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Exponentially growing diocotron instabilities with azimuthal mode number I= 1 arise in 
hollow, cylindrical electron columns when the continuity equation includes small terms 
corresponding to finite gyroradius or axial variation of the radial electric field. The 
modes are similar in spatial form to the algebraically growing perturbations of the theory 
without these effects. 

Diocotron instabilities are a well-studied class of shear- 
flow instabilities in non-neutral plasmas confined by trans- 
verse electrostatic and magnetostatic fields.’ In this Letter 
we consider such instabilities in cylindrical plasma col- 
umns bounded by a cylindrical conductor at r=R and 
confined by a strong, uniform magnetic field B = Bz^; we 
employ cylindrical coordinates (r&z). The plasma is as- 
sumed to be nonrelativistic and of moderate density 
(w,,<R where wP and fi are plasma and cyclotron frequen- 
cies, respectively). Recent experiments by Driscol12 on hol- 
low, cylindrical electron columns exhibit such an instabil- 
ity with azimuthal mode number I= 1. No such instability 
is predicted by the usual treatments based on spectral anal- 
ysis of the cylindrical Rayleigh equation 

(1) 

where WE is the local EXB rotation rate and the electro- 
static potential perturbation is the real part of 4( r,t)exp Uf3 
with (p = 0 at r=R and regular at r=O. However, Rosen- 
bluth discovered by initial-value treatment of Eq. ( 1) that 
there are algebraically growing disturbances with I= 1 
whenever the rotation frequency is nonmonotonic [i.e., 
there is a radius r, where wk(rC) = 0 with 0 < r, < R and 
wg( rC) #O]. The details of this instability were presented in 
Ref. 3. The asymptotic form of these perturbations in lin- 
ear theory is 

- qddl, for r<rc 
for r>r, (2) 

where w, = wE( rC). In the experiments, on the other hand, 
exponential growth was observed. In the following analysis 
it is shown that there are exponential instabilities similar in 
spatial form to Eq. (2) when the continuity equation is 
modified to account for either finite gyroradius or the ex- 
ternally imposed electrostatic confinement field. We con- 
sider only small modifications, so the modes are still essen- 
tially waves superposed on a sheared ExB flow. 

In all cases we take as the leading-order description of 
the equilibrium a density ne( r,z) with &ze/az-O except in 
boundary layers near the ends of the plasma columns 
[n(r,z) -N,,(r)], with a single maximum in the rotation 
frequency profile wE( r) at r, > 0. The magnetic field is suf- 
ficiently strong that wE(i?L although &(R(L, where c 
is a thermal velocity, Ao is the Debye length, and L is the 
length of the column. The representative profile 

where H(x) is the Heaviside step function and rP = 0.5R, 
shown in Fig. 1, was used for the numerical results shown 
below. 

First let us consider the role of the electrostatic con- 
finement field, which is imposed by setting boundary po- 
tentials in the experiments. Because of z dependence, the 
radial electric field (and hence the instantaneous rotation 
frequency) differs slightly from the field computed by ra- 
dial integration of the line-averaged density. In the limit of 
large B, the EXB motion is slow compared to bouncing 
along B, so the principal effect can be expressed as an 
increment in the bounce-averaged rotation frequency. 
(This assumes that terms arising from the z dependence of 
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FIG. 1. Radial equilibrium profiles for a hollow cylindrical electron 
plasma: Solid line, left scale-line-integrated density normalized to cen- 
tral value; dashed line, right scale-rotation frequency normalized to cen- 
tral t$/fL. A conducting cylinder is located at r= R. 

the perturbation potential are negligible; this is plausible 
for small /z&R, but should be checked against a more 
complete analysis. ) To avoid excessive detail depending on 
the confinement geometry, an illustrative form for this in- 
crement is considered, specifically 

- h-ec 
dr) =g s 

dr’r’No(r’) +Ar2, (3) 

where the overbar indicates a bounce average and the in- 
tegral is the usual two-dimensional (2-D) form. A con- 
stant frequency offset can be eliminated by working in a 
rotating frame; the r 2 term is the simplest nontrivial one. 
The phenomenological parameter A represents the effective 
strength of the radial component of the confinement field; 
it presumably increases for shorter plasmas. For I= 1, it is 
convenient to work with a radial displacement field c(r), 
defined by (PC r,t) = r[w - oE(r)]g( r) exp( - iot). The 
associated density perturbation is Sn = - g(r) (dno/dr) 
X exp( iZ0 - iwt) . The boundary conditions are g( R ) =0 
and dg/dr = 0 at the origin. The ideal asymptotic displace- 
ment field is proportional to the step function H( rC - r). 
With the model of Eq. (3), the displacement field satisfies 

~r3[0--Wh(r)12~~-r3[O--UIE(r)]8AE=0. (4) 

Equation (4) is a somewhat unusual boundary-layer prob- 
lem, so a summary of its asymptotic behavior may be of 
interest.4 Near the peak in rotation rate we have WE- w, 
+ itir( r - rc)2. Define a real boundary-layer scale 8 and 

phase p by o = w, - 6 e 2 2i&F. We are interested in the 
scaling as 6-0, so assume that 6 < r@(r) in the boundary 
layer, where rw( r) = LB~/w$‘. The outer solutions obtained 
by integrating from r=O and r=R are 

l--l +8A s,’ r’3[w,T:E(r’)]f 

FIG. 2. Dependence of growth rate for I = 1 diocotron instability on A 
(bounce-averaged frequency decrement-see text) for the equilibrium 
shown in Fig. 1. A is expressed in units of c.$/RzCl on axis. The real part 
of the mode frequency is close to ~~~-0.88 in these units. 

s r’ 
X dr”rn3[a,- oE(r “)] 

0 

for (rC - r) $8, and 

g+ -b JrR rt3[toc-z& ‘)I2 

(5) 

(6) 

for (r - rC))S, where b is a constant determined by 
matching. In the matching regions where r,) 1 r - r, 1 
> 6, the outer solutions are approximately g- - 1 
- ,460 + Abt(r - rc)-3 and c+ - b2 + b3(r 
- rC) - 3; the constants b2 and b3 depend on A but 6, and 

bi do not. With a boundary-layer coordinate x = (r 
- r,)/S the leading-order inner solution y,(x) -f;(r) sat- 

isfies 

d2yo ho (e2@+x2) -+4x---=0 
dx2 dx ’ 

so we must match the outer solutions to 
-&P . 

Yob) =co @2ift + .g + i In 
iec + x ( )I z +c1, (8) 

with the branch cut going through CO so that y0 is regular 
for finite real X. We can choose the constants co and c, so 
that 

2 3(u -3 

I 

1, forr<r, 
Y0--;j;Te x + 0, for r> r, . (9) 

Hencew - w, + c3( - A) 2’3. Only the branch with pos- 
itive growth rate contributes to the long-time behavior of 
typical perturbations, since the continuous spectrum leads 
to algebraically decaying transients. The purely real fre- 
quency shift for A < 0 would place the branch points on the 
real r axis, violating the assumptions of the asymptotic 
analysis; no smooth eigenfunctions were found numerically 
for A < 0. 
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P/R 

FIG. 3. Dependence of growth rate for I= 1 diocotron instability on 
gyroradius for the equilibrium shown in Fig. 1. 

Numerical solution of Eq. (4) yields growth rates as 
shown in Fig. 2; the eigenfunctions are slightly rounded 
approximations to the step function.5 The asymptotic 2/3 
power law only applies for very small A. To achieve y/w, 
of a few percent (as observed in the experiments), it is only 
necessary to postulate relative increments in rotation fre- 
quency of about 10 - 2 over the 2-D value, which is reason- 
able for the experimental geometry. 

As the relative strength of the confinement field in- 
creases, the growth rate turns over and eventually van- 
ishes. Without the delicate cancellations which led to alge- 
braic growth in Ref. 3, the profiles should be stable to I= 1 
modes for moderately large A. Similarly, moderate values 
of A can annihilate the growth rates of diocotron instabil- 
ities with larger I. This behavior may account for the ex- 
perimental observation that hollow electron columns con- 
fined by sufficiently short cylindrical electrodes are stable 

to diocotron instabilities, even when positive growth rates 
are predicted by the Rayleigh equation.6 

Next let us consider finite gyroradius p. For simplicity 
we neglect all variations along z in this section. A standard 
finite-gyroradius expansion will suffice; the terms p2V2 
which determine the eigenmode structure are everywhere 
small. The linearized continuity equation, neglecting terms 
of order (uJR)~, is 

4rec I dNo 
(W-kL)E) +p2--- 

B r dr 

Asymptotic analysis of Eq. ( 10) is similar to the previous 
model (but more cumbersome) and leads to w - o, 
a (fp) 4’3 Numerical evaluation of the eigenvalue w yields . 
the dependence of the growth rate on p/R shown in Fig. 3.5 
For values characteristic of the experiments in Ref. 2 
( p/R z 10 - 4, the finite-gyroradius corrections alone yield 
a negligible growth rate for I= 1 and have a negligible effect 
on higher I modes; the situation might differ for an ion 
plasma or weaker magnetic fields. 
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