Neoclassical transport is enhanced flux across the magnetic field caused by symmetry-breaking "field errors" in the confinement fields

In non-neutral plasmas, these neoclassical fluxes are often the dominant plasma loss process
New results:

- For known applied field errors that are not too big and do not produce localized particle trapping, experimentally observed radial particle transport is explained by the plateau regime
- To achieve accurate predictions precise self-consistent potentials must be calculated numerically, including finite length effects in realistic geometry. This was done using a new code described below.
- 3. Dependence of the transport on plasma length and magnetic field has been characterized for two types of errors: a potential asymmetry applied to a wall electrode, and a tilt of the magnetic field compared to the axis of the Penning trap
- 4. For shorter plasmas in strong B fields, plateau transport is strongly suppressed by a novel effect: a minimum axial bounce frequency exists in short plasmas that can be larger than the rotation frequency if B is large, suppressing bounce-rotation resonances
- This effect also explains why spheroidal plasma equilibria have been observed to have lower field error transport.

expansion rate v versus B in electron plasma from three types of field errors: • (a) unknown "background errors" in the trap fields

• (b) voltage $V_a \cos 2\theta$ applied to a single wall electrode, length $4\text{cm}, V_a = 1$ Volt • (c) a tilt of the magnetic field w.r.t. the trap axis by angle $\varepsilon = 1$ mrad

Fully Self-Consistent Calculation of Neoclassical Transport in Nonneutral Plasmas

T O'Neil, A. Kabantsev, D. Dubin UC San Diego Supported by grants from NSF and DOE

Ingredients in the theory:

b) Evaluate & directly in the plateau regime using action-angle variables appropriate to the plasma equilibrium. The resulting flux should agree with method a) (it does). The solid lines in the radial expansion rate figures use both method and b; the difference between the methods is negligible.

Here we drop collisions and write the perturbed Vlasov equation in action angle variables (ψ ,I). The equation can then be solved analytically for a given perturbed potential:

 $g = \sum_{n,l} e^{i\pi\psi + il\theta} g_{n,l}(r,I), \quad \delta\phi(r,z,\theta) = \sum_{n,l} e^{i\pi\psi + il\theta} \delta\phi_{n,l}(r,I)$

$$l\overline{\omega}_{E}(r,I)g_{nJ} + in\omega_{b}(r,I)g_{nJ} = il\frac{\omega_{F}}{T}\delta\phi_{n}$$

 $\frac{\omega_F}{I \overline{\omega}_E + n \omega_b}$ ^(*) $\omega_b(r, I)$: axial bounce frequency $\overline{\omega}_E(r, I)$: bounce – averaged ExB rot

Take as the perturbed potential the output of the code from "brute force" method a). We do not try to iteratively solve for a self-consistent g and d_{2} using the above copression. Divergences in g at bounce-rotation resonances are difficult to deal with, as $\operatorname{are}(5^*, j) \leftrightarrow (\Psi, J)$ transformations at each radial grid point. (The Plemelj formula can still be used to obtain the radial flux from the above expression for g .)

c) Redo method b) by determining $\delta\phi$ in a more approximate manner: Approximate d^{2} by it's bounce-averaged form in the collisionless Vlasso equation (the *n*-0 term in (*)), which removes all bounce-rotation resonances. Use this to calculate an approximate edi-consistent perturbed potential d^{2} terratively. Then use this approximate bounce-averaged form for d^{2} in plateau regime calculation b) or in a). This approximate method yields the deshed lines in the newroom extramisor mate frame.

Radial Transport at different plasma lengths+for a spheroid

We varied the half-length L of the electrode structure: L=15 cm, L=30 cm(previous data) and L=45 cm, keeping the end electrodes at 100Volts and the radial density profile roughly the same. This makes cylindrical plasmas with three (full) lengths: Lp~ 20 cm, Lp~ 50 cm (previous), and Lp~ 80 cm.

We also created a 50 cm long spheroid using a tailored $% \left({{\rm wall}} \right)$ with roughly the same radial density profile

At or below B~1 kG, transport from a localized error is roughly

・This finite length effect is missed in previous 3000 work that uses periodic boundary conditions in z or "flat ends" 資 2000 1000

Suppression effect is even greater in spheroids

One experiment* also observed a reduced expansion rate when the plasma is confined in a harmonic potential in z (including plasma image charge effects)

*Higaki et al., Jpn J. Appl. Phys. 37:664 (1997)