability of perturbations about the equi-

librium points of two point vortices in a circular boundary. The analysis for the 

equilibria with r1 = r 2 has been done previously by Havelock [34]. Here, I extend 

the analysis to include equilibria where r1 =/= r2 . At the end, I additionally discuss two 

cases where workers have found results contra.dieting Havelock's. I have investigated 

these cases numerically, and find Havelock vindicated on both counts. 

Point Vortex Statics 

The velocity field generated by a single point vortex of circulation r, with no 

boundaries, is everywhere in the azimuthal direction (j a.bout the vortex, and with 

the magnitude inversely proportional to the distanced to the vortex: 

r Ivel=-. 
2nd 

(D.1) 

The direction of the velocity vector is as given by the right hand rule. In the case of 

a line charge of line density NL in a magnetic field B, the velocity field is similarly 

given by 

I I 
4necNL 1 

Vo = 
B 2nd ' 

(0.2) 
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which displays the analogy between circulation and line density of r = (4?recNL) I B. 

It is straightforward to include the effects caused by a circular boundary of 

radius Rw· The method of images provides a simple analytic way of calculating the 

fields required by the boundary condition, which requires an equipotential surface at 

R = Rw. It can be shown [26) that the image fields induced by a vortex of circulation 

rat an interior position (R, 8), are the same as those produced by an image vortex 

of circulation - r at a position ( R~/ R, 8). Here, the origin of the coordinate system 

is at the center of the boundary. 

Equilibrium Positions 

I have previously discussed the equilibrium positions of 2 vortices in sec

tion 4.4.l. Equilibrium for a vortex configuration requires that there be no net 

radial velocities V,., and that the vortices have net azimuthal velocities Vo which give 

the same orbit frequency for both vortices about the center. This results in the vor

tices remaining in the same relative positions while the configuration orbits about 

the central axis. 

An examination of the geometry makes it clear that the only possible equilib

rium positions for two vortices must be on opposite sides of the origin, i.e. 82 = 81 +?r. 

The positions of such equilibria are easily solved for, and in addition to the R1 = R2 

equilibria, equilibria with R1 =J. R2 are also found to exist. These equilibrium posi

tions have been plotted in figure 4.3, using the convention R1 > R2 . 

Stability Analysis: Definitions 

With the equilibrium positions known, one can do a linear stability analysis 

to determine their stability. I use the following conventions in the analysis: 

• 
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• The indexing between vortices is done with subscripts, where images are indi-

cated with primes on the respective index (i.e. l, 1', 2, 2'). 

• The equilibrium positions are given by Ri, Oi, and 8Ri, Mi indicate perturba-

tions about these positions. 

• I designate distances between vortices/images by Dii where the subscripts indi-

cate which distance. An example is D11 ,, which is the distance between vortex 

1 and its image. 

• I decompose the velocity vector V = 1~.f + VeB into components where the first 

subscript indicates which vortex has that velocity component, and the second 

indicates which vortex or image is causing that particular contribution. An 

example is Vo12,, which is the azimuthal velocity of vortex 1, as caused by the 

presence of the image of vortex 2. 

• The first order velocity components a.re distinguished from the exact ones by 

being lower-case, e.g. vo121 is the same velocity as above, but to first order in 

8r and 80. 

• In the analysis, lengths are normalized to the wa.11 radius Rw. This normaliza-

tion is similarly indicated with the use of the relevant lowercase variable. 

II Vortex Radial Position Azimuthal Position II 
1 r1 + 8r1 01 + 801 

1' (image) (r1 + 8rt)- 1 
01 + 001 

2 r2 + 8r2 01 + 7i + 802 
2' (image) (r2 + fir2)-1 

01 + 7i + b02 

Table D.1: Positions of perturbed vortices and their images. 
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The perturbed vortices and their images thus have the (normalized) positions 

tabulated in table D.l. I show the two vortex system coordinates in figure D.l. 

. . -
.. 

•. - . - • Bx 1 . - b . . . - - - - - - - - - --- ... _ - - - - - - -~11il -

Figure D.1: Coordinates for the linear stability analysis of equilibria. 

A needed quantity is the angular orbit frequency Warb with which vortex 1 

will orbit about the origin: 

(D.3) 

where the 3 terms are from the velocity contributions of vortex 2, image 2 and image 

1 respectively. The orbit frequency of vortex 2, which must equal that of vortex 

1 at equilibrium points, is given by w0 ,.b(r2, r1). This is a general feature of the 

formulas calculated below: as a consequence of the symmetry of the vortices in f, 

the equations for the velocities of vortex 2 are given by interchanging the subscripts 

1 ¢:? 2. Therefore, I won't display the equivalent vortex 2 equations. 
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The strategy of the analysis is to work out the rate of change of the pertur-

bations as a function of the relevant variables. I first work out the azimuthal velocity 

components of vortex 1, and then (taking into account the above orbital motion) its 

8-perturbation will evolve (to first order) as: 

(D.4) 

Next, I calculate the radial velocity components to get the first order evolution of 

the radial perturbation: 

br1 = Vr12 + Vrll' + Vr12 1 (D.5) 

In order to decompose the velocities into radial and azimuthal components, 

it is necessary to first solve for the angle Bx, which is the angle a. line between the 

relevant vortices makes with the radial vector of the moving vortex. The angle is 

pointed out in figure D.l, for the case where the velocity components of vortex 1, 

resulting from vortex 2, are being calculated. I find 

and 
(r2 + br2 ) sin (7r + Mh - 8Bi) 

di2 

Azimuthal Velocity Components 

The azimuthal contribution from vortex 2 is then 

(D.6) 

(D.7) 

Voi
2 
=I_ cos( Bx) =I_ (r1 + br1) - (r2 +hr;) cos (7r + 882 - 8Bi) , (D.S) 

27r di2 27r d12 

and to first order in 8r and 8() this is 

(D.9) 
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Similarly, 

(D.10) 

and 

The Ve121 term is similar to the %12 term: 

but the first order expansion is larger: 

(D.11) 

Radial Velocity Components 

The radial components of the velocity are given by: 

Vr11' = 0, (D.12) 

(D.13) 

(D.14) 

(D.15) 

and 
I 

~ ' 

(D.16) 
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When the first order velocity components are assembled as shown in equa-

tions D.5 and D.4, we have expressions (which I will not write out) for the pertur

bations of the form 

(D.17) 

a.nd similar equations for the second vortex. vVe thus have 4 equations and 4 un-

knowns. 

Angular momentum conservation, however, requires (to first order) br1 = 

-8r2 (r2 /ri) and therefore b·1\ = M 2 (r2/r1 ). When the two radial velocities expres-

sions are written out it is found that they are indeed dependent, and so there are 3 

equations and 3 unknowns. 

Symmetric (r1 = r 2) Equilibria 

These equilibria were first considered by Havelock in 1931 [:34]. For these 
. . 

equilibria, the equations give 8r2 = -8r1 and 802 = -801 , which implies symmetric 

perturbations of the form 

(D.18) 

Writing out the equations for vortex 1 using r1 = r 2 = d, we find 

(D.19) 

and 

80 = 8r1 (7d
6 

- 3d
4 + 5d

2 
- 1) = br B 

1 
2 ( d - 1)2 d3 ( 1 + d) 2 

( l + <12 ) -
1 

, 
(D.20) 

where A and B are functions of d only. Equations D.19 and D.20 are the same as 

Havelock's equation 24, when the typographical errors noted by Campbell [6) are 

corrected. 
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Taking the time derivative of one of the relations, and plugging in the other, 

we find 

(D.21) 

These have trivial solutions of the form 

(D.22) 

The stability of the perturbations is easily found: if AB < 0 the perturbations will 

oscillate about the equilibrium points, with the 8r and 80 oscillations 7r /2 radians 

out of phase with each other, and the oscillation frequency given by I AB 1
112

• If 

AB > 0, however, the perturbations will exponentially grow from the unstable points 

at a rate I = ( AB)1
/

2
• The quantity AB is negative for 0 < d < .4623 and positive 

for .4623 < d < 1. The eigenfunctions are found from plugging the solutions of D.22 

into equation D.19, which gives 

8r1(0) [AB] 112 = 80(0)A, (D.23) 

indicating the relative size of the radial and azimuthal perturbations as a function 

of d. 

Asymmetric (r1 =j:. r 2 ) Equilibria 

If we do not have the condition r 1 

velocities of the perturbations is 

r 2 , then the general result for the 

(D.24) 

where I have used br2 = -8r1 (rifr2) to reduce the equations, and where C, V and£ 

are functions of r1 and r 2 • (I do not print these here because they are fairly large.) 

The same eigenfunction stability analysis applies here as in the r 1 = r 2 case, 

with C(£ - 'D) the relevant quantity instead of AB. As discussed in section 4.4.1, 

•· 
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the analytic expressions· for the r 1 > r 2 equilibrium positions a.re la.rge, but the 

positions are easily found to arbitrary precision numerically. Plugging in these values 

in order to evaluate C(£ - V) establishes that this quantity is negative for all r 1 > 

r 2 equilibrium points, indicating stability. I have previously plotted the predicted 

frequency IC(£ - V) j1 /
2 of these oscilla.tions, in figure 4.5. 

In terms of the eigenfunctions, the symmetry of the oscillations is broken (as 

it must be to conserve a.ngular momentum), and vortex 2 executes larger orbits than 

vortex 1. ln addition, these oscillations also differ in having b()1 and 502 of the same 

sign. A1_1 example of an r1 > r 2 oscillation, a.s viewed in a rota.ting frame, can be seen 

in figure 4:.4b, 'vhere both the theory (line) and the experimental results (symbols) 

are shown. 

Subsequent Discrepancies with Havelock's Results 

Havelock [34] worked out the stability of vortices m r 1 = r 2 equilibrium 

positions in a general form va.lid for an arbitrary number N of vortices. Among 

his findings was that a symmetric ring of vortices (with no boundary) is stable for 

N < 7, neutrally stable for N = 7 and unstable for N > 7. This particular result 

has relatively recently (1979) been contradicted by Katyshev et. al. [39), who using 

both linear perturbation theory and numerical simulations found the N = 8 case to 

be stable (and N > 8 to be unstable). Ka.tyshev's results are erroneous, as will be 

discussed below. A previous similar discrepancy - Thomson's [67] finding that the 

N = 7 ring is unstable - has been found to be a consequence of a slight error. 

Havelock also worked out the general forms, for the same ring stability prob

lem, of the case where circular boundaries a.re present either inside or outside the 

ring. (The latter condition, with N = 2, is the r1 = r2 problem I worked out above 

in explicit form.) He found that the outside boundaries resulted in ma.king unstable 
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the otherwise stable N <' 8 cases, when the radii of the rings exceeded a critical value 

(normalized to Rw) rcritical· The critical value for the N = 2 case is rH = 0.4623. 

Some of his predictions for r critical disagree with the 1981 results of Campbell [6], 

who found agreement with Havelock for the Tcritica.l of even number of vortices, but 

"for odd N Havelock's formulas predict larger critical radii than are found by the 

eigenfunction calculations. The source of this discrepancy, which far exceeds nu

merical uncertainty, is not known." The largest discrepancy cited was for 3 vortices, 

where Campbell found rcritical = 0.55142, while Havelock found Tcritical = 0.56682. 

To investigate these two discrepancies (and other issues), I wrote a vortex 

dynamics simulator utilizing a Bulirsch-Stoer algorithm integrator [59] to follow the 

evolution of an arbitrary number of vortices forward in time. The integrator has been 

checked by making sure that the usual conserved quantities, angular momentum and 

electrostatic energy, were conserved. I found that for the N = 3 ring within a circular 

boundary, vortices put at equilibrium points at radii up to and including d = 0.56682 

remained there for (at least) tens of orbit periods, while vortices placed at d = 0.5690 

had their perturbations from the equilibrium points grow quickly and exponentially. 

I concluded that these results support Havelock's prediction, and not Campbell's. I 

then removed the effects of the boundary, and examined the evolutions of N = 7 

and N = 8 rings. I found that a ring of 7 vortices will stably orbit for (at least) 

many tens of orbits, while a ring of 8 vortices quickly breaks up. I concluded that 

Havelock had again been vindicated. 



Appendix E 

Frequently Used Symbols 

********** Energies ********** 

'H</> Eq. 2.8 2D electrostatic energy 

H<f> Eq. 4.8 scaled 2D electrostatic energy 

'H<f>e Eq. 2.6 3D electrostatic energy 
'Hl. kinetic energy perpendicular to magnetic field 

'HJl kinetic energy parallel to magnetic field 
T plasma temperature 

TJl temperature parallel to magnetic field 
Tl. temperature perpendicular to magnetic field 
Teq (2TJ. + TJL)/3 equilibrium temperature 

********** Densities ********** 
ne ( r-, 0, z) 3D density 

n(r,O) Eq. 2.7 2D (z-averaged) density 
NLe( Z) Eq. 2.1 line density 

NL Eq. 2.2 line density at z-center of column 
Ne total number of electrons 

Qsector charge induced on a sector 
Qcoll Eq. 2.4 z-integrated density dumped through collimator hole 

.. 
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SYMBOLS continued 

********** Frequencies and Times ********** 

fl=i l = i diocotron frequency 

!1~1 Eq. 3.3 infinite length l = 1 diocotron frequency 

~fl=l fl=l - f/~1 finite length l = 1 frequency shift 

forb observed orbit frequency of two vortices 

f':b Eq. 4.2 infinite length orbit frequency of two point vortices 

Jose oscillation frequency about a stable equilibrium point 

I exponential growth rate 
t time 

'Tbounce Eq. 2.17 oscillation time for an electron along z 
'Tc Eq. 2.16 time for electron to make a gyro-orbit 

'Tcut time for a cut gate to ramp between Vc and ground 

'Tee Eq. 2.19 time for an electron-electron collision 

'Teq Eq. 2.20 time for monotonic column to reach thermal equilibrium 

'Ti-+j e-folding time for decay instability 

'T/=i e-folding time for a damping l = i diocotron wave 
'Tm Eq. 2.21 mobility time: central density of column down 503 

'T mergP. time for two vortices to merge 

Trotation Eq. 2.18 time for column to rotate about its own axis 

********** Lengths ********** 
Ah 7r R~o11 collimator hole area 
n .. 

t) dij distance between column (or image) i and j 
Le containment length 

Lcyt 7.89 cm. length of EV apparatus cylinder 
Lp Nf/NL electron plasma column length 

Rcol/ l.59 mm. collimator hole radius 
RH 0.4623 Rw rH stability boundary for r 1 = r 2 

R; Ti displacement of column i from cylinder axis 
Rrrns Eq. 3.7 Trms column radius (root-mean-squared) 
Rv Eq. 4.10 Pv = Rv/Rw column radius (radially-weighted integral) 
Rw 3.81 cm. rw :::= 1 cylinder wall radius 

:::::} Lower case length variables are normalized to the wall radius Rw 
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SYMBOLS continued 

********** Velocities and Forces ********** 

VJ_ electron velocity perpendicular to the magnetic field 

1~ electron velocity parallel to the magnetic field 

VE Eq. 3.2 E x B drift velocity 
r circulation 

((r,O) ( 411ec/ B)n(r, 0) 2D vorticity 

(peak peak vorticity (normally at vortex center) 

********** Other ********** 
F applied or measured voltage (e.g. Vc, Viias, Vsector) 

</>e(r,O,z) 3D electric potential 
</>( r, 0) 2D electric potential 

E electric field 
B Bx+ By+ Bz main magnetic field 
/l mv1/2B gyromagnetic moment 

~ f VJL dz axial bounce adiabatic invariant 
Pe Eq. 2.15 Canonical angular momentum 
Pe Eq. 4.7 Scaled angular momentum for point vortices 
L Eq. 3.6 Normalized angular momentum per particle 
( Eq. :3.10 eccentricity 

q2 Eq. 3.12 quadrupole moment 
a/b Eq. 3.11 aspect ratio 
-e electron charge 
c speed of light 

kB Boltzmann constant 
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