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In the trapped particle diocotron mode, the trapped particles undergo E�B drift motion in a

uniform B field. Since such a flow is incompressible one is tempted to assume that the trapped

particle density is constant along a fluid element. However, this is not the case since there is

interchange of trapped and passing particles through the separatrix. This paper shows that a

corrected fluid analysis, taking into account the particle flux through the separatrix, reproduces the

same trapped particle density perturbation as obtained from the kinetic theory, thereby resolving

confusion in earlier papers. VC 2011 American Institute of Physics. [doi:10.1063/1.3613665]

Electric and magnetic field inhomogeneities in plasma

containment devices often cause particles to be trapped in

localized regions, and these trapped particles give rise to a

class of low frequency modes of oscillation called trapped

particle modes1 and to the important phenomena of neoclass-

ical transport.2 Recent work using nonneutral plasmas has

provided access to the physics of trapped particle modes and

neoclassical transport for a simple geometry and quiescent

plasma, where well-controlled comparisons of theory and

experiment are possible.

Trapped particle diocotron modes (TPDM) are routinely

excited on nonneutral plasma columns in which there are

classes of trapped and passing particles.3 To create these

classes, the usual Malmberg–Penning trap configuration is

modified by applying an azimuthally symmetric potential

barrier, the squeeze potential, near the axial mid-point of the

column. Particles with relatively low axial velocity are

trapped on one side or the other of the barrier, while high ve-

locity particles pass back and forth along the axial magnetic

field over the full length of the plasma column.

The mode dynamics is easy to understand qualitatively.

The mode potential has odd parity in the axial coordinate

and produces bounce-average E�B drift oscillations of the

trapped particles that are 180� out of phase on the two sides

of the barrier, while the passing particles stream back and

forth, partially Debye shielding the perturbation in the

trapped particle charge density.

A theoretical description of the TPDM was obtained

using the Poisson’s equation and the drift kinetic equation

with a Fokker–Planck (FP) collision operator.4,5 Experiments

had observed damping of the TPDM, and the theory

explained the damping as resulting from collisional velocity

diffusion at the separatrix between trapped and untrapped

particles. Associated with the damping is a neoclassical par-

ticle transport. The damping and associated transport also

were investigated using numerical simulations.6 Much addi-

tional work then explored and generalized the neoclassical

damping and transport.7–13 Of course, waves and field asym-

metries also produce transport in nonneutral plasmas without

separate classes of trapped and passing particles, and in these

plasmas the dominant transport mechanism is thought to be

resonant particle transport.14–19

As described in the abstract, the purpose of this brief

communication is to resolve a point of theoretical confusion

introduced in the first theoretical papers on the TPDM.4,5

Using a corrected fluid theory that takes into account the

flow of particles back and forth through the separatrix, we

show that the fluid description of the trapped particle density

perturbation matches that obtained from the kinetic descrip-

tion, and we discuss the consequences of the corrected den-

sity perturbation for the mode eigenfunctions.

In Refs. 4 and 5, the plasma potential is written as

/ðh; r; z; tÞ ¼ /0ðr; zÞ þ d/ðh; r; z; tÞ (1)

where /0(r, z) is the unperturbed potential and

d/ðh; r; z; tÞ ¼ d/‘ðr; zÞ exp½i‘h� ixt� þ cc (2)

is the mode potential. Here, (h, r, z) is a cylindrical coordi-

nate system with the z-axis coincident with the axis of the

plasma column. Debye shielding forces /0(r, z) and d/‘(r, z)

to be nearly z-independent, that is, constant along a magnetic

field line, except where the end and squeeze potentials are

applied. Here, we consider the simple case where the

squeeze potential is applied at the axial mid-point of the col-

umn (z¼ 0) and is of small axial extent. Then, /0(r, z) can

be replaced by /0(r) everywhere except at the ends and in a

small axial interval near z¼ 0, where /0(r, z) rises to the

peak value /0(r, z¼ 0)¼Us(r). The mode potential d/‘(r ,z)

changes sign in the region of the squeeze potential, so we

note that d/‘(r, z¼ 0)¼ 0 and set d/‘(r, z)¼ sign(z)d/‘(r)

for z outside the narrow interval of the squeeze potential.

To define the separatrix velocity, we work in the rotating

frame of the mode, where the potential is time-independent

and particle energy is conserved. Also, for the drift approxi-

mation and uniform magnetic field considered here, the

transverse kinetic energy is constant. The separatrix velocity

is then the axial velocity separating trapped and passing

particles
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Vðr; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q

m
½UsðrÞ � /0ðrÞ � d/ðr; hÞ�

r

’ vsðrÞ �
qd/

mvsðrÞ
; (3)

where q and m are the charge and mass of the particles and

mv2
s rð Þ=2 ¼ qUs rð Þ � q/0 rð Þ defines the unperturbed separa-

trix velocity. Of course, there is a correction to the potentials

in the rotating frame, but this correction is z-independent and

doesn’t enter the expression for the separatrix velocity.

The analysis4,5 assumes the frequency ordering Xc

� xb � x;xE � �, where Xc¼ qB=mc is the cyclotron

frequency, xb ¼ p�v=L the characteristic axial bounce fre-

quency, x the mode frequency, xE ¼ c=Brð Þ @/0=@rð Þ the

E�B drift rotation frequency, and � the collision frequency.

Here, L is the column length and B is the strength of the uni-

form axial magnetic field. For this frequency ordering, the

cross magnetic field motion of the particles is bounce-aver-

age E�B drift motion, and the axial motion is an adiabatic

(or Debye shielding) response. Because the trapped and pass-

ing particles experience different dynamics, the perturbed

distribution would be discontinuous in value and slope at the

separatrix velocity were it not for collisions. Even though the

collision frequency is small, the FP collision operator acts in

a narrow boundary layer near the separatrix to smooth the

connection, yielding a contribution to the mode dispersion

relation that is of order
ffiffiffiffiffiffiffiffiffi
�=x

p
rather than �=x. The analysis

is similar to that used by Rosenbluth, Ross and Kostomarov

in analyzing the effect of collisions on the trapped ion

mode.20

The guiding center distribution function, f(v, h, r, z, t), is

described by the drift-kinetic equation

@f

@t
þ vz

@f

@z
� q

m

@/
@z

@f

@vz
þ VD � r?f ¼ Cðf Þ; (4)

where VD ¼ ðc=BÞẑ�r/ is the drift velocity and C(f) the

FP collision operator. The guiding center distribution is writ-

ten as f¼ f0(v, r, z) þ d f(v, h, r, z, t), and the linear analysis

of the drift equation yields the results

df ¼ sign ðzÞdf‘e
i‘h�ixtþ cc ; df‘ ¼

df
ðtÞ
‘ ; if jvj< vs ;

df
ðpÞ
‘ ; if jvj> vs ;

(

(5)

where

df
ðtÞ
‘ ¼

c‘

Br

d/‘

x0
@f0
@r
þ a evtðjvj�vsÞ ; vt � ð1þ iÞ

ffiffiffiffiffiffiffiffi
x0

2Dv

r
;

df
ðpÞ
‘ ¼ � qd/‘

T
f0 þ b evpðjvj�vsÞ ; vp � �ð1þ iÞ

ffiffiffiffiffiffiffiffi
xb

2Dv

r
:

(6)

Here, the superscripts (t) and (p) refer to trapped and passing,

Dv is the velocity diffusion coefficient in the FP collision op-

erator, T is the plasma temperature in energy units, and x0

: ‘xE – x. The first term in the expression for df
ðtÞ
‘ is the

perturbation due to the bounce-average drift motion of the

trapped particles. There is no such term for the passing

particles, since the bounce-average of sign(z)d/‘(r) vanishes

for passing particles. The first, term in the expression for

df
ðpÞ
‘ is the adiabatic response associated with streaming

along the field lines. The two terms a exp[vt(jvj – vs)] and

b exp[vp(jvj – vs)] are corrections introduced by the FP colli-

sion operator in a small boundary layer near the separatrix.

Because velocity derivatives are large in the boundary layer,

only the velocity diffusion term need by retained in the FP

collision term.

The coefficients a and b are chosen so that df(t) and df(p)

are continuous in value and slope at the separatrix, v¼ vs(r).

For the unperturbed distribution

f0ðr; vÞ ¼
n0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pT=m

p e�mv2=ð2TÞ (7)

and the frequency ordering xb � x0 � � one finds the

values

a ¼ as

vp þ mvs=T

vp � vt

’ as ; b ¼ as
vt þ mvs=T

vp � vt

’ 0 ; (8)

where

as � �
c‘

Br

1

x0
@f0ðr; vsÞ

@r
þ q

T
f0ðr; vsÞ

� �
d/‘ : (9)

Integrating df‘ over velocity yields the perturbed density

dn‘ ’
c‘

Br

1

x0
n0t

n0

@n0

@r
d/‘ �

q

T
n0pd/‘

� 2

vt

c‘

Br

1

x0
@f0ðr; vsÞ

@r
þ q

T
f0ðr; vsÞ

� �
d/‘ ; (10)

where

n0t �
ðvs

�vs

f0 dv ¼ n0ðrÞ erf vsðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð2TÞ

ph i
;

n0p � n0 � n0t (11)

are the unperturbed densities of the trapped and passing

particles.

References 4 and 5 obtained the correct expression for df‘,
but in writing down an expression for dn‘, the first term on the

right-hand side of Eq. (10) was replaced by the term

c‘= rBx0ð Þ @n0t=@rð Þd/‘. One can understand this latter

expression as arising from a fluid treatment in which the

trapped particle density is assumed to be constant along the

E�B drift fluid trajectory, that is, as a solution to the equation

0 ¼ dnt

dt
¼ @dnt

@t
þ xE

@dnt

@h
� c

Br

@d/
@h

@n0t

@r
: (12)

However, the trapped particle density is not constant along a

fluid trajectory because of the particle flux through the veloc-

ity separatrix.

To formulate a corrected fluid theory, which takes into

account the flux through the separatrix, we first define the

trapped particle density (say to the right of the barrier) as the

integral
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ntðh; r; tÞ ¼
2

L

ðL=2

0

dz

ðVðh;r;tÞ

�Vðh;r;tÞ

dvzf ðvz; h; r; z; tÞ: (13)

Operating with this integral on drift-kinetic Eq. (4) yields the

corrected fluid equation

dnt

dt
¼ 2f ðV; h; r; tÞ dV

dt
þ 2DV

@df

@v

����
v¼V

; (14)

where d=dt ¼ @=@tþ VD � r?. The terms on the right-hand

side arise because derivatives of the limits on the velocity in-

tegral [i.e. vz¼6V (h, r, t)] must be subtracted off when the

derivative and the integral are commuted. Physically, these

terms represent the flux of particles through the separatrix. In

the integral over Eq. (4), two terms vanish

ðL=2

0

dz

ðV
�V

dvz vz
@f

@z
� q

m

@/
@z

@f

@vz

� �
¼

ðqUsðrÞ

minðq/Þ

de
m

ð
e¼const:

dz
@f

@z

����
e

¼ 0 ;

(15)

where e ¼ mv2
z=2þ q/ and min(q/) is the minimum value

of q/ in the trapped particle region. The last z-integral is

over a closed loop in (z, vz) space at constant e.
Dropping nonlinear terms in Eq. (14) yields the equation

dnt

dt
¼�2i signðzÞx0 q

mvs
þ c

Bx0
‘

r

@vs

@r

� ��

� f0ðr; vsÞd/‘ �
a

vt

	
ei‘h�ixt þ cc (16)

for which the solution in terms of complex amplitudes is

dnt;‘ ¼
c‘n0t

rBx0n0

@n0

@r
� 2q

mvs
f0ðr; vsÞ

�

� 2

vt

c‘

rBx0
@f0ðr; vsÞ

@r
þ q

T
f0ðr; vsÞ

� �	
d/‘ : (17)

A simpler way to calculate the trapped particle density

perturbation is to substitute f¼ f0þ df into definition (13),

where df is given by Eqs. (5)–(8), and then linearize. Of

course, this procedure reproduces the fluid result in Eq. (17).

Likewise the density of passing particles is given by

np ¼
2

L

ðL=2

0

dz

ð1
Vðh;r;tÞ

dvzf þ
ð�Vðh;r;tÞ

�1

dvzf

2
64

3
75: (18)

Substituting the kinetic solution for fþ df and then lineariz-

ing yields the result

dnp;‘ ¼
2q

mvs
f0ðr; vsÞ �

q

T
n0p

� �
d/‘ : (19)

Of course, the sum of Eqs. (17) and (19) reproduces

Eq. (10).

Operating on Eq. (4) with the integrals in Eq. (18) yields

the modified fluid equation for passing particles

dnp

dt
¼ �2f ðV; h; r; tÞ dV

dt
� 2DV

@df

@v

����
v¼V

þ 2

L
signðzÞjz ; (20)

where

jz ¼
ð1

Vðh;rtÞ

dvzvzf jz¼0 þ
ð�Vðh;r;tÞ

�1

dvzvzf jz¼0 (21)

is the current density of passing particles over the squeeze

barrier. Linearizing and using Eq. (19) for dn‘p, yields an

expression for this “sloshing current”

jz ¼
ix0L

2

c‘n0t

rBx0n0

@n0

@r
� q

T
n0p

�

� 2

vt

c‘

rBx0
@f0ðr; vsÞ

@r
þ q

T
f0ðr; vsÞ

� �	
d/‘e

i‘h�ixt þ cc:

(22)

Next we discuss some consequences of the correction to

the density perturbation. For simplicity, we consider the limit

DV! 0, focusing on the Real Part of the mode frequency

FIG. 1. The solid, dashed, and dotted curves show the radial dependence of

the scaled density, potential, and squeeze voltage, respectively [i.e.,

n0(r)=n(0), /0(r)=/0(0), and Us(r)=/0(0)].

FIG. 2. The scaled frequencies x=xE(0) and ~x=xEð0Þ are plotted versus the

scaled squeeze voltage applied at the wall, UW=/0(0). The ratio of the Debye

length to the wall radius is taken to be kD(0)=rW¼ 0.057, which corresponds

to T¼ 1 eV in the experiments of Ref. 1.
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and eigenfunction. Substituting density perturbation (9)

(with DV! 0) into Poisson’s equation yields the mode

eigenfunction equation

k2
D

1

r

@

@r
r
@w
@r

� �
� ‘

2

r2
w

� �
¼ Uðr;xÞw; (23)

where w¼ d/‘(r) is the mode eigenfunction,

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=4pe2nð0Þ

p
is the Debye length on axis, and

Uðr;xÞ � n0pðrÞ
n0ð0Þ

þ xEð0Þ2k2
D

xEðrÞ � x=‘
n0tðrÞ
n0ðrÞ

1

r

@

@r

n0ðrÞ
n0ð0Þ

� �
: (24)

For comparison, the uncorrected eigenfunction, say
~wðrÞ, satisfies Eq. (23) with U(r, x) replaced by

~Uðr; ~xÞ ¼ n0pðrÞ
n0ð0Þ

þ xEð0Þ2k2
D

xEðrÞ � ~x=‘
1

r

@

@r

n0tðrÞ
nð0Þ

� �
: (25)

As we will see, the corrections to the TPDM frequency and

eigenfunctions are small for typical experimental conditions.

Figure 1 shows plots of n0(r)=n(0), /0(r)=/0(0), and

Us(r)=/0(0) that are typical for the experiments. For this

plot, the squeeze voltage applied at the wall, UW¼Us(rW), is

chosen to have the value (0.5)/0(0). The 1D (i.e., radial) so-

lution for the squeeze potential assumes that rW 	 DL	 L,

where DL is the axial length of the squeeze region. The

Debye length and wall radius are taken to have the ratio

kD=rW¼ 0.057, which corresponds to T¼ 1 eV in the experi-

ments.3–5

For azimuthal mode number ‘¼ 1, Fig. 2 shows that

plots of the scaled frequencies x=xE(0) and ~x=xEð0Þ versus

the scaled squeeze potential applied at the wall, UW=/0(0).

Likewise, Fig. 3 shows w(r) and ~wðrÞ and Fig. 4 shows U(r)

and ~UðrÞ for the choice of squeeze voltage shown in Fig. 1

[i.e., UW=/0(0)¼ 0.5 ].

Although these corrections to the TPDM are small, the

uncorrected eigenfunction equation predicts another mode,

which rotates slightly faster than the plasma, and the correc-

tion eliminates this mode. This “fast mode” could exist only

because @n0t=@r is positive over a range of r values. Since

(n0t=n0)(@n0=@r) is uniformly negative, the corrected eigen-

function equation does not support the mode.

The authors enjoyed useful discussions with A. A.

Kabantsev, C. F. Driscoll, and D. H. E. Dubin. This work

was supported by National Science Foundation Grant zNo.

PHY-0903877 and DOE Grant No. DE-SC0002451.

1W. M. Tang, Nucl. Fusion 18, 1089 (1978).
2F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).
3A. A. Kabantsev, C. F. Driscoll, T. J. Hilsabeck, T. M. O’Neil, and J. H.

Yu, Phys. Rev. Lett. 87, 225002 (2001).
4T. J. Hilsabeck, A. A. Kabantsev, C. F. Driscoll, and T. M. O’Neil, Phys.

Rev. Lett. 90, 245002 (2003).
5T. J. Hilsabeck and T. M. O’Neil, Phys. Plasmas 10, 3492 (2003).
6G. W. Mason, Phys. Plasmas 10, 1231 (2003).
7A. A. Kabantsev and C. F. Driscoll, Phys. Rev. Lett. 97, 095001 (2006).
8A. A. Kabantsev, T. M. O’Neil, Yu. A. Tsidulko, and C. F. Driscoll, Phys.

Rev. Lett. 101, 065002 (2008).
9A. A. Kabantsev and C. F. Driscoll, Phys. Rev. Lett. 89, 245001 (2002).

10A. A. Kabantsev, J. H. Yu, R. Lynch, and C. F. Driscoll, Phys. Plasmas 10,

1628 (2003).
11A. A. Kabantsev, D. H. E. Dubin, C. F. Driscoll, and Yu. A. Tsidulko,

Phys. Rev. Lett. 105, 205001 (2010).
12D. H. E. Dubin, C. F. Driscoll, and Yu. A. Tsidulko, Phys. Rev. Lett. 105,

185003 (2010).
13D. H. E. Dubin and Yu. A. Tsidulko, Phys. Plasmas 18, 062114 (2011).
14D. Ryutov and G. Stupakov, JETP Lett. 26, 174 (1978).
15E. P. Gibson and J. Fajans, Phys. Rev. Lett. 90, 015001 (2003).
16D. L. Eggleston and T. M. O’Neil, Phys. Plasmas 6, 2699 (1999).
17J. Fajans, W. Bertsche, K. Burke, S. F. Chapman, and D. P. van der Werf,

Phys. Rev. Lett. 95, 155001 (2005).
18G. B. Andresen, W. Bertsche, C. C. Bray, E. Butler, C. L. Cesar, S. Chap-

man, M. Charlton, J. Fajans, M. C. Fujiwara, D. R. Gill, W. N. Hardy, R.

S. Hayano, M. E. Hayden, A. J. Humphries, R. Hydomako, L. V. Jørgen-

sen, S. J. Kerrigan, J. Keller, L. Kurchaninov, R. Lambo, N. Madsen, P.

Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa, F. Robicheaux, E.

Sarid, S. Seif El Nasr, D. M. Silveira, J. W. Storey, R. I. Thompson, D. P.

van der Werf, J. S. Wurtele, Y. Yamazaki, and ALPHA Collaboration,

Phys. Plasmas 16, 100702 (2009).
19Y. Kiwamoto, Y. Soga, and J. Aoki, Phys. Plasmas 12, 094501 (2005).
20M. N. Rosenbluth, D. W. Ross, and D. P. Kostomarov, Nucl. Fusion 12, 3

(1972).

FIG. 3. The radial dependence of the eigenfunctions w and ~w is shown for

the profiles in Fig. 1 and for kD(0)=rW¼ 0.057.

FIG. 4. The radial dependence of the effective potentials U and ~U for the

same conditions as used for Fig. 3.

084505-4 Tsidulko, Hilsabeck, and O’Neil Phys. Plasmas 18, 084505 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp

http://dx.doi.org/10.1088/0029-5515/18/8/006
http://dx.doi.org/10.1103/RevModPhys.48.239
http://dx.doi.org/10.1103/PhysRevLett.87.225002
http://dx.doi.org/10.1103/PhysRevLett.90.245002
http://dx.doi.org/10.1103/PhysRevLett.90.245002
http://dx.doi.org/10.1063/1.1599356
http://dx.doi.org/10.1063/1.1566959
http://dx.doi.org/10.1103/PhysRevLett.97.095001
http://dx.doi.org/10.1103/PhysRevLett.101.065002
http://dx.doi.org/10.1103/PhysRevLett.101.065002
http://dx.doi.org/10.1103/PhysRevLett.89.245001
http://dx.doi.org/10.1063/1.1564089
http://dx.doi.org/10.1103/PhysRevLett.105.205001
http://dx.doi.org/10.1103/PhysRevLett.105.185003
http://dx.doi.org/10.1103/PhysRevLett.90.015001
http://dx.doi.org/10.1063/1.873225
http://dx.doi.org/10.1103/PhysRevLett.95.155001
http://dx.doi.org/10.1063/1.3258840
http://dx.doi.org/10.1063/1.2035427
http://dx.doi.org/10.1088/0029-5515/12/1/001

	E1
	E2
	E3
	E4
	E5
	E6
	E7
	E8
	E9
	E10
	E11
	E12
	E13
	E14
	E15
	E16
	E17
	E18
	E19
	E20
	E21
	E22
	F1
	F2
	E23
	E24
	E25
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	F3
	F4

