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When a single-species plasma is confined in a harmonic Penning trap at cryogenic 
temperature, the thermal equilibrium is approximately a uniform density spheroid (ellipsoid 
of revolution). Normal modes corresponding to quadrupole excitations of this plasma 
have recently been measured. In this paper, nonlinear equations of motion are derived for these 
quadrupole oscillations. For large amplitudes, the oscillations deform a spheroidal 
plasma into a triaxial ellipsoid with time-dependent shape and orientation. The integrals of 
the motion are found and the cylindrically, symmetric finite-amplitude oscillations of 
a spheroid are studied. An analysis of all possible ellipsoidal equilibria is also carried out. 
New equilibria are discovered which correspond to finite-amplitude versions of the 
noncylindrically symmetric linear quadrupole oscillations. The equilibria are shown to fall 
into two classes in which the ellipsoids are either tilted or aligned with respect to the 
magnetic field. Some of these equilibria have densities well above the Brillouin limit. 

1. INTRODUCTION 

In recent experiments’ at the National Institute of 
Standards and Technology (NIST), a pure ion plasma 
consisting of N1: lO*iiO? singly ionized beryllium ions is 
confined in a Penning trap and laser cooled to tempera- 
tures in the milliKelvin range. The ions can be trapped for 
long periods of time, approaching a confined thermal equi- 
librium state.2 The temperature T of this thermal equilib- 
rium is sufficiently small and both, the particle number N 
and the density n are sufficiently large so that both the 
Debye length &,= (kT/4&n) 1’2 and the average inter- 
particle spacing n -r’3 are much smaller than the size of the 
plasma (here q is the ion charge). However, the plasma 
itself is much smalier than the distance to the trap elec- 
trodes (see Fig. 1 ), .so that induced image charges in the 
electrodes have a negligible effect on the plasma dynamics, 
and the electrostatic confinement potential is harmonic. 
Under these conditions the thermal equilibrium state can 
be described by a cold-fluid theory3*4 in which the plasma 
is a uniform density spheroidally shaped cloud of charge, 
rotating rigidly about the axis of symmetry of the trap. 
This cold-fluid model of the thermal equilibrium state has 
been verified experimentally. ’ 

Normal modes of oscillation have recently been excited 
in such a small cold spheroidal plasma,5 and detected using 
a laser fluorescence diagnostic technique. The particular 
modes that were excited in the experiments were quadru- 
pole oscillations of the plasma, in which the perturbed os- 
cillating potential has a quadratic dependence on position 
within the cloud, and’the density within the plasma re- 
mains uniform in space (but may oscillate in time). A 
simple analytic theory of the linear electrostatic cold-fluid 
modes of the plasma has been developed6 which matches 
the experimental results well. The detection of normal 
modes has been proposed’-’ as a probe of plasma proper- 
ties such as density and temperature. This technique may 
be particularly useful as a nondestructive diagnostic for 

plasmas such as electron, positron,’ or antiproton’ plas- 
mas, which cannot be observed using laser fluorescence 
techniques. However, if the modes are detected through 
the image charges they create in the trap electrodes, and if 
the plasma is small compared to the diameter of the elec- 
trode< it may be difficult to observe-the modes unless they 
are excited to large amplitude where nonlinear effects are 
important. 

In this paper, we consider the nonlinear behavior of 
the quadrupole oscillations of a cold spheroidal non- 
neutral plasma. We find that, for these quadrupole,oscilla- 
tions, the nonlinear ideal cold-fluid equations can be re- 
duced to a simple Hamiltonian system of coupled ordinary 
differential equations. Our results. predict nonlinear fre- 
quency shifts and stochastic behavior of the oscillations. 
Furthermore, we find that solutions exist for which the 
plasma shape is stationary in some rotating frame. For 
some of these rotating equilibria, the plasma density is con- 
siderably larger than the Brillouin limit condition” given 
by o&@/2, where tip= (4rq’dm) “* is the .plasma fre- 
quency, fi,=qB/mc is the cyclotron frequency, B is the 
magnitude of the applied magnetic field, and m is the mass 
of an ion. These high density states can occur because the 
plasma is notcylindrically symmetric, and it does not ro- 
tate rigidly. Rather, sheared fluid flow within the ellipsoid 
can provide an extra confining Lorentz force not present in 
rigidly rotating systems. 

Before we proceed with a description of the nonlinear 
quadrupole motions, we briefly review the confinement 
characteristics of Penning traps. Penning traps are em- 
ployed in a number of disciplines, ranging from atomic 
physics to ion chemistry, and the confinement properties .of 
non-neutral plasmas in such traps have been studied exten- 
sively. One simple version of a Penning trap consists of 
three cylindrically symmetric electrodes immersed in an 
applied uniform magnetic field oriented along the axis of 
symmetry (see Fig. 1). In fact, cylindrically symmetric 
electrodes are not always employed, and are not a neces- 
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FIG. 1. Schematic of the confinement geometry. The plasma is confined 
by the potentials applied to three cylindrical electrodes, and a uniform 
magnetic field. To the right of the schematic, a blowup of the plasma 
shows the three unit vectors I%,, &, and &, which are oriented along the 
body axes, and below this blowup is displayed the relation between 
(f$&&) and the laboratory axes (f,ji,%) in terms of three successive 
rotations by Euler angles 4, 0, and t+5, respectively. 

sary assumption in our analysis. However, we consider 
only this case in this paper in order to simplify the results. 

Confinement of the plasma in the direction parallel to 
the magnetic field (referred to throughout the paper as the 
laboratory z direction) is provided by dc voltages applied 
to the two end electrodes with respect to the central elec- 
trode. This creates a potential well in the z direction, which 
for a small plasma can be approximated over the volume of 
the plasma by the first nonzero terms in the Taylor expan- 
sion around the saddle point of the potential: 

&=f f -:(A; (x2+Y3), (1) 

where w, is the frequency of oscillation of a single particle 
in the z direction, and (x,v,z) are Cartesian coordinates 
taken with respect to fixed laboratory axes, and measured 
from the center of the trap. This potential is an excellent 
approximation for the NIST experiments, where the diam- 
eter of the trap electrodes is about 25 mm, but the plasma 
size is less than about 1 mm, and the electrodes have been 
designed to minimize anharmonic corrections to the poten- 
tial. 

The trap potential 4, provides confinement only in the 
z direction. Confinement of the plasma in the radial direc- 
tion is furnished by the uniform applied magnetic field, 
B= Bit. The plasma rotates through this magnetic field, 
inducing a confining vXB force that balances the centrif- 
ugal force due to rotation as well as the repulsive radial 
electric force of the external trap field and the plasma space 
charge. 

The plasma can be confined for very long periods of 
time in such a trap, and so interparticle interactions cause 
the plasma to relax toward a confined thermal equilibrium 
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FIG. 2. Schematic of the three normal modes of oscillation. The (2,O) 
mode is an oscillation in the length and radius of a spheroid whose axis of 
symmetry is oriented along the z direction. The (2,l) mode is a slight tilt 
of the plasma with respect to r, the tilted plasma then precesses around 
the z axis with angular phase velocity o. In the (2,2) mode, the plasma is 
slightly distorted into a triaxial ellipsoid with a principal axis along the .z 
direction. The ellipsoid then rotates around the z-axis with phase velocity 
o. The motions considered in this paper are finite-amplitude extensions of 
these modes. 

state. The thermal equilibrium state is characterized by a 
uniform temperature T as well as a uniform rotation fre- 
quency w. If both AD and n-1’3 are small compared to the 
size of the plasma, one may neglect the effects of finite 
temperature and correlations on the thermal equilibrium 
state and, to lowest order in these small quantities, the 
resulting cold-fluid equilibrium can be shown to be a uni- 
form density spheroid.3*4 We will discuss the properties of 
this rigidly rotating spheroid in the next section as well as 
in Sec. III, where it appears as a special case of more 
general ellipsoidal fluid equilibria. 

When 4, is perturbed slightly (for example, through a 
small time-dependent variation of the electrode voltages), 
small-amplitude oscillations of the plasma spheroid are set 
up, which can be treated using linear fluid theory. In this 
paper, we focus on the quadrupole oscillations, since they 
have been observed experimentally5 and, as we will see, 
they have a particularly simple theoretical description. 
There are three types of quadrupole oscillations, shown in 
Fig. 2, and designated (2,0), (2,1), and (2,2) modes. The 
second index refers to the number of zeros in the mode 
potential as a function of azimuthal angle 4, whereas the 
difference between the first and second indices refers to the 
number of zeros in the potential as one proceeds from pole 
to pole along the spheroid surface.6 

The (2,O) oscillations are cylindrically symmetric os- 
cillations in the length and radius of the spheroid. When 
sZ,$ oP, the radial oscillation is nearly at ,R, and is referred 
to as an upper-hybrid mode. The axial oscillation is at a 
frequency on the order of wP, and is a magnetized plasma 
mode. The (2,l) mode sets up a perturbed potential within 
the plasma with spatial variation z(x+&); that is, the x 
and y motions are n-/2 out of phase. This potential corre- 
sponds to a spheroid that is slightly tilted with respect to 
the z axis, and which then precesses around the z axis, as 
shown in Fig. 2(b). There are three possible precession 
rates; when Q+wP, two are of order wP and one is near 0,. 
The (2,2) perturbed mode potential within the plasma var- 
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ies as (x+i~>~. This potential corresponds to a plasma that 
has been flattened slightly into ,a triaxial ellipsoid with a 
principal axis oriented along z. This ellipsoid then rotates 
around the z axis, as shown in Fig. 2(c), at one of two 
possible frequencies; when &>oP one is of order w$, 
and one is near & 

When these normal modes are excited to finite ampli- 
tude, we find that they can be described by a Hamiltonian 
system of equations with nine degrees of freedom. These 
nine degrees of freedom have the following simple inter- 
pretations. During the quadrupole motions the plasma can 
distort into a triaxial ellipsoid, described by the equation 

2 2 2 
Xl x2 x3 
z+q+;;;4=1* (2) 

where the x;s are Cartesian coordinates measured from the 
center of the cloud with respect to the ellipsoid’s principal 
axes, which are oriented in. directions defined by the or- 
thogonal unit vectors bi, (see Fig. -1). Throughout the pa- 
per, the subscript i, i= l-3, denotes components taken with 
respect to principal axes. The lengths of these axes, a,, a2, 
and a3, are not necessarily equal and may be functions of 
time; (al,~2,~3) are the tlrst three degrees of freedom. Fur- 
thermore, we will see that the ellipsoid can rotate with 
rotation frequency w, which introduces another three de- 
grees of freedom; that is, the three Euler angles ((A$,$> 
required to determine the orientation of the principal axes 
with respect to a fixed laboratory frame (see Fig. 1). Fi- 
nally, the plasma within this triaxial ellipsoid need not 
rotate rigidly, and, in fact, can circulate in a manner de- 
scribed by the vorticity vector %=VXv,, where v, is the 
fluid velocity as seen in the frame rotating with the body 
axes. The vorticity turns out to be spatially uniform within 
the plasma but can have any direction and magnitude. This 
introduces three more degrees of freedom. We will see that 
these degrees of freedom can be represented by three fluid 
Euler angles (#@,JI/) describing the rotation of a fluid 
element with respect to the body axes. 

After we determine the equations of motion for these 
nine degrees of freedom, we consider the integrals of the 
motion. We find that the only invariants are the total en- 
ergy, the component of canonical angular momentum 
along the magnetic field, and three other constants related 
to the invariance of the canonical circulation in an ideal 
fluid.” These five invariants are not sufficient to reduce the 
system to quadratures, and, in general, the behavior is sto- 
chastic. 

However, for certain special initial conditions, the di- 
mensionality of the system can be further reduced. In par- 
ticular, if initial conditions are chosen such that the ellip- 
soid is oriented with a principal axis along the magnetic 
field, and if both 5 and o are also initially oriented along 
the magnetic field, we show that these orientations are in- 
variant under the subsequent dynamics. By substituting the 
integral invariants into the equations of motion, the system 
can then be reduced to one with only three degrees of 
freedom-the lengths of the principal axes (u1,u2,a3), 
which satisfy coupled nonlinear oscillator equations. Fi- 
nally, if we assume that al =a2, the system reduces to two 

coupled oscillator equations for u1 and a3, which describe 
oscillations of the radius and length of a spheroidal plasma 
that is oriented with the axis of symmetry along the mag- 
netic field. When these oscillations have small amplitude, 
they correspond to the linear cylindrically symmetric (2,0) 
normal modes of the plasma spheroid [Fig. 2(a)]. This 
system has only one remaining invariant-the energy-and 
so is still not integrable. However, if the cyclotron fre- 
quency is large, the frequency of the oscillations in the 
radius of the spheroid is much higher than that in the 
length, and so an adiabatic invariant exists-the radius of 
the spheroid is approximately constant. This is just the 
EXB drift limit of the dynamics, in which the mean- 
square radius of the system is constant. This approxima- 
tion allows us to reduce the system to quadratures, and so 
we obtain simple equations for the nonlinear frequency 
shift of the axial (2,0) plasma oscillation. 

The (2,1) and (2,2) normal modes have equally sim- 
ple finite-amplitude forms. Both the (2,l) and (2,2) linear 
modes appear to be stationary distortions of the plasma 
shape in a frame rotating with the mode angular phase 
velocity. The large-amplitude versions of these modes can 
therefore be analyzed as equilibria of our Hamiltonian sys- 
tem-as seen in a rotating frame in which the principal axes 
are fixed (sometimes referred to as the body frame). Our 
analysis of these “fixed points” reveals a range of nonlinear 
equilibrium states that connect smoothly onto the linear 
(2,l) and (2,2) modes as the distortion of the plasma 
shape away from a rigid-rotor spheroid is reduced. We find 
that these equilibria break into two classes. In the first 
class, the plasma has a principal axis oriented along 5 and 
both g and o are also aligned with &. We refer to this class 
of solutions as aligned ellipsoids. These are finite-amplitude 
versions of (2,2) normal modes. In the second class, the 
ellipsoids principal axes may be tilted with respect to the 
magnetic field by some finite angle, and c need not point in 
the z direction. We refer to this class of solutions as tilted 
ellipsoids. These solutions are finite-amplitude versions of 
the (2,l) normal modes. 

One important set of equilibria falling in the class of 
tilted ellipsoid solutions consist of triaxial ellipsoids whose 
body axes are stationary in the laboratory frame, but in 
which the plasma continues to circulate with respect to the 
stationary axes. These stationary figures, which we refer to 
as Dedekind ellipsoids for reasons that will become appar- 
ent presently, may play an important role in transport pro- 
cesses caused by external nonaxisymmetric fields, since 
these time-independent states can be driven resonantly by a 
static external field error.‘-7 

The theory of the equilibrium and dynamics of a non- 
neutral plasma is similar in some important respects to the 
theory of what might at first seem to be a quite different 
system-rotating self-gravitating masses, such as stars, gas 
clouds, or galaxies. This analogy is well known but has not 
been fully exploited previously. In both the non-neutral 
and self-gravitating systems the interparticle force is an 
inverse square law, albeit with opposite signs in the two 
cases (which changes many of the results). Furthermore, 
the Coriolis force that appears in the body frame of a ro- 
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tating self-gravitating mass acts like the applied magnetic 
iield in a non-neutral plasma. The equations that govern 
the motion of a constant density ellipsoidal plasma are 
therefore similar to those governing the motion of a con- 
stant density ellipsoidal self-gravitating mass (although 
our equations have extra terms due to the external confin- 
ing trap fields). The theory of such motions extends back 
several hundred years to Newton’s inquiries into the shape 
of a rotating planetary body. It was Dirichlet who first 
posed the question that comes closest to the subject of our 
paper. He inquired as to how a constant density self- 
gravitating fluid mass can maintain an ellipsoidal shape 
with internal motions that are linear functions of position. 
The most comprehensive review of this subject is contained 
in Chandrasekhar’s well-known treatise entitled “Ellipsoi- 
dal Figures of Equilibrium.“i2 We exploit some of the 
mathematical techniques reviewed in this text, and which 
were developed by Riemann, among others, to solve Di- 
richlet’s problem. Some of our results are quite similar; for 
example, the Dedekind ellipsoids-stationary figures that 
incorporate internal fluid motions-exist in both problems. 
Our proof of the non-neutral plasma version of Riemann’s 
theorem is similar to the proof found in Chandrasekhar, 
and our formulation of the equations of motion is also 
somewhat similar to that found in this useful text. On the 
other hand, our determination of the integral invariants of 
the motion follows a more deductive approach that ex- 
ploits the underlying Hamiltonian structure of the equa- 
tions, and the greater complexity of our results for the 
regimes of existence of equilibrium solutions requires a dif- 
ferent mathematical attack based on a combination of nu- 
merical and analytic techniques. Also, we find that Dede- 
kind’s theorem does not apply to the non-neutral system, 
and none of the Jacobi ellipsoids exist except for the trivial 
case of the rigid-rotor thermal equilibrium spheroid. (The 
Jacobi ellipsoids have rotating boundaries with respect to 
which the fluid is stationary-that is, they are rigidly ro- 
tating triaxial ellipsoids. Such states would be nonaxisym- 
metric zero temperature fluid thermal equilibria, which are 
impossible for a non-neutral plasma confined in a cylindri- 
cal Penning trap. i3) 

In Sec. II, we consider the motion of a uniform density 
ellipsoidal non-neutral plasma. In Sec. II A, we obtain the 
equations of motion, and in Sec. II B we derive the inte- 
grals of the motion. In Sec. II C, we consider two simpli- 
fied equations of motion that may be obtained from the 
general equations for special initial conditions. The sim- 
plest of these two reduced systems describes radial and 
axial oscillations of a spheroidal plasma, which reduce to 
the (2,0) normal modes in the limit of small-oscillation 
amplitude. In Sec. II D we outline a simple model for the 
effect of finite temperature on the oscillations. 

Section III deals with the equilibrium solutions of the 
equations of motion. In Sec. III A, we derive the condi- 
tions for ellipsoidal fluid equilibrium, including a general 
relation between the plasma frequency and the fluid veloc- 
ity, and we prove the non-neutral plasma version of Rie- 
mann’s theorem, which allows us to classify equilibria as 
either aligned or tilted ellipsoids. In Sec. III B, we consider 

the aligned ellipsoids for which o is parallel to 4, g is 
parallel to 6, and a principal axis is along f. (In the astro- 
physics literature, these are referred to as S-type ellip- 
soids.) In Sec. III C, we consider the tilted ellipsoids for 
which w is again parallel to 2, but c and w are not parallel, 
falling instead in a principal plane of the ellipsoid. (In the 
gravitational problem, the results are quite diffeFent and 
the ellipsoids are classed into three types that have no 
analogy here.) We classify the regimes of existence of so- 
lutions for the tilted ellipsoids, finding that solutions exist 
only over certain ranges of a2/ut and a3/a1, which depend 
on the relative magnitude of the external magnetic field 
and the external electrostatic trap field. We also consider 
the special case of the Dedekind ellipsoids that are station- 
ary in the laboratory frame. 

In Sec. IV, we review our results and examine several 
critical questions that will be considered in following pa- 
pers. In Appendix A, we list some of the known relations 
for the interior electrostatic potential in a homogeneous 
ellipsoid. In Appendix B, we provide a list of the variables 
that we have employed, and the notation we have adopted. 

II. DYNAMICS OF A UNIFORM DENSITY 
ELLIPSOIDAL NON-NEUTRAL PLASMA 

A. Equations of motion 

In this subsection, we derive self-consistent nonlinear 
equations of motion for a uniform density ellipsoidal non- 
neutral plasma. We describe this motion in the ideal cold- 
fluid approximation encompassed by the pressureless Euler 
equation 

dv 
;?;fPVV =; E-@XV, 

and the continuity equation 

dn 
p-v* (nv) =o, 

(W 

where v(x,t) is the fluid velocity and n(x,t) is the plasma 
density. The cyclotron frequency Ck2, is assumed to be COR- 
stant, and the electric field E consists of the sum of the 
external trap field -V$, and the field due to space charge, 
which we write as -VrP, where (pp is the space-charge 
potential. A critical observation, upon which all of our 
results hinge, is that, in a homogeneous ellipsoidal plasma 
confined in the external potential Cp, given by Eq. ( l), the 
electric field within the plasma is a linear function of po- 
sition. We will find it useful to write the external trap field 
in terms of a matrix equation: 

-Vtj,= (m/q)c&,*x, (44 
where E, is a dimensionless tensor with a diagonal form in 
the laboratory frame of reference: 

(4b) 
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The space-charge field also takes on a well-known form 
inside a homogeneous ellipsoid:12*‘4 

-V&= (m/q)o;Ep’x, (54 

where gP is also a dimensionless symmetric tensor that has 
a diagonal form in coordinates aligned with the principal 
axes of the ellipsoid (i.e., body axes): 

Al 0 

+f 

( 1 

AZ , (5b) 
0 A3 

and where the prime denotes the particular representation 
in terms of body axes coordinates. [Throughout the paper, 
a prime on a vector or tensor implies that components are 
taken with respect to the body axes unit vectors (4,&,C3).] 
The functions Ai(a2/al,a3/al) are the normalized compo- 
nents of the space-charge electric field taken along the 
body axes, and can be written in terms of special functions 
as listed in Appendix A. In Appendix A, we also review 
several useful ‘relations between the Afs. For future refer- 
ence, we sometimes write A, as a function of a single vari- 
able clj/ul, by which we mean the spheroidal form should 
be used with a2=a1. 

Since the electric field is a linear function of position 
within the ellipsoid, the form of Bq. (3) suggests that, in 
order to obtain simple closed equations for the fluid veloc- 
ity, we assume that the velocity is also linear in the coor- 
dinates, 

v(x,t) =W(t> ax, (f-5) 

where W is a 3 x 3 matrix which we refer to as the velocity 
tensor. This is the form of the fluid velocity in a linear 
quadrupole mode,‘-’ but we will keep the nonlinear terms 
in the equations of motion as well. Substituting Eq. (6) 
into Eq. (3a), and stripping away the linear x dependence 
of the resulting equation then yields a nonlinear matrix 
equation for the components of W: 

Iv+ w  l w=&,+“;E,-A2~.xw. (7) 

By removing the variable x has been removed from the 
fluid equations and we have reduced Eq. (3a) to a set of 
coupled ordinary differential equations for the time depen- 
dence of W(t). However, Eq. (7) holds only if the plasma 
is a homogeneous ellipsoid and the fluid velocity is given 
by Eq. (6). These two assumptions must be shown to be 
consistent with one another under the subsequent dynam- 
ics described by Eq. (3). Let us consider the motion of the 
surface of the fluid, assuming that this surface is, at some 
initial time t, an ellipsoid that satisfies the equation 

x-s-“(t) .x=1, (84 

where S(t) is a 3 x 3 symmetric matrix describing the 
shape and orientation of the ellipsoid. In body axes, S(t) 
takes on a diagonal form 

( 
al(t) 0 

S'(t) = a2(t> 

1 

, 

0 a3(t) 

(8b) 

so Eq. (8a) is equivalent to Eq. (2). Since V l v=Tr W, 
which is independent of position within the plasma, the 
velocity field clearly preserves the spatial uniformity of the 
plasma density. Thus, a short time At later, this ellipsoid 
has changed into a new constant density figure. We must 
show that this new figure is also an ellipsoid. Since each 
element on the surface has shifted to a new position iz 
related to the old position by Z=x+W * xht, the new 
plasma shape is given by 

which is clearly the equation for an ellipsoid described by 
a new tensor 

(to linear order in At). Therefore Bq. (6) is consistent 
with the assumption that the plasma is a uniform density 
ellipsoid, and it further follows that the rate of change of 
the shape of the ellipsoid is determined by 

dS2 
--&=w*s2+s2.wt. (9) 

Equations (7) and (9) provide a closed self-consistent 
set of 15 first-order nonlinear differential equations for the 
nine velocity-related variables in W and the six indepen- 
dent variables in S. The six variables in S describe the 
magnitude of the three principal axes of the ellipsoid to- 
gether with the orientation of the ellipsoid. We will soon 
see that the nine variables in the velocity tensor are related 
to the rates of change of the magnitude of each principal 
axis, the three components of the rotation frequency of the 
principal axes, and the three components of the internal 
vorticity vector describing fluid motions that do not di- 
rectly alter the shape or orientation of the ellipsoid. 

Although the tensor equations (7) and (9) are valid in 
any inertial frame, in order to make further progress it is 
useful to explicitly transform the equations to coordinates 
in which S is diagonal, i.e., body axes. The transformation 
to body axes is carried out by the time-dependent unitary 
rotation matrix R. A vector x in the lab frame is related to 
its components x’ in the body frame by x’ = R l x, and any 
tensor T transforms according to T’ = R l T. R’, or equiva- 
lently, T=R’*.T’ . R. Substitution of the latter relation in 
Eqs. (7) and (9) leads to the following equations involving 
components taken with respect to an inertial frame instan- 
taneously aligned with the body axes: 

\irf+w’~w’=w,2~~+w~E~+~~‘w~+“*‘w’ 

+W’*w*f, 

$G (W’+o*) .fp+&* (w’t+w*f), 

where 
w*sk.Rt 

(10) 

(11) 

(12) 

is the rotation frequency matrix. This matrix is antisym- 
metric since R-R’= 1 implies O= (R*Rf) =w*+w*‘. The 
three independent components of w* are related to the 
rotation frequency w of the body axes through the equation 
relating an antisymmetric matrix and its dual: 
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w*= --w’xl, (13) 

and in this form w* can be recognized as a pseudotensor of 
rank two. The prime on w indicates that components are 
taken with respect to the body axes. We have also intro- 
duced the cyclotron frequency matrix, 0:~ - Q$‘Xl, in 
analogy to the definition of w*, and we have used the 
relation R* (2x1) l R’=Yxl, which follows from the 
transformation properties of pseudotensors under rota- 
tions. 

Now, Eq. (6) implies that the velocity tensor W’ is 
related to the fluid velocity v’ as seen in an inertial frame 
that is instantaneously aligned with the body axes: 

v’=W’*x’. 

This inertial fluid velocity is, in turn, related to the 
noninertial fluid velocity v, as seen by an observer moving 
with the body axes through the transformation v: = v’ 
+ &ox’. We will now write the equations of motion in 
this noninertial frame. It is therefore useful to define the 
matrix W,: 

Wr=W’+w*, (14) 

which is the velocity tensor as seen in a noninertial frame 
rotating with the body axes. In terms of W, Eqs. (10) and 
( 11) become 

~,-~*+W,*W,‘ojE:+~~~~--o**0*+20*’w~ 

+ft~.W,+.n,**co*“, (15) 

~~2=W,.S’2+S’2.W~. (16) 

The third and fourth terms on the right-hand side of Eq. 
( 15) arise from centrifugal and Coriolis forces appearing 
in the rotating frame, and the sixth term is due to the extra 
Lorentz force acting on the rotating body. The first, sec- 
ond, and fifth terms on the right-hand side, respectively, 
result from the external trap held, the plasma field, and the 
Lorentz force acting in the fluid motion in the rotating 
frame. 

Note that Rq. (16) for the evolution of the plasma 
shape takes the same form as in a stationary frame, Eq. 
(9). However, in the body frame S’ is diagonal, given by 
Eq. (8b). The diagonal elements of Eq. ( 16) are 
(d/&)a: = 2~: I+‘,,. Thus, the diagonal elements of W, are 
simply related to rates of change in the lengths of the prin- 
cipal axes through 

iii=aiWrii e (17) 

Furthermore, Eq. (16) also implies that the off-diagonal 
elements of W, satisfy 

(W,BS’2)ii+ (W,‘Sf2);=0, i#j 

so that the off-diagonal elements of W,* S’2 form an anti- 
symmetric matrix that we may write as S’ l A* l S’, where 
A* is also an antisymmetric matrix. Together with Eq. 
(17) this implies that W, can be expressed as the sum of a 
diagonal matrix and a term involving A*: 

W,=S’.S’-‘~S’.A*.S’-‘. (18) 

The fluid veIocity set up by the second term of Eq. ( 18) 
does not change the shape or orientation of the ellipsoid. 
The three independent components of the matrix A* are 
related to a vector A that is analogous to the rotation 
frequency w: 

A*= -A’xl. (19) 

We will soon see that this vector A is the rotation fre- 
quency of the fluid plasma with respect to the body axes, 
and hence the inclusion of this vector in the dynamics 
allows for the possibility of sheared fluid flow within the 
ellipsoid. The internal vorticity vector {~VXV, of this in- 
ternal fluid flow is related to A by 

5i= 

4+ai 
-- 4 (i#.i#k), 

apk 
(20) 

where, as usual, the subscript i refers to components taken 
along body axes; for example, A’= ( A,,A2,A3). 

Equation ( 18) can be used to reduce Eqs. ( 15) and 
(16) to a single-matrix equation for the motion of the 
ellipsoid. We substitute Eq. ( 18) into Eq. ( 15) and act on 
the right with S’. After some cancellations, we are left with 

=(&+&) l S’+s1,*~(s’+S’.A*-w*~S’). 

(21) 
These nine equations, together with the three independent 
equations in Eq. ( 12), provide a closed set for the variables 
ai, Wir A, and the three independent Euler angles that de- 
termine R. We have reduced the 15 first-order equations 
implicit in Eqs. (7) and (9) to a set of three second-order 
equations and nine first-order equations involving these 12 
variables. 

Equation (2 1) closely resembles the force-free equa- 
tion of motion for a rotating constant density self- 
gravitating ellipsoidal mass, originally derived by 
Riemann.t2 However, in that system no external fields are 
present. If one were to neglect the external fields, one could 
then show that Eq. (2 1) is unchanged under the operations 
of taking the transpose of the equation and interchanging 
A* and w*. This implies that external force-free solutions 
of Rq. (21) come in pairs where o* and A* are inter- 
changeable and the ellipsoid shape is the same in both 
cases. This symmetry is known as Dedekind’s theorem in 
the astrophysics literature.12 However, the symmetry is 
clearly broken when external fields are added. 

On the other hand, a less general symmetry in the 
dynamics can be uncovered if we introduce the vortex fre- 
quency matrix @ = SzF + 2~“. The vortex frequency vec- 
tor St, is related to a,* through equations analogous to Eq. 
(13): n$ = - SzlXl, which implies &,=f2,-1-20. The 
vortex frequency is the cyclotron frequency as seen in a 
noninertial frame rotating with frequency @.I5 Substituting 
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for w* in terms of a,* in Eq. (21) we obtain, after some 
cancellations, an equivalent form for the equation of mo- 
tion: 
~‘+2S’.A*+S’.~*--I,~i,X.S’--~.S’+S’*~*2 

=&a~--ay, l (n:+n,*) l 3’-4n,s*s’*A* 
- (&+c+;) l S’=O. (22) 

This equation is invariant under the transformation Cl: 
4 .4-L;, A**- A*, t+ -t, if and only if Cl: and @! 
commute. Thus, if (and only if) o and fi, are parallel, the 
solutions of Eq. (22) occur in pairs in which the ellipsoid 

I 

has the same shape but Cl; and A have opposite signs. We 
will return to this symmetry in the next section, where we 
will find that it-applies to the equilibrium solutions of Eq. 
(22). 

The components of Eq. (22) can be expressed in a 
fairly simple form for the case of the cylindrically symmet- 
ric external trap field, given by Eqs. (4). In order to ex- 
plicitly parametrize the rotation of the external trap field 
and magnetic field as seen in body axes, we employ the 
Euler angles (+,8,$> (see Fig. 1). In terms of these angles, 
the rotation matrix R takes on the well-known formI 

It then turns out that the components of Eq. (22) depend 
on the Euler angles only through the components (zt,zi,zs) 
of the laboratory z unit vector along the body axes; these 
components are 

f’=R*2= (sin 13 sin &sin 0 cos $,cos 0) 3 (zt,zZ,zJ). 

The components of Eq. (22) depend on the Euler angles 
only through (z1,z2,zj) because & is the mutual axis of sym- 
metry of the external cylindrically symmetric electric and 
magnetic fields, so it is the only unit vector on which the 
rotation of these fields can depend. The diagonal elements 
of Eq. (22) are 

ii,-ui ;&I --3zf) +; c+ij+ c [d&,q+~d +A:1 
k#- 

+ c a,&f&k=o, (244 
j#k#f 

The off-diagonal elements of Eq. (22) have a different 
form: 

kil Erik(2riiAk-~~~,Rfai~k-a~k-EijkA~~2vpk) . 

where Ej jk is a Levi-Civita symbol. 
Finally, Eq. ( 12) can be used together with Eq. (23) 

to obtain the well-known relations between the Euleran- 
gles and components of o along body axes: 

q=J sin 13 sin $+1!9 cos $, 

w2=$ sin 8 cos +t9 sin $I, (24~) 

ti3=$ c0s.e+3/. 
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cosII,cos4-cost)sin#sin$ cos$sin~+cos8cos#sinJt sin 4 sin 8 
-sin1C,cosd--cos8sin$cos$ -sin 1c, sin 4+cos 8 cOs 4 cos $ cos 1c, sin e . (23) 

sin 8 sin f$ -sinecOs+ cos 8 

Equations (24) provide a closed set of 12 coupled differ- 
ential equations for the 12 variables a, (@,$), 0, and A. 
The first three variables describe the shape of the ellipsoid, 
the second three describe the orientation of the ellipsoid 
with respect to the laboratory reference frame, the next 
three describe the rate of change of this orientation and the 
last three describe the motion of the fluid with respect to 
the body axes due to Auid flow within the ellipsoid. 

B. Integrals of the motion 

1ISquations (24) admit several conserved quantities, 
which are most readily uncovered by considering the fluid 
motion in a Hamiltonian framework. We begin by writing 
down the Lagrangian for N charges moving in a self- 
consistent electrostatic potential and a uniform magnetic 
field:” 

A?= 5 fmVf+zd(x) •Vj-~q~~(Xj)-q~.(~j)), 

i=l ( 

where 4, is the externally applied electrostatic potential, 
(ap= Ajax/ 1 Xi-xi 1 is th e space-charge -potential at xi in- 
duced by all the other charges, and &’ is the magnetic 
vector potential, equal to (q/2c) B(xg-- yjz) for a cylinbri- 
tally symmetric system. This general Lagrangian has a 
large number (3N) of degrees of freedom. However, when 
we specialize to the motion of a homogeneous ellipsoid, Y 
simplifies considerably. We obtain a fluid Lagrangian by 
replacing sums over the particles by integrals over the fluid 
density, also replacing the. particle velocity by the fluid 
velocity.’ Then using Eqs. (A2), (A3), (l),- and- (6), 
together with the relations -Jn d3x=N and 
Snx~xJd3X=N(S2)ii/5 [which follows from Eq. (S)], we 
obtain 
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Since the trace is invariant under rotations, 2 has the 
same form in an inertial frame instantaneously oriented 
with the body axes (where all vectors and tensors are 
primed). To make further progress, we express 3 in terms 
of hfi A, and w using Eqs. (4b), (5b), (8b), (13), (14), 
(18), and (19). We write the result in terms of a sum of 
the kinetic, potential, and magnetic contributions to 9: 

Y=X+d-9, 

where the kinetic energy X is 

(254 

x=g 7 [#+ #+a;) (A;+& -‘$q&j] 
I 

(i#j#k), (25b) 
the potential energy fl is a sum of the plasma potential 
and external field energies: 

(25~) 

and the magnetic term JZ is 

mNR, 
.Af=T c .&&+a;) --2A@?k] (i#j#k). 

i 
(25d) 

It may be easily verified that the Lagrange variational 
equations for aj lead directly to Eq. (24a), provided that 
we employ Eq. (A9), as well as the relationship between 
the plasma frequency and volume V of the ellipsoid. That 
is, since V=4~a,a,a,/3 the plasma frequency is a function 
of the lengths of the principal axes: 

a$= 3q2N/( mala2a3) , (26) 

and this relation must be employed when derivatives of P’ 
with respect to the a/s are taken, We also find that the 
momenta conjugate to the &ifs are 

so one can associate an inertial mass mN/5 with changes in 
the lengths of the body axes. 

Turning to the Lagrange variational equations for the 
Euler angles (19,+,$), we must first express o in terms of 
(r&&4) through Eq. (24c). It is then clear from these 
equations and from Eqs. (25) that -.?’ is independent of #, 
so that the momentum conjugate to this angle is a con- 
served quantity: 

aL? 
p#=T=const. 

Furthermore, with the aid of Eqs. (25) and (24c), 
&Y/&$ can be determined explicitly in terms of the z com- 
ponent of the canonical angular momentum, L: 

p+*z=L’*t’, (274 

where L’G ( L,,L2, L3) refers to components of L in body 
axes, which take on a simple form in terms of A and Cl,: 

Lj=(mN/lo) [ (~+U~)&-4ffpkAi] (i#j#k), 
(27b) 

and the components of f’ were given previously [see the 
discussion following Eqs. (23)], Of course, the invariance 
of p# depends on our choice of a cylindrically symmetric 
form of the external trap field, which we reiterate is not a 
required assumption in the ellipsoidal dynamics described 
by Eq. (22). We also note that Eq. (27) could also have 
been obtained directly from the form of the canonical an- 
gular momentum for a magnetized fluid: 

L*&= Sd3~n(r,t)(m(“~-uJi)+~ (&9-&g)). 

There are several more integral invariants of Eq. (24) 
that are perhaps not as obvious, but that are reasonably 
easy to derive using the Lagrangian. In order to find these 
invariants, we observe that there are three variables that 
were not required in Eqs. (24), but that are required in the 
Lagrangian picture in order to form a complete set of de- 
grees of freedom and their time derivatives. These extra 
variables involve the internal motions of the fluid, and be- 
come apparent if we recognize that A*, in analogy to CD*, 
can be written in terms of the time derivative of a unitary 
time-dependent rotation matrix that we call F: 

A*=*.Fc. (28) 

The matrix F describes rotational motion of a fluid element 
in the ellipsoid with respect to the body axes. This follows 
from Eq. ( 18), together with the equation of motion for 
the position x’(t) of a fluid element with respect to the 
body axes: 

dx’ 
-&=w,* x’. 

If we then substitute for W, via Eq. ( 18), act on the left 
with S-‘, and employ Eq. (28), we obtain 

Finally, this equation can be solved if we employ the rela- 
tion (d/dt) (F l F’) =O, and the result is 

S-‘(t) l x’(t)=F(t) *S-‘(O) *x’(O), (29) 
where the initial condition F(0) = 1 has been used. Equa- 
tion (29) implies that the internal fluid motions of the 
ellipsoid, as seen in the body frame, consist of expansions 
and compressions described by S(t), together with mo- 
tions described by F(t), which are purely rotational (pro- 
vided that we scale out the compressions and expansions 
with S-l). 

The three independent components of F can be de- 
scribed by three new internal fluid Euler angles ( +PGf,$f), 
in analogy to Eq. (23), that serve as the three extra vari- 
ables that were not required in the previous description of 
the motion, Eq. (24). [The fact that they were not required 
in Eq. (24) in itself points to the existence of hidden in- 
variants.] These fluid Euler angles determine the orienta- 
tion of a fluid element with respect to the body axes, just as 
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the usual Euler angles determine the orientation of the 
body axes with respect to the laboratory frame. Only three 
fluid Euler angles are required to describe the orientation 
of any fluid element in the plasma because of the particu- 
larly simple linear velocity field assumed in Eq. (6). The 
initial condition F( 0) = 1 implies the fluid Euler angles are 
initially zero. In other words, we can define three new unit 
vectors (effl,s@f3), which describe orthogonal axes fixed 
in the fluid and which are initially oriented along the prin- 
cipal axes. The subsequent direction of these axes is related 
to the fluid Euler angles. For example, the unit vector 8, 
has components as seen in the body frame that vary in time 
according to 

i$ = F. (O,O, 1) = (sin 0, sin Ilrf,sin 0f cos &cos 6f). 

Equation (28) provides a set of relations, analogous to 
Eq. (24~)) linking components of A to time derivatives of 
the fluid Euler angles: “. 

A, =fjf sin 0, sin $i+ 4, cos qi-, 

A,= cjf sin Of cos I)~- 4, sin *f, (30) 

A3 = rjf cos 0, + ljf . 

When these equations are substituted into Eq. (25) we see 
immediately that the Lagrangian is independent of $P the 
angle by which the fluid has rotated around the three-body 
axis. The momentum p#f conjugate to #f is therefore a 
constant of the motion, and is given by 

a2 
p4 =-Y-=const. 

f @f 

Unlike the conservation of p,+, this result is independent of 
the external field symmetry, resting instead upon the as- 
sumption that the fluid mction conserves entropy.” 

The derivative %Y/a4, can, after some effort, be writ- 
ten as the component of the canonical circulation vector C 
along the direction Q,: 

p~f=c4f&x!~, (314 

where, as usual, the prime refers to components taken in 
inertial axes instantaneously aligned with the body axes. 
The components of C’ are 

ci=(Nm/5) (Ci+%i>apk (i#j#k)- (31b) 

The vector C is referred to as the canonical circulation 
vector because the conservation of p4f is equivalent to the 
conservation of canonical circulation for an ideal fluid:’ ’ 

J (Vx[v+(&)d]]*dS= J (c+n,)*dS=const, 

C  l Gfl = con&, - 

C 0 Sf2 = const, (32) 

C l 5if3 = const. 

In other words, C is fixed in a frame moving with the 
internal motions of the fluid [including the compressions 
and expansions that rescale the frame according to Eq. 
(29)i. 

However, it is clear from the form of the Lagrangian 
that the equations of motion for Ui and (0,&q) depend on 
(4,0,$f) only through A [this also follows from Eq. (22) 
or Eq. (24)], and so the equations of motion can be inte- 
grated without reference to these angles. It is therefore 
useful to identify those combinations of the constants that 
are independent of (#f,f9f,@f). The only such combination 
is 

Cz=c+C2,+G=const. (33) 

Finally, the last invariant hidden in Eq. (22) is clearly the 
total energy 

;x”=x-+ 9. (34 

In summary, Eq. (25) is the Lagrangian for the mo- 
tion of the ellipsoid, which has nine degrees of freedom: 
(a,,a~,a3,~,8,~,~f,8~,~~). The first three degrees of free- 
dom describe the shape of the ellipsoid; the second three 
describe the orientation of the ellipsoid, and the last three 
describe internal rotations of the tluid with respect to the 
body axes. The rotation frequency of the body axes is w, 
and the rotation frequency of the internal fluid motions is 
A. Equation (34) is the Hamiltonian (Jacobi integral) for 
this system. It, along with the canonical circulation C and 
the z component of the angular momentum L. 2 are con- 
served during the motion. However, the number of con- 
stants is not sufficient to reduce the system to quadratures, 
so the system is not integrable, and may display compli- 
cated chaotic behavior. 

Equations (24) are in a form suitable for numerical 
integration of the system. The constants X, L* 2, and C2 
can be employed to further reduce the number of variables, 
or can be used to check the accuracy of the numerics. 

However, there are special initial conditions for which 
the motion simplifies considerably. We consider these in 
the next subsection. 

C. Simplified dynamics for special initial conditions 

Let us consider a subset of the possible motions de- 
scribed by Eq. (24)) for which the initial conditions satisfy 
w1=w2=AII=A2=0=0. We will see that, for these initial 

where the integral is taken over any area element dS which T conditions, the ellipsoid always remains oriented with a 
moves with the fluid. In the case of Eq. (3 la) 6, is normal principal axis aligned along &, and in this case the equa- 
to the area element. However, since the choice of the di- tions of motion simplify. In fact, the (1,3), (3,1), (2,3), 
rection of the bf3 axis was arbitrary, any component of C and (3,2) components of Eq. (24b) *imply that 
taken along an axis moving with the fluid is constant, so A,=A,=G,=&,=O, and Eqs. (24~) imply 010 as well. 
there are in fact three independent constants of the motion We are then left with Eq. (24a) and the ( 1,2) and (2,l) 
involving the angles ($f,Of,$f): elements of Eq. (24b). 
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We write these equations in terms of dimensionless 
variables i3 = w/w, b,= C&/tin fi2, = C&/w, and A = A/o, 
and we normalize times to w,: iF= tw, We also introduce 
dimensionless variables Zj=aj/ao, where a0 is defined in 
order to take account of the dependence of 0: on the a[s: 
ao= (3Nq2/mw~)“3 [see Q. (26)]. This length scaie has a 
simple physical interpretation: ~d3*‘~ is the radius that a 
uniform density N particle plasma takes on when it is 
spherically symmetric and in equilibrium in the trap. The 
introduction of a0 allows us to scale out the overall size of 
the plasma (i.e., the dependence of the plasma frequency 
on the total number of particles in the plasma). We could 
have introduced this scaling in the previous section but we 
preferred to work with dimensional equations. In this sec- 
tion, however, we will examine numerical solutions of the 
equations so dimensionless variables are required. In these 
variables, the solutions depend, for given initial conditions, 
on a single parameter b, which determines the relative 
magnitude of the external magnetic and electrostatic trap 
fields, 

In these dimensionless variables, the diagonal elements 
are obtained from Eq. (24a): 

i;*-~,[~+A,/(2~,~2~3)+~(~ii,+~)+~2]+~2~~, 

=o, (35d 

cT2-Z2[f+A2/(2ZlZ2Z3) +w’(b,+G) +P] +Z*;id, 

=o, (35b) 

cT~-Z~[ -l+A3/(2Z&Zs)]=0, (35c) 

where we have dropped the body axis subscript 3 from Z3 
and A3 for convenience. The ( 1,2) and (2,l) components 
of Eqs. (24b) are 

A .L 2a’,lLQi,+z,A-fi20=o, (3W 

-2~~~+~,~,-~2~+~2~=o. (36b) 

However, these last equations are merely expressions of the 
conservation of p+ and p+,. For example, the equation 
(~{+a~)~~-4a,a~+~=O can be written with the aid of 
Eqs. (27) and (31) as 

(a?-a$) [2&(a:-a;> +2(a,ti~-a&,)Rv 

+4(+,--a,d,)A]=O, 

which is identical to F& (36a) multiplied by a2 minus Eq. 
(36b) multiplied by al [except for a factor of 2(af-a:)]. 
In fact, we can determine G and A in terms of pc6 and p4f: 

6s 
(5; + if;>&+ - 2z&j$, 5, 

(a1 2-a$)2 -Z’ 

lr= _ c~;+~:M~f-2w~ 

(Q:-Q;)2 ’ 

(37) 

where p& and F+f are normalized by Nma&&S. 
When Eqs. (37) are substituted into Eqs. (35), we 

obtain three coupled equations with three degrees of free- 
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dom, (Z,,4,&>, which can be most economically ex- 
pressed in terms of the combinations 

K, =&+F$f 7 

K2 =F#-K$f * 
(38) 

The equations are 

A2 I 
m-4 (391 

1 I K2 
-5 (i$ +z2)5=O’ 

Y as-@ -*+A3 =o. 
2w2a3 1 

These equations have a Hamiltonian that can be found by 
substituting Eqs. (37) and (38) into Eq. (34): 

A+=; ( CFg+; (L’I$z2)2+; (g*!;2)2 
i 

-; W,+&Jfi,+; (Z;+&@+ c 
i 

1 
+c+ 

A& 
Ti,~~~3 

(4(X 

where ~~i=i;i is the momentum conjugate to pi, and 
P=GY/(iVmw~a@). 

The motions described by Eqs. (39) and (40) are cou- 
pled nonlinear oscillations in the lengths of the principal 
axes with a single constant of the motion, S??. The motion 
is therefore not integrable in general. Furthermore, the 
form of the effective potential in p has a singularity at 
a, =a2, so that al =a2 is inaccessible to the dynamics unless 
K,=O. 

If this is the case, we can then simplify further and 
consider initial conditions where al =a, and hil =ci2, so that 
the motion remains spheroidal for all times. This is a finite- 
amplitude version of the (2,0) linear normal mode of 
oscillation.5-7 The equations of motion are now 

( 
1 2 

&-ii, 5+$&-; f=i; 
) 

-g&o, 

&-z3~-l+~~,=o, % 
(4la) 

with an effective spheroidal Hamiltonian RP where 

&+; ;p;+j$+;g d,+z. i=if 
( 

5; 
1 

+ 
24a’:fA3ii~ 

& 
+ci$-z; , 

1 
(42) 
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and where pr is the radial momentum, canonically conju- 
gate to Zi and equal to 2&i. Equations (41) and (42) de- 
scribe two coupled nonlinear oscillations in the radius and 
length of the spheroid. Note that Eqs. (38) imply that K, 
is equal to twice the canonical angular momentum, so the 
appearance in Eq. (42) of the centrifugal potential KT/SZT 
is not surprising. Again, the system is not integrable in 
general since there are two degrees of freedom but only a 
single constant of the motion, Rs 

The equilibria of Eq. (41) satisfy the relations 

1 
2 

--ii1 ( z+ 

-4,b3/q) 1 -2 
-p2, -;zJo 

1 
(43a) 

0 50 100 150 “-200 
(a) O’,t 

and 

43@3/q) 
-1-o. 

L?&73 
(4%) 

Equations (43) are simply expressions of force balance in 
the radial and axial directions. If we consider Eq. (43b) as 
an equation for Z3 and substitute the solution into Eq. 
(43a), and if we further substitute for K, =2p6 in terms of 
i3 and A using Eq. (27), we find that Eq. (43a) becomes 

1 A1(a3/4) 
- (0-X) G,+w-iT) -2cA (a3,a1) , (44) 

3 

0.. 50 100 150 200 
(b) OZt 

where ij-x is just the total rigid rotation frequency of the 
fluid around the z axis. This equation is actually the well- 
known relation between the rotation frequency and shape 
of a rigid-rotor equilibrium spheroid.’ We will consider 
more general equilibria of Eqs. (24) in the next section. 

Furthermore, one can easily show that, if one linear- 
izes Eqs. (41) around the equilibrium given by Eq. (43), 
one recovers the linear dispersion relation of the two (2,O) 
normal modes of Refs. 5-7. This simple calculation is left 
to the reader. As we discussed in the Introduction, for 
large b, these modes are a plasma oscillation in which the 
spheroid expands and contracts mainly along the magnetic 
field, and an upper-hybrid oscillation at a frequency near 
C&, in which the spheroid expands and contracts primarily 
across the magnetic field. 

FIG. 3. Numerical solutions of Eqs. (41) for the oscillations in radius 
and length of a homogeneous plasma spheroid. Upper curve is plasma 
radius b, versus time, lower curve is plasma length/2 Zs versus time. (a) 
iI,=Z, K,=8, t&(0)=0, (i;=O.1714,cT,(O)=2,,Zs(O)=O.25. (b) 8,=2, 
Kt=g, cf,(O)=O=&(O), ii,(O)=2, &(0)=0.05. These two orbits are 
chosen to have the same energy and angular momentum, so that they can 
be displayed on the same Poincare plot (Fig. 4). 

of the dynamics, in which mean-square cylindrical radius 
of the plasma is a conserved quantity.‘* We therefore take 
Zt (t) equal to its initial value Zt (0) in Eq. (41b), in which 
case the motion of Z3 is integrable, given by the integral 

Equations (41) have been integrated numerically for 
various’initial conditions. Some results are shown in Fig. 3. 
Nonlinear coupling between the upper-hybrid and plasma 
oscillations is clearly observable. A Poincare plot .of the 
motions is included in Fig. 4, which graphically shows that 
stochastic orbits can occur. From this fact, we can infer 
that the integral invariants discussed in Sec. II B are the 
only invariants, since the existence-of one more indepen- 
dent invariant would make this two-degree-of-freedom sys- 
tem integrable. However, in the limit of large b, the-system 
is nearly integrable. We can see directly from Eqs. (41) 
that, for large b,, the radial oscillations are at much higher 
frequency than the axial oscillations. This suggests that a 

1.6 1.7 1.8 1.9 2 2.1 
a, 

two-time-scale approach may be useful in analyzing the 
equations. We note from Eqs. (27), (31), and (38) that FIG. 4. Poincare surface of section for motions corresponding to Figs. 

K,=2Z$fiC+2(CJ-~)] when Z,=?&, and so ?ii is almost 
3 (a) and 3(b) . Each point occurs at as=0.2, d, > 0. The stochastic orbit 

constant for large 6,. This is just the guiding-center limit 
corresponds to Fig. 3 (b) , whereas the integrable orbit corresponds to Fig. 
3(a). 
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cT3(f) s -J- cili3 
-=t, 

‘&@‘/I - @e~f%fj~ ) (454 

where Z, is understood to be constant, (bes is the effective 
potential of the ZJ motion: 

1 (2A,#+A&) 
4i,ff(~3& I=- 2 ( l+zj +g , 

) 
(45b) 

and where Ai=Ai(as/a,), and G??,, is the constant energy 
of these nonlinear plasma oscillations: 

1 
-%,I =s z;++,g. 

As usual, the branch of the square root in Eq. (45a) 
changes sign at the upper and lower turning points 
$3131’(G$?‘,r ,Z,) and $32’(p,( ,Z1), which are determined by 
solutions of P,l = &r(Z$1*2),H1 ) . 

The effective potential &r is plotted in Fig. 5(a) as a 
function of 4. For given Zl, the minimum in &s deter- 
mines an equilibrium value for is,. The relation between Z3 
and 51 in equilibrium is given by the axial force balance 
equation, Eq. (,43b). We  refer to the energy of this equi- 
librium as e(Z,), which is found by obtaining the so- 
lution of Eq. (43b) for C3(ZI) in equilibrium, and substi- 
tuting this solution into &( &,,Zt ). 

An interesting artifact of our fluid model can be ob- 
served in #,+ it is finite even as Z3-+0. This can be seen in 
Fig. S(a), and the value of c&.. at a3=0 can be determined 
from the limiting forms of A, and A3: 

lim Al(x) =zx, 
x-0 

lim As(X) =2-;x, 
x-o 

and by substituting these limits into Eq. (45b) we obtain 

lim (p,,=$ . 
cs,-0 1 

Thus, in our fluid model, the plasma can be made to 
collapse down to an infinitely thin disk during the motion 
if S?,, )?r/2Z,. An example of this behavior is presented in 
Fig. 3(b), which shows that the collapse can occur even if 
radial motion is kept in the dynamics. This actually has 
some physical significance: For sufficiently large energies, 
particles in the plasma have enough energy to transit 
through the x-y plane during the oscillations, “reversing” 
the plasma. If all the particles perform this maneuver pre- 
cisely in phase, there is a point in time when the plasma is 
an infinitely thin disk. However, while such transiting of 
the x-y plane certainly would occur for some ions in a real 
plasma, extreme heating would be caused by such large 
compressions and expansions, with the result that the in- 
finitely thin disk could never be achieved. Of course, the 
effect of plasma heating is neglected in the cold-fluid model 
used here. Thus, for large values of Pi, , this model of the 
spheroidal dynamics must be regarded only as the simplest 
first approximation, and in particular the motion as Z3-+0 
is patently unphysical. We  discuss one possible improve- 
ment of the model in Sec. II D. 

0 
(4 

FIG. 5. Guiding-center limit of the finite-amplitude (2,0) modes.  (a) The  
effective potential well, (pes, of the axial oscillations of a  homogeneous  
spheroidal non-neutral  p lasma in the strong magnet ic field (guiding- 
center) limit for two values of C, [see Eq. (45b)]. Solid line: iit =0.443 
corresponding to a  prolate equil ibrium shape given by aJar =  2. Dashed 
line: Zr =  1.018, corresponding to the oblate equil ibrium a,/a, =  l/2. (b) 
Frequency of the axial oscillations, Z,, versus ampli tude for the two 
potentials shown in Fig. 3(a). Amplitude is measured as the ratio of the 
parallel energy to the potential energy evaluated at the potential mini- 
mum, ?,I /RT’“. (c) The  rate of change of I!&,, with respect to 
PII /XJ”“, evaluated in the small-amplitude limit P’,, /v= 1, as  a  
function of equil ibrium shape ~,/a,. 

As Z?‘,, approaches vi”, the turning points 4” and 
&32) approach one another and the oscillations of 4  reduce 
to the large b, limit of the linear (2,O) plasma oscillations 
described in Refs. 5-7. For arbitrary amplitude, the fre- 
quency olo of nonlinear plasma oscillations follows from 
Eq. (45): 
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dG 
y7zFy=$eg(z3,;il) ’ P,, <n-/2& 

dZ3 

(47) 

Frequencies are plotted in Fig. 5 (b) for two values of Zr- as 
a function of the energy ratio Xi1 /qin. These two values 
of ?ii are chosen to correspond to equilibrium shapes given 
by a,/a, = l/2 and a,/a, =2, through Eq. (43b). For small 
excitation amplitudes, Wzo is approximately linear in 
X,1 /qin, as one would expect for this anharmonic os- 
cillator. The rate of change of iSm with &4, /qin is dis- 
played in Fig. 5(c) as a function of the equilibrium shape 
of the spheroid. 

The kink in the behavior of &, occurs at the point 
where the spheroid is flattened to- a disk, i.e., where &sl) 
vanishes. Finite pressure effects should be considered for 
amplitudes beyond this kink. We will now discuss one sim- 
ple model for these effects. 

D. Thermal effects 

Unfortunately, such an equation of state is unknown in- 
general, particularly for axial spheroidal oscillations which 
are at frequencies on the order of the plasma frequency. 
Such oscillations are in general neither adiabatic nor iso- 
thermal, although for a weakly correlated (collisionless) 
plasma the adiabatic approximation may be useful. Never- 
theless, if we assume some simple adiabatic relation such as 
p. vV= const for some constant y [where V= (4/3) 7~a:aj is 
the plasma volume], the effect of p. on Eq. (41a) is to 
introduce a term C’/[(Z&) r-‘Z3] on the right-hand side, 
where C’ is a constant related to the initial pressure and 
volume. For any y) 1, this term clearly removes the pos- 
sibility of collapse to &=O. Incidentally, the Hamiltonian 
form of the equations is preserved, with a free energy term 
now appearing in the effective potential, of the form 
C’/[(y-- 1) t&731 Y- ’ 1 for y > 1. For small initial tempera- 
ture (i.e., C’g 1 ), this term slightly increases the frequency 
w20 of the axial oscillations. In fact, Eq. (47) has the same 
form except that the free energy term modifies the effective 
potential so that the lower turning point Z$l’ never reaches 
zero; this has the effect of smoothing out the kinks in Fig. 
5(b). 

So far the effects of thermal pressure on the quadrupole This approach to finite temperature effects may be a 
motions have been neglected, which is a good approxima- useful first approximation, especially for weakly correlated 
tion provided that the plasma’s potential energy density (collisionless) plasmas, but it also has drawbacks-it ne- 
9/V is much larger than the thermal pressure. However, glects the effects of damping which could be significant for 
we have seen that, for very large amplitudes, the nonlinear these very large amplitude oscillations, it neglects the effect 
spheroidal oscillations display unphysical behavior con- of finite temperature on the equilibrium density profile, and 
nected to the omission of pressure forces-the cold-fluid it leaves open the question of what form to use for the 
plasma can collapse to an infinitely thin disk. The effects of high-frequency equation of state. The approach may be of 
thermal pressure on this motion can be added to our model more use in analyzing the effect of pressure on smaller- 
in order to remove this unphysical behavior, provided that amplitude motions, or on the nonlinear equilibria discussed 
we are willing to make several further approximations. As in the next section. We feel that the best way to test the 
is shown in Ref. 12, the Vp term can be kept in Eq. (3a) effect of finite temperature is through molecular dynamics 
without affecting the basic nature of our nine-degree-of- simulations of the quadrupole oscillations, particularly for 
freedom system of equations, provided that the pressure is the case of strongly correlated plasmas. Such simulations 
assumed to be a quadratic function of position within the are currently underway and will be reported upon in a 
plasma, taking the form in body axes future paper. 

III. EQUILIBRIUM CONFIGURATIONS 

PWJ) =Po(r) (l- ir $)> 

where pa(t) is any function of time. One can easily show 
that this merely adds a term 2p,(t)S’-‘/mn to the right- 
hand side of Eq. (21). 

This ansatz for p( x,t) can be understood physically by 
considering an equivalent formulation of the quadrupole 
equations that follows from a virial expansion approach, in 
which moments of the Euler equations are taken.12 The 
pressure po( t) can be interpreted in this formulation as just 
5/2 of the average pressure found by integratingp over the 
ellipsoid. This is a crude approximation since the actual 
pressure gradient is not linear in x’ but is concentrated at 
the edge of the plasma where the density falls to zero. 
Nevertheless, the approximation retains some of the qual- 
itative features of the effect of pressure on the plasma mo- 

tions. In any case, if we then assume that some equation of 
state relates p. to the density, we can solve for the motions 
of the ellipsoid. 

In this section, we consider the equilibrium configura- 
tions of a homogeneous ellipsoidal non-neutral plasma con- 
fined in a cylindrically symmetric Penning trap. By equi- 
librium we mean a state in which the plasma’s shape and 
density are time independent in some frame rotating with 
constant rotation frequency w. Furthermore, in this frame 
there may remain an internal fluid flow described by a 
time-independent internal rotation A; however, this flow 
leaves the shape of the ellipsoid unchanged. 

In Sec. III A, we obtain the equations describing such 
ellipsoidal equilibria and derive a non-neutral plasma ver- 
sion of Riemann’s theorem, with which we classify the 
equilibria into two types, which we refer to as aligned and 
tilted ellipsoids. The aligned ellipsoids have a body axis 
parallel to f and also have w]l&IlA. As we discussed in the 
Introduction, these ellipsoids can be thought of as finite- 
amplitude extensions of the (2,2) quadrupole normal 
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modes,5-7 a typical solution is depicted schematically in 
Fig. 2(c). The tilted ellipsoids are also characterized by 
WI] 9, but now A is not parallel to 4. Rather, o and A lie 
in a principal plane of the ellipsoid. These solutions corre- 
spond to ellipsoids that are tilted with respect to the labo- 
ratory z axis by an angle 6, and which precess around the 
axis with rotation frequency o. They can be thought of as 
finite-amplitude extensions of the (2,1) quadruple normal 
modes [see Fig. 2(b)]. 

We find that both the aligned and tilted ellipsoids can 
be parametrized by the shape of the ellipsoid as described 
by the variables (a2/al,c13/tll ), and 6,=&J+ In other 
words, when these three variables are specified we obtain a 
finite set of aligned and tilted solutions, with all other pa- 
rameters such as o, w,,, A, and 0 determined in terms of 
these variables. 

In Sets. III B and III C, we present an analysis of the 
behavior of these aligned and tilted ellipsoids, paying par- 
ticular attention to the regimes of existence of solutions. 
The boundaries of these regions are generalizations of the 
well-known Brillouin limit for rigid-rotor axisymmetric 
equilibria, given by 0$<0f/2. In fact, the discovery of non- 
axisymmetric equilibria with internal fluid shears allows 
considerably more latitude in the possible densities that 
can be confined in equilibrium for given external applied 
fields. 

A. Equilibrium equations and Rlemann’s theorem for 
a non-neutral plasma 

The condition that the ellipsoid be in equilibrium de- 
mands that the rotation frequency w must be parallel to &. 
This follows from the cylindrical symmetry of the external 
fields, which implies that, in the frame rotating with the 
body axes, the field tensors e: and Q: are independent of 4 
but do depend on 6 and $. In equilibrium, 8 and 1F, must 
therefore vanish, otherwise the external fields become time 
dependent in the body axis frame. However, 6, need not 
vanish, so w and t must be parallel. On the other hand, we 
will soon see that neither c nor A need be parallel to & in 
equilibrium, so nontrivial internal fluid motions can occur. 

However, before we consider the general equilibrium 
equations, we first obtain a simple relation between the 
density of the rotating equilibrium and the velocity of the 
fluid. Dropping the time derivatives in Eq. (21), we take 
the trace after acting on the right with S’-‘. Since 
Tr( $) = 1 and Tr( ei) = 0, we find 

oi=Tr[S’*A **.s+l+w*L(fi~ 

+20*) *S’*A*-S’-‘+n+*]. 

However, Tr ( S’ l A *2.S’-‘)=TrA*2=-2~.A? where I I) 
Eq. (19) is used in the last step. Similarly, 
TrW**=-222& and Tr(fiZ,**o*) = -222&.~~~ Fur- 
thermore, the third term can be simply expressed in terms 
of the internal vorticity using Eqs. (8b), ( 13), ( 19), and 
(20): 

Tr[(.n,*+20*)*S’*A*~S’-*]= c&QVi. 
I 

Combining these results, we find a general expression for 
the plasma frequency of the equilibrium ellipsoid: 

o$= -2w(s1,+w) -2A*-ti&& (48) 

where we have also used the fact that WI\ 9. The first term 
is the usual result for the plasma frequency in a rigid-rotor 
equilibrium, and the second and third terms are correc- 
tions due to internal motions in the ellipsoid. As we dis- 
cussed in relation to Eq. (44), for cylindrically symmetric 
rigid-rotor equilibria the rotation frequency of the body 
axes is undefined, and in this case it is common practice to 
choose w so that the plasma is at rest in the rotating frame 
(A = {GO). Any other rotating frame could also be chosen 
in which case A and c would be nonzero and Eq. (48) 
shows that 0; is invariant under such choices. 

The maximum possible value of the first term occurs at 
the Brillouin limit, w= -C&/2, which implies~ 
max( c$) = f2$‘2 for rigid-rotor equilibria. However, the 
addition of internal motions changes this result, and we 
will see that non-rigid-rotor equilibria exist for which G$ 
exceeds the Brillouin limit. 

The general equations for ellipsoidal equilibrium are 
found by taking w/l; and dropping time derivatives in Eqs. 
(24): 

_ k$,&~+p-$Ai+(l-P)$+~ M~+in&k’O 
I 

(49a) 
and 

~,Ki~j+(l-B)=~j-6,hizj~=O (i#j#k). 
J i 

(49b) 

Here, we have introduced the trap parameter fl defined by 

p= -G(b,+G) -~=~(i=g4~, -4, (50) 

and we have employed the relation $=s+&+z$= 1. For 
a rigid-rotor equilibrium, fl is the ratio of the total confin- 
ing force in the radial direction to that in the z direction, so 
j3 determines the shape, a3/al, of a rigid-rotor plasma [see 
Es. (M)l* 

We will now consider several linear combinations of 
the off-diagonal elements, Eq. (49b), from which some 
general requirements for the equilibrium configuration fol- 
low. Adding and subtracting the (i, j) = (2,3) term multi- 
plied by ai and the (3,2) term multiplied by u$ yields the 
equations 

z2z3 ( a; + a”z ) ( 1 -p) - &al ( &a+3 + &@z2 ) + &$&& 

=o (51) 

and 

Let us consider the most general possible configuration, in 
which all three components of x and all the components of 
2 (as seen in the body frame) are no&zero, so that the 
ellipsoid is oriented in any manner and the internal vortic- 
ity vector is also oriented in some arbitrary direction. We 
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will show that this general configuration is, in fact, impos- or they are not parallel, in which case they lie in a principal 
sible to achieve in equilibrium, and we will derive restric- plane of the ellipsoid. We refer to the former class of equi- 
tions on the orientation of the body axes and A. As we have libria as aligned ellipsoids and the latter class as the tilted 
assumed that z, and zs are nonzero, we divide through by ellipsoids. We will see that the aligned ellipsoids cannot be 
zz and z3 in Eqs. (5 1) and (52) and define new variables 
a+&/&+ The resulting equations for a2 and a3 are in- 

obtained as a special case of the tilted ellipsoids in the limit 
that the angle between A and S vanishes. Note that, al- 

dependent of the Euler angles and may be reduced to two though A and c are not necessarily parallel, one can sub- 
quadratics: stitute 5 for A in the statement of the theorem. 

a:as+z [ (a2,---a:)(1 -p) -a@:] + 1 -p=O, 

(53) B. Aligned ellipsoids 

@a:+2 [ - (a~-+$) (1-p) -&$I + 1 -p=O. 

(54) 
However, if we now consider the sum and difference of the 
( 1,2) component of Eq. (49b) multiplied by ai and the 
(2,l) equation multiplied by a$ we--cnd.two similar rela- 
tions for a2 and al, assuming here that z1 and z2 are non- 
zero: /s. 

We first consider the aligned ellipsoids in which &, o 
and A are parallel and are oriented along a principal axis, 
which we take to be the s3 axis without loss of generality. 
Thus only the Q3 components of w and A-are nonzero, and 
the Q3 axis is parallel to 4. In this case, Eq. (49b) is satisfied 
trivially. The diagonal elements, Eq. (49a), are 

-2 

-A:+&~A,+i=i,~d,=O, (5&i) 

dta:+z [(a:-& (1-p) -&?f] + 1 -p=o, 
._ 

@ai+: 
(55) 

[ - (+zf, (1 -p) -fYz$;] + l-$=0. 
1 ._ 

Subtracting Eq. (53) from Eq. (55) yields 

a22(4---4) 

al=3 
(l-p-a&o. 

Furthermore, consideration of the ( 1,3) and (3,l) equa- 
tions leads to the analogous results + 

al<&-& 
a2a3 

(l-p-G&o, ~. i’ 

~36+-& 

ala2 j 
(l-p-fi;)=q.*~ - 

Thus, if we assume all three components oft are nonzero 
in the body frame, we are led to. the conclusion that either 
al=a2=a3 (a degenerate case’since any orientation of the 
body axes is allowed), 1 - /3 = fii,-or -A=O. The case 
A=0 is also trivial since Eqs. (@)-imply that, in this case, 
the plasma must be a rigid-rotor spheroid. The case 1 
- j3 = fit is more complicated, but we will show in Sec. 
111-C that this case is also degenerate, corresponding to a 
spheroidal equilibrium that allows’ for an arbitrary rotation 
of the body axes about the axis of symmetry of the spher- 
oid. 

For a nontrivial solution, we therefore require that at 
least one of the pairs (zi,A,>, (i,,&), (z3,A3) must be 
equal to zero. This result is known as Riemann’s theorem 
when applied to force-free gravitational equilibria.12 Here, 
we see that the theorem also holds for ellipsoidal plasmas 
confined by the cylindrically symmetric external fields of a 
Penning trap. An alternative statement of the theorem is 
that equilibrium demands that either A and d are parallel, 
in which case they lie along a principal axis of the ellipsoid, 

-2 

-~i;+&?A,+d,; x3=0, 
.~ 

-2 

l-:A3=0. 

(56b) 

(56c) 

Equations (56) are expressions of equilibrium force bal- 
ance in the Qi; c2, and 6s body axis directions, and so may 
be regarded as generalizations of the expressions for axial 
and radial force balance, Eqs. (43), derived for a rigid- 
rotor spheroid. We could also have obtained these equa- 
tions by setting time derivatives equal to-zero in Eqs. (39). 
Indeed, when a1=a2 then AI=A, and Eqs. (56a) and 
(56b) are identical, and can be shown to be equivalent to 
Eq. (43a) with the aid of Eqs. (27), (31), and (38). 

Thus, when u1=a2, the aligned equilibria reduce to 
rigid-rotor spheroids whose shape, u3/a1, is determined by 
Eq. (44). Since the internal motion set up by A is merely 
an extra rigid rotation in this case, we absorb x into the 
definition of G, so that Eq. (44) becomes’ . . 

1 AI 
-w(b,+w) -zy-&, 

or P=AI/A3. This is a quadratic equation for G with two 
solutions most economically expressed in terms of the vor- 
tex frequency fi,=fic+2W: 

b~=6~-4A,/A,-2=b~-4/~3,, (57) 

where in the last step we used the relation 24, + A3 =2 [see 
Eq. W4)l. 

Equation (57) implies that a minimum magnetic field 
strength is required to confine a spheroid of given shape: 

6;>4/A3(a3/q). (58) 

We plot the minimum value of fi: vs ~,/a, in Fig. 6. This 
figure shows the region of existence of rigid-rotor spheroi- 
dal equilibria in the parameter space (a,/a,,b,). The figure 
also shows that the rigid-rotor case is a special case of the 
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16 

no aligned equilibrium 
1 2 3 4 

a3fat 

FIG. 6. Minimum possible value of fif required to confine an aligned 
ellipsoid versus a,/~, for four values of a/n,. The rigid-rotor spheroid 
case corresponding to the Btillouin limit, Eq. (58)) is the a,/a, = 1 curve 
(solid curve). This curve also describes the behavior of M  (see Fig. 13 
and Sec. III C). 

more general existence region for aligned ellipsoids with 
a2/al#l, which we will discuss presently. 

Now, from Eq. (56~) the plasma frequency can be 
expressed in terms of the shape as &$=2/A,. When this is 
compared to Eq. (58), we find @>Zw$ which is just the 
Brillouin limit for the maximum density achievable in a 
given magnetic field. We also observe that the maximum 
possible value of A3 is 2 [see Eq. (A4)], so Eq. (58) implies 
no rigid-rotor equilibrium exists if fii < 2. In this regime, 
the confining force of the magnetic field cannot overcome 
the repulsive radial trap field and the centrifugal force due 
to rotation, even if only a single particle is confined in the 
trap. The addition of more particles that repel one another 
can only further reduce the confinement, so the condition 
@  > 2 applies to all equilibria. 

Turning now to the case atfa,, Eqs. (56) describe a 
triaxial ellipsoid rotating about the z axis, together with an 
internal vorticity in the & direction, causing a shear in the 
internal fluid velocity of the ellipsoid. This motion is a 
finite-amplitude generalization of the (2,2) linear dio- 
cotron and cyclotron modes discussed in Refs. 6 and 7. 
Proceeding with the analysis of the properties of this ro- 
tating equilibrium, we divide Eqs. (56a) and (56b) by 
@ !, substitute for C$ using Eq. (56~)~ and add and subtract 
the resulting equations to find that As/@ must satisfy the 
relations 

/3 A1+A, 1 &+;+a; 
-- 

-T-t=-2 i-l” 2a,a, =O (5%) 

and 

Al-AZ x3 UT-a; 
--=o. 

-qzy+flr ata2 (59b) 

Equation (59b) determines x3/& in terms of fiz and the 
shape variables ( a,/aIra3/aL). Substituting this result into 
(59a) leads to a quadratic equation for fiz in terms of a,/al 
and +/at: 

ii;- iXiZ+ E=O, (aa) 

0 

(’ 
‘. as/a;=, 1 

. . ‘. 
“.,....5.3,$. 

= 112’ 

1 2 3 
a2ial 

FIG. 7. Behavior of the two solutions of Eq. (60) for the vortex fre- 
quency of the aligned ellipsoids as a function of degree of ellipyidal 
distortion, as measured by 42/~tr for three values of as/a, and for R,=2. 
As al/a, approaches unity, the ellipsoid approaches a rigid-rotor spheroid 
with a (2,2) normal mode perturbation added. Solid line: as/a, =0.5 
(density below the Brillouin limit: see Fig. 6). Dotted Ike: 4,/u, =0.75. 
Dashed line: u~/u, = 1. In the latter two cases, a rigid-rotor spheroidal 
equilibrium no longer exists (see Fig. 6). 

where the coefficients D and E are defined as 

-4 2(ArAzHa;+a;) - 

D=x+ 2 2 
A3(a,-al) 

+a;, 

and 

E=4L+-A,)2 a:=: 
2 

443 
2 2 (=,-=,I2 ’ 

(60b) 

(WC) 

The two solutions of Eq. (60) for ] @  1 are plotted in 
Fig. 7 as a function of a2/aI for &=2. 

We plot Ifi,] rather than the rotation frequency w of 
the equilibrium since ] fi, ] is the more natural variable in 
the following sense. The rotation frequency of the body 
axes is related to the plotted curves in Fig. 7 through 
w=(=t Ifi,] --llt,)/2, so for given u2/aI, a3/a1, and fi, 
there arefour possible rotation frequencies. These four fre- 
quencies correspond to excitation of the two linear (2,2) 
modes around either of the two rigid-rotor equilibria that 
have shape a3/al. In other words, by plotting I R, I rather 
than o we make use of the symmetry of the solutions dis- 
cussed in relation to Eq. (22) under the transformation 
n p+-fi2,, A+- A, and the four solutions for o are re- 
duced to two s$utions for I C& 1. 

For large C&., one root of Eq. (60) for I fii, I is of order 
]a,] and the other is of order I l/h,]. For &>O, the 
former root is a low rotation frequency EXB drift solution 
corresponding to a finite-amplitude generalization of the 
(2,2) diocotron mode. The rotation frequency of this non- 
linear diocotron mode is, to order l/a, given by @  
= D, which implies 

0% - 1 AI-AZ (a:+~;) 
-J-=-p-- 2 (61) 

t 3 243 
2+o&. 

a2-a1 ( 1 c 

The diocotron mode is usually considered on an 
infinite-length column rather than an ellipsoid, and so it is 
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FIG. 8. Gray and cross-hatched regions are the areas where 
4 [ fif-& 1 )a, 1 df -/3, ( for the case where a2 > u, [see discussi& pre- 
ceding E!q. (63)]. The cross-hatched region is disallowed by the constraint 
D>O. 

useful to obtain the infinite-length limit of the nonlinear 
diocotron mode rotation frequency. In this limit, 
q/a, -t CO as &,-to, so in Eq. (61) we substitute for GJ~ in 
terms of ti; through Eq. (56~). If we also substitute in the 
form for At and A, in the limit that as/a, -+ CO [see Eqs. 
(A8)], we find that 

m; w2 

a= -sl, (a1 +azp * 
(62) 

This result can be identified as the rotation frequency of an 
elliptical patch of vorticity in an inviscid fluid flow de- 
scribed by the 2-D Euler equations (the Kirchhoff vortex). 
This follows from a well-known isomorphism between the 
2-D Euler equations and 2-D EXB drift equations.19’20 
When al +a2, the usual infinite-length m=2 linear dio- 
cotron mode result is recovered: ofi,= -0$/4.‘t 

In order to confine an aligned ellipsoid of a given 
shape, a magnetic field exceeding a certain minimum field 
strength must be applied. A relation can be found for the 
minimum 6: value as a function of the ellipsoid shape 
variables (a/Qt,as/a,). Equations (60) imply that, in or- 
der that a real solution for fii, exist, D must be non- 
negative and &--4E must also be non-negative. Both in- 
equalities place requirements on the minimum possible 
allowed cyclotron frequency for a given ellipsoid shape. 
However, the second inequality places a more stringent 
requirement on @ . After some algebra, one can show that 
p-4E>O can be written as 

A;(a;--a;) 

This expression is clearly symmetric upon interchange of 
(a,Jt) and (adz) so without loss of generality we as- 
sume that a2 > al. In this case, there follows the relation’ 

where PI =z[~~+,~(A~--A,)]/A,. The region of fii;f for 
W  

which the inequality is satisfied is shown in Fig. 8. Since 
Q~ > a1 was assumed, A2 <A, and & >& so it is apparent 
from Fig.” 8 that the inequality is satisfied for values of 6: 

determined by a,(h~-Pz)~-al(b~-8~), or 
@>(a,P1 +a.&,)/(~~ +a,). These values of fi: corre- 
spond to the gray region of Fig. 8. The cross-hatched area 
is disallowed by the inequality D>O. The cyclotron fre- 
quency must therefore be sufficiently large so that 

4 2(A1-Az) a2-u1 ” 
fif>,- 

A3 a2+a1 
(63) 

in order for .either of the aligned equilibria to exist. The 
lower bound of Eq. (63) gives the minimum cyclotron 
frequency required to confine an ellipsoid of given shape 
and is plotted in Fig. 6. The result returns to the rigid-rotor 
spheroidal limit, Eq. (SS), as a2/al + 1. 

From Fig. 6, one can see that, for given a3/a1, the 
minimum possible value of fiz occurs as az/al i CO. This 
minimum value can be found with the aid of Eq. (A4), and 
the fact that A, vanishes as a2/ar -9 CO. Equation (63) then 
becomes @>2. For Liz below this value, no equilibrium 
exists, just as in the case of the rigid-rotor spheroids. 

Equation (63) leads to a simple result for the maxi- 
mum density of an aligned ellipsoid for given external 
fields. For given shape, the plasma frequency may be ob- 
tained from Eq. (56~): $=2/A3. Dividing this equation 
by Eq. (63) we have 

(64) 

Therefore, for a given magnetic field, the maximum possi- 
ble density achievable is the same in either of the equilibria 
described by Eq. (60)) and this density is larger than the 
Brillouin limit for a rigidly rotating spheroidal plasma. For 
given a3/a1, the maximum density occurs in the limits 
a,>~, or a+a,. As a2/al+ CO, a:-2, which implies the 
maximum plasma frequency is u:~.. = !$/A,. If, in addi- 
tion, the plasma is very prolate with u3%a1, then A3 --f 0 and 
a@?,: can approach infinity in equilibrium. This result is 
sensible (in the context of ideal fluid theory) because in 
this case the plasma approaches a 2-D slab that lies parallel 
to the magnetic field, and there is no Brillouin limit on the 
density in such a non-neutral plasma slab equilibrium. This 
is because the Brillouin limit stems from a competition 
between the deconfining centrifugal force due to rotation, 
and the confining VXB force. lo However, in slab geometry 
there is no rotation, only a sheared velocity flow that can 
provide confinement for all densities, provided that the ve- 
locities are sufficiently large. 

We have found that high-density nonaxisymmetric ro- 
tating ellipsoids are equilibrium solutions, but we have not 
considered the stability of such equilibria. Indeed, for a2 
different than a,, the plasma no longer rotates rigidly and 
viscosity drives the system back to a rigid-rotor equilib- 
rium. On a much shorter time scale, fluid instabilities can 
set in if the fluid velocity shear is sufficiently large. Such 
ideal fluid instabilities will be considered in a following 
paper. Some results are already known. For example, for 
the case of the slow rotation mode with fi,>l and with 
infinite length described by Eq. (62)) the equilibrium has 
been shown to be stable for az/al < 3.‘9922 The finite thresh- 
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old for onset of such ideal instabilities should allow the 
attainment of relatively long-lived states with densities 
larger than the Brillouin limit. 

C. Tilted ellipsoids where we introduce the parameter 

We now consider the second type of ellipsoidal fluid 
equilibrium covered by the non-neutral plasma version of 
Riemann’s theorem, in which A and 5 are not parallel, but 
lie in a principal plane of the ellipsoid. That is, the ellipsoid 
is tilted with respect to the magnetic field direction 4, and 
there is a component of the fluid velocity v in the g direc- 
tion [see Fig. 2(b)]. This equilibrium can be considered to 
be a finite-amplitude extension of a (2,1) linear normal 
mode. We will explore the regions of existence of the tilted 
ellipsoids in the parameter space defined by the three vari- 
ables h, u2/u1, and u3/u r. For given values of these pa- 
rameters, we will find at most three equilibrium solutions. 
We will derive simple limiting forms for these equilibria as 
CQ+ CO. Furthermore, for special values of u3/al, us/at, 
and 6, we will encounter tilted ellipsoids that are station- 
ary in the laboratory frame (that is, w=O) with a nonzero 
internal vorticity fi i.e., the Dedekind ellipsoids. As in the 
case of A@, we will find that tilted triaxial equilibria exist 
that exceed the Brillouin density limit for rigidly rotating 
spheroids. Finally, we will discover a set of tilted prolate 
spheroidal equilibria that occur only for 3(@(6, 

tf= (a&z;, (1 --p,/(a:i3;> (67) 

in order to simplify some of the subsequent algebra in the 
analysis of the equilibria. Now we substitute Eq. (66) into 
Eq. (65b) and into the difference between Eq. (65a) and 
(65b) [which is simpler than (65a) alone]. The results may 
be written as two linear equations in sin* 8, which must be 
satisfied in order to achieve a tilted equilibrium. The equi- 
librium equations are 

S1 sin’ e++o, (68a) 

y1 sin2 e+y*=o, (68b) 

where the coefficients pi and Si are functions of u2/ul, 
u3/a1, ai,“, and tie: 

s,=&j; ( 
a2 4 ~3 - --- 

u3/q A3 u2/u, ’ 

Without loss of generality, we choose (zt,At) =0 so 
that the internal vorticity vector lies in the (i+,&) plane 
and the Euler angle r/~ vanishes. Thus, in what follows, 
z2=sin 8 and z3=cos 6, where 6 is the angle of tilt of the 
three-body axis with respect to the magnetic field. The 
equilibrium equations are then given by Eqs. (53)) (54), 
and (49a). Equations (49a) are written out explicitly be- 
low in terms of the previously defined parameter 
Crj=Xi/32~izi: 

UQZ Az+A~-AI 

These coefficients have been simplified by substituting for 
cz$ and CY~ using Eqs. (53) and (54), in a manner similar to 
the derivation of Eq. (66). We have also substituted for fl 
in terms of the parameter U. 

Equations (68a) and (68b) must be satisfied simulta- 
neously, which requires that 

Yl~z-Y2~1=0~ (63) 

This is the general equation for tilted equilibria. In order to 
solve this equation, we also require the solutions of Eqs. 
(53) and (54) for o2 and as, which are particularly simple 
when written in terms of U: 

-2 

-fi~(a~ sin2 8+cr: 60s’ 6) +a-? Al 

+- ( u2a3 cos2 e+u3a2 sin’ 6) =0, 
a1 

(654 

-2 

-f@~: CO$ e+p-7 AZ+ (1 -P)sin’ 6 

-@ai sin* e+fl-? A,+ (1 -P)cos’ 6 

We begin the reduction of these coupled equations by soiv- 
ing for the plasma frequency using Eq. (65~): 

2 
L$=z l+sin26 --fi&:-(l-/L?)+fi:z~~ 

I ( )I , 

This equation can be simplified by substituting for a: via 
E4& (53): 

a2 
-- ii$4 sin2 0 

a3/Ql 
(66) 

(68c) 

(68e) 

(680 

a~=(l+u~kA)/(k3/q), 

a3=(1-u~t)/(2a~/q), 

where 

(7@c) 

and where the -I signs go together. Equation (69) must 
then be solved for @ in terms of the parameters +/at, 
us/a,, and @ (note that u is a function of fiz, fit, u2/a1, 
and u3/u1 ). The solution has several additional conditions 
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attached. First, fit must be real and non-negative. Further- 
more, a2 and a3 must also be real so we require k2>0. 
Also, sin2 8 must be in the range [0, l] so Eq. (68b) implies 
O< -y2/y1<1. Finally, CL&O so from Eq. (66), a~/(11 
- a2fi$ sin2 8 > 0. 

1. The limit a2-+a1 
The equilibrium equation, Eq. (69), cannot be solved 

analytically except in some special cases. One important 
case is the limit u7+a1. In this case, y2=0 which, from Eq. 
(68b), implies 0=0 provided that yi#O. (We will assume 
that this is the case for now and return to the yl=O case 
later.) For these equilibria, the tilt angle 8 approaches zero 
as the plasma becomes spheroidal. This is. the limit in 
which the rotating equilibria match onto the linear (2,1) 
normal modes of Refs. 5-7. In this case, Eq. (68a) implies 
s2=0. The equation S2=0 is, in fact, the ,dispersion rela- 
tion for the linear (2,l) modes. Substituting for a3 from 
Eq. (70) and taking a2=a1 in Eq. (68d), the equation 
S2=0 can be written as 

-2 l-~+%(l--u*A)=O. 
-43 2 

Since u depends on fit it is not useful to solve for 
b~(u,a3/al). Instead, we take the term involving At/z to 
the right-hand side and square both sides, substituting for 
L2 from Eq. (~OC), which yields 

-2 2 - 
*-~+;u(l-u) 

). 

The term involving u4 cancels,. so after multiplication by 
fii and substitution for u in terms of p using Eq. (67) this 
equation becomes a cubic polynomial in fiz: 

(l-p>s+ 1-2 
( I( 

~3l-m 
-~1-p)2+(a3,a1)2-f 

(1 --A*/A3)fi; 

+ [(a,/q)2-112 =O 1 
(71) 

[recall from Eq. (50) that fi is linear in fi:]. The three 
solutions of Eq. (71) for fi~(a31al,fi~) yield the linear 
frequenci? of the three (2,1) modes through the equation 
zj= ( f 10, ] -f&)/2, since for these modes the linear fre- 
quency equals the rotation frequency w of the nonlinear 
equilibria. There are two values of w for each solution of 
IQ. (71), corresponding to the excitation of a linear mode 
around either of the rigid-rotor equilibria with given b, 
and a3/a, described by Eq. (57). The equivalence of Eq. 
(71) to the linear dispersion relation, Eq. ( 10) of Ref. 6 or 
Eq. (5.15) of Ref. 7, can be easily verified. As was Inen- 
tioned in the Introduction, when CILc+oP two of the solu- 
tions of Eq. (71) describe plasma oscillations and the other 
is an upper hybrid mode. 

In general, when a2#u1, similar algebraic manipula- 
tions of the full equilibrium equation, Eq. (69), reveal that 
this equation can be written as a sixth-order polynomial in 

@; however, the form of the coefficients is extremely com- 
plicated so we do not reproduce them here. -There are then 
six solutions for ~~(cz~/cz,,cz~/cz,,@), which must be deter- 
mined numerically. However, an extensive numerical pa- 
rameter search of the solutions reveals that, for given pa- 
rameter values, there are never more than three real 
solutions for fiz which also satisfy the conditions wj>O, 
A2>0, fit ) 0, and O<sin2 8< 1. Furthermore, these physical 
solutions exist only for certain ranges of c2/a1, cf3/al, and 
@. This is analogous to the previously derived bounds on 
aligned equilibria given by Eq. (63); however, the bounds 
become more complicated for the tilted equilibria and, in 
particular, the ranges depend on which of the solutions of 
Eq- (69) that we consider. Fortunately, this rather com- 
plex situation is clarified by the existence of relatively sim- 
ple analytic equations describing the “existence bound- 
aries,” or relations between fi:, u2/a1, and ti3/& implied 
by the conditions A2=0, @ = 0, 02=0, sin2 8=0 and 
sin2 8= 1. [The other condition, Im( 3) = 0, cannot be 
determined analytically since no general analytic solution 
for a sixth-order polynomial is known.] 

However, before we consider the generals existence 
boundaries we examine one more simplifying limit, for 
which we can obtain analytic forms for the solutions pf Eq. 
(69) as well as for the regions of existence. 

2: The guiding-center limit 
In experiments, the cyclotron frequency is often very 

large compared to all other frequencies in the dynamics so 
it is useful to consider the limit 6,,1 in Eq. (69); that is, 
the guiding-center limit of the tilted ellipsoid equilibria. In 
this limit, the solution of Eq. (69) simplifies considerably. 
All three physical solutions can be found analytically in 
this limit, although only two correspond to guiding-center 
dynamics as the third involves motions at frequencies on 
the order of h, 

The two guiding-center solutions are found by assum- 
ing that /3-O(b,), and fi, -O(b,), so that Eq. (67) im- 
plies U- O( l/b,). In this case, only the - branch of Eq- 
(70) provides a dominant balance in Eq. (69) that is con- 
sistent with this ordering assumption. For this branch we 
find that 

Pa3 Pa2 
ff2= -= and a3=-qq (72) 

where we have used Eq. (67) and have kept only leading- 
order terms. Equations (72) imply that the internal fluid 
rotation is of 0( 1) since ~i=~~criz, 

The angle of tilt of the ellipsoid can be obtained from 
either Ea. (68a) or (68b). Our ordering imnlies that 
yl-ti$ and r,-~nf~~~:-hT)/(~~-~~), So’ - 

2 2 1 
sin’e=$$+o z . 

3 2 ( ) c 

From the conditions O<sin’ 8<1, we then infer that 

if :> (c)l, then $G 0)l 

in order that the solutions be physically relevant. 

(73) 

(74) 
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The rotation frequency of the ellipsoid can also be 
found by using Eqs. (72) to replace “i in Eq. (69), again 
keeping only leading-order terms. We then obtain a linear 
equation in /!12, which can be solved in terms of fii via Eq. 
(50): 

02 (ii+i~,2 &‘+-A3) 
p= 

c 16@ =&42--A,) +44A,-44, 
+o $ . 

( 1 
(i5) 

Equations (72)-( 75) provide two of the three possible 
physical solutions for tilted ellipsoids in the &+l limit. 
Note that, as for the aligned ellipsoids, each solution of Eq. 
(75) for fii corresponds to two possible rotation frequen- 
cies, G= ( f Ifi,/ - fiJ/2, and so there are four possible 
rotation frequencies, two of which correspond to guiding- 
center dynamics. We write these two guiding-center solu- 
tions out explicitly: 

442-4) 

C52=&4rA,) +a$444, 
i-o ; ( 1 c * 

The rotation frequency of this tilted ellipsoid is indepen- 
dent of the cyclotron frequency (to lowest order in l/a,) 
because in the laboratory frame the plasma moves only in 
the z direction. This can be seen by using Es. (72) in Eqs. 
(18) and (14) in order to find the fluid velocity v’. We 
then rotate to the laboratory frame using Eqs. (23) and 
(73 ), obtaining 

v(x’) =o 
(a:-a$ 1 

2a: 
sin (28)x12+0 E . 

( 1 c 

Although the fluid flows only in the 4 direction, the motion 
is phased around the surface of the tilted ellipsoid in just 
such a way as to produce a rotation of the surface at fre- 
quency w (recall that the tilt is in the 2-3 plane, and x, is 
a coordinate normal to this plane). These solutions are 
nonlinear versions of the (2,l) plasma oscillations de- 
scribed by Fq. (71) in the ~zc~wP limit. 

Finally, the density of the ellipsoid can also be found 
by applying Eqs. (72), (73), and (75) to Eq. (66), from 
which we obtain 

+2 2 
#-a:) 

Q,(A2--A3) +443-442 
(76) 

This relation implies non-negative values for C$ for all 
~,/a, and ax/a1 values that satisfy Eq. (74). By the same 
token, the right-hand side of Eq. (75) is also non-negative 
for all ( u~/~,,cIz~/u~ ) in the region described by Eq. (74)) so 
the solutions are physically meaningful in this region. 

Turning to the third solution, we now assume 
/3-O(1), &-O(&). Now Eqs. (50) and (67) imply 
u-0( l/@), and only the + root of Eq. (70) provides a 
consistent dominant balance in Eq. (69). In this case, we 
find a2=a2/aI and a3=a3/a1, and when these results are 
used in Eq. (69) and only leading-order terms are kept we 
find a linear equation for p with the following solution in 
terms of Szz: 

fi;=fi$-6+ 
4&43-AZ) 

443-4 +ag-42-a2yq3 
There are then two possible solutions for i3, one of which 
corresponds to an ExB drift form, i.e., O-0(1/&). 
However, the fact that a2 and a3 are O( 1) implies that 
A-O(&), so this motion cannot be described by ExB 
drift dynamics alone. This solution is a finite-amplitude 
upper hybrid mode. 

The tilt angle of the ellipsoid with respect to 2 follows 
from the limiting forms for y1 and n. From Eqs. (68e) and 
(6&f), rl-fi~a~(a~--a~)/& and rz-fi~(a~-a~)/a~. 
Equation (68b) then implies 

#~(#~-#“2) 
sin28=2 2 Z+Oi. 

q(a3-4 ( 1 c 

When we apply the constraints O<sin2 8< 1, we are again 
led to Eq. (75) for the ranges of a2/a, and a3/o1 for which 
a physical solution exists. 

Finally, when these results are substituted into Eq. 
(66) we find that the density of the ellipsoid is also given 
by Eq. (76), so all three tilted solutions have the same 
density and region of existence in the 6,% 1 limit. 

3. Existence boundaries and tilted spheroids 
The general solutions for the tilted ellipsoids are pa- 

rametrized by the values of a2/al, a3/al, and h, and so- 
lutions exist only for certain ranges of these parameters. 
Thus, for given fi, the boundaries of the regions of exist- 
ence of solutions trace out curves in the (az/al,a3/al) 
plane. For example, we have just found that, for fi,>l, 
physical solutions exist only within existence boundaries 
given by Eq. (74). We now consider the general behavior 
of these limiting curves. By symmetry of the equilibria with 
respect to relabeling of the two- and three-body axes, the 
curves must be symmetric under reflection in this plane 
about the a2 =a3 line, provided that 8-r/2- 8 as we re- 
flect solutions about this line. 

We first consider the existence curves determined by 
sin2 8=0. Reflection of these curves about the a2=a3 line 
then gives us the curves defined by sin2 8= 1. We have 
already discovered one sin2 8=0 curve; our discussion of 
the linear (2,l) modes revealed that, if y,#O as a2+a1, 
then e-+0, so a2=a1 is a 8=0 curve. Another sin2 8=0 
curve can also be found by considering the relations be- 
tween a3/al, a2/a1, and fiz implied by Eqs. (68a) and 
(68b) as e-0, which may be written as S2=0 and ‘yz=O. 
Assuming that a2#~,, the y2=0 relation implies 

Al --A2 ata2 ii~CXct,=---- 
ff3 22, 

a2--a1 
(77) 

which, when substituted into S,=O, yields a simple equa- 
tion for u in terms of a,/a, and a3/a1: 

(78) 

However, Eqs. (50) and (67) imply a general relation 
between fii, 6:, and U: 

62- (643(4-4) 
“- 4a+(a+z;) * (79) 
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FIG. 9. Solutions of Eq. (81) for the sin’ 6= 1 existence boundary. Solid 
line: a/a,= l/2. Dashed line: q/a, y 1. Dotted line: q/a,=2 Dashed 
line also gives the behavior of C, as a, varies (see Fig. 13). 

When Eqs. (78) and (79) are inserted into Eq. (77), we 
obtain 

4(&--A3) AI--A2 

(a3/a,)2-(a2/a1)2-(a2/a1)2- 1 
(80) 

Now, by Eq. (70b), a3=CT3(#,aZ/alra3/a1), and Eq. (78) 
implies u=u(a2/a,,a3/al>, so Eq. (80) gives 
i?~(a2/a,,a,/aI) along the 8=0 curve. It may be useful to 
note that, as o-+0, a2= A,/(sin ofi,) remains finite by 
Eqs. (78) and (70a), so A2 also approaches zero in the 
limit. Thus, along the 8=0 curve described by Eq. (SO), 
the equilibrium approaches an aligned ellipsoid. 

Finally, we note that symmetry under transposition of 
the two- and three-body axes labels implies that the 
a=~/2 curves are given by a1=a3, as well as the expres- 
sion obtained by interchanging labels 2 and 3 in Eq. (80), 
which yields 

&&--A$) ‘41---A3 

(ada1P- (a2/a1)2-(af/al)2-l 
(81) 

where we must also exchange the 2 and 3 labels in Eq. 
(78). The solution of Eq. (8 1) for fi: as a function of a2/al 
are shown in Fig. 9 for several values of a3/al. Along these 
curves one of the tilted ellipsoids attains 0=?r/2, becoming 
an aligned ellipsoid. Furthermore, as a3/al + 03, Eq. (8 1) 
and (A8) imply that fiz approaches either 6 or 2+a,/aI, 
depending on whether one chooses the - or + branch for 
a2 in Eq. (70a). 

It is important to note that not all of the physical 
solutions pass through -sin2 8=0 along the 8=0 curves 
(and naturally the same caveat applies to the 8=~/2 
curves). The full equilibrium equation has up to three 
physical solutions at any given (~,a2/aI,a3/a,); however, 
Eqs. (66), (67), (77), and (78) imply that Eq. (80) picks 
out only one of these three solutions. The other two solu- 
tions do not pass through 0=0 because they satisfy the 
general equilibrium equation and not just 62= y2=0. 

On the other hand, along the line a2=a1 we saw that 
8=0 for all three physical solutions, but only if ~~20. 
These three solutions corresponded to the linear (2,l) nor- 
mal modes. We will soon see that another condition, fit 
2 0, limits the range of validity of these three solutions to a 
finite segment of the a2=a1 line; along this line the ine- 
quality-fi2f > 0 is just the Brillouin limit condition [see Fig. 
6 and Eq. (58)]. However, for a,/a, values beyond this 
segment new solutions can occur that satisfy yi=O (and 
that do not have e=O). We will now consider these solu- 
tions, which correspond to tilted spheroidal equilibria with 
internal fluid shears. 

Taking a,=a2 in the expression yl=O yields the fol- 
lowing relation between u and a3/al: 

$$ [ -u+($l]==O. 
Using Eq. (70a) one can easily show that a2=0 can occur 
only when a2-+0 or u =0, which are unimportant cases. 
We are left with the case u=&af-- 1, which implies that 
1 -p---fit=O,or 

6:=2--t/3, (82) 

where we have used the definitions of u and p [see Eqs. 
(50) and (67)]. Recall that this condition occasioned an 
exception to Riemann’s theorem (cf. Sec. III A). We will 
now see that the exception arises because of the existence 
of tilted spheroidal equilibria, which are degenerate cases 
in the proof since rotations of the body axes around the 
spheroid’s axis of symmetry are allowed. 

Equation (82) implies that these spheroidal equilibria 
exist only for @<6, and we will soon see that solutions 
also exist only for @>3. The condition fi:<6, when ap- 
plied to rigid-rotor solutions, would correspond to the re- 
gime of oblate rigid-rotor spheroids. However, the tilted 
spheroids must be prolate, as can be seen from the form of 
at and a3 when u=af/a:-- 1 and a2=al: 

a2= (a3/al f J-)/2, 

and 

(83a) 

a3= (2-a$/~*a3/aI J-)/2, (83b) 

which follow from Eqs. (70). The f signs go together in 
these two equations, so there are two possible solutions. 
Equations (83) imply that a,/ai > 2 is required for a phys- 
ical equilibrium. 

Furthermore, unlike the rigid-rotor spheroids, these 
spheroids are tilted with respect to the magnetic field; ac- 
cording to Eq. (68a) 

sin28 = - S2/S, 

1 -A1/A3+a3(a:/a~- 1) (2---t/3) 
=Ea3-a2al~~/(a~3)](a~/a~-l)(2--lii~/3)’ +’ 

(84) 

Tilt angles as a function of a3/a, are displayed in Fig. 
10(a) for various values of fif in the range 3<fiz<6 for 
which these spheroids exist. For 3<@ < 4.84, two tilted 
spheroids may exist with the same shape a3/a, but with 
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FIG. 11. Solutions of Eqs. (89) and (90) for the AZ=0 existence bound- 
aries for two values of us/q. Dashed line: q/u, = 1. Solid line: ~,/a, = 3, 
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symmetric limit, so we will now consider the more general 
derivation of the existence boundary corresponding to 
+I. 

This boundary may be obtained from Eq. (66): 

0 
a2 - ili;su sin’ 0= 1. 

a34 
(85) 

2 3 4 5 6 
@I a3fal If we regard this as an equation for sin2 8 and substitute 

the solution into Eq. (68a), several cancellations occur and 
FIG. 10. Behavior of the tilted s_pheroids for three ties strengths. Dashed 
line: /CL,/ = 1.8. Dotted line: I&j =2. Solid line: \fk,l =2.3. (a) shows 

we find that fit must satisfy the equation 

the tilt angle 0 of the spheroids and (b) displays the plasma frequency. In 
both figures, the lower branch corresponds to solution 5 of Fig. 13 and the 

as/a I a2/a 1 

upper branch corresponds to solution 4. 
$+--- I) 

a2 a3 

different tilt angles and densities. The densities are dis- 
played in Fig. 10(b). 

For 4.84 < fif < 6, only one equilibrium exists [corre- 
sponding to the + branch solution of Eqs. (83)] because 
the other solution has completely passed above the 
sin’ 8= 1 limit. The value fiif =4.84 at which the - branch 
of E$ (83) disappears can be obtained by determining the 
value of fif for which both sin2 8= 1 and ,12=0. At this 
point, Eqs. (83) imply a2= 1 and a3= - 1, so by taking 
a3/aI=2, a3=-1, a2=l, and a2/a1=1 in Eq. (81) we 
find, after employing the spheroid relation 2Ai +A,=2, 
that @ must satisfy fit =4/A1 (2). If one uses the prolate 
spheroidal form of A,, Eq. (A5), this result can be written 
in terms of elementary functions: 

12 
df=4-(1/JS)ln[(2+ J3)/(2- d3)] 

=4.840 06.... 

Furthermore, no tilted spheroids exist below fiz < 3 
because in this range c$ < 0 for these solutions. This can be 
seen by substituting Eqs. (82)~(84) into the equation for 
c$, Eq. (66). However, this result applies not only to the 
tilted spheroids but to two entire branches of triaxial equi- 
libria for which the tilted spheroids are the cylindrically 

When this result, along with Eq. (85), is substituted into 
Eq. (68b), we find after several more cancellations that 

u= (a:--a$/af. (86) 

However, when this form for u is used in the preceding 
equation we find that the a2/al and as/a, dependencies 
cancel and we are left with the simple result fit = 1. Fur- 
thermore, a comparison of Eqs. (67) and ( 86) implies that 
1 -fi==@, and since fif = 1 we find that fiizf = 3 when 
$=O. Note that because a2 is double valued Eq. (85) 
implies that up to two of the three possible physical solu- 
tions approach c$= 0 as fif + 3. In fact, these two equilib- 
ria correspond, for a2=al, to the two tilted spheroids. 

Turning now to the curves defined by L2=0, we see 
from Eq. (7Oc) that A2=0 implies 

a3*a2 u=- 
a33=a2 ’ (87) 

and in either the + or - case a2= (1 +u)/(2a3/al), and 
a3= (I- u)/(2a,/aI ). Substituting Eq. (87) into these re- 
lations yields 

al 
a2=- 

a3Fa2 

al 
and a3=- 

a2=i=a3 ’ 

Then substitution of Eqs. (87) and (88) into Eq. (69) 
results in a linear equation for 0: whose solution is 
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(89) 

where we have introduced the notation r2=a2/a1 and 
r3=a3/a1 in order to save space. This result, along with Eq. 
(87)) can be employed in Eq. (79) to obtain @  along the 
A’=0 curves: 

fi:(~,$) =6- ( (a3~6,)2-1)q~~,~), (90) 

where the .k signs go together in Eqs. (89) and (90). Note 
that this solution has the proper symmetry upon inter- 
change of labels 2 and 3. The solutions for @  are plotted 
in Fig. 11 as a function of az/a, for various values of a3/al. 
One can see that, for any given value of @., there may be 
several AZ=0 curves running through the (a2/al,a3/al) 
plane. Fortunately, it turns out that only two of these 
curves will be required to determine the regimes of exist- 
ence of physical solutions, and these two curves are reflex 
tions of one another about the a2 = a3 line so only one really. 
need be considered. The other curves are superceded by 
one or more of the other existence conditions, or merely 
reflect a continuation of a solution from the + branch to 
the - branch of Eqs. (70). We will further find that these 
A.‘=0 curves contribute to the existence boundaries only 
when 3 <@<6. We will discuss this in more detail pres- 
ently, when we plot the existence curves in the 
(a2/al,a3/al) plane. 

The final boundaries to be considered analytically are 
determined by the condition $ = 0. In this limit, Eq. (67) 
implies that u--t CO, and there are two possibilities for a2 
and a3. Either 

2 u a3al 
a3=--=- 

a2/a1+a2(a3--a2) 
2 2 +0(q), 

where we have used the definition of U. Then to lowest 
order in fif, only the first term contributes and we find that 
sin’ 8= 1. We then substitute sin2 0= 1 in Eq. (68b) and 
keep only the lowest-order terms as fif + 0 to obtain 

AZ--Al A2+A3---Al 
~I 

A3 A3 
(1-P) =0(@. 

Thus, p satisfies P=A3/(A2+A3-AI), or in terms of fiz, 

4A3 
‘:=2+ (A2+A3-Al) ’ (92) 

where Eq. (50) has been employed. Equation (92) gives a 
curve along which a tilted ellipsoid attains fiz = 0. 

However, since this is an existence boundary we must 
keep the next-order term in Eq. (9 1) to determine whether 
sin2 8 will be larger than or less than unity as @  -+ O+. We 
will now show that this constraint implies that Eq. (92) is 
only valid when a3/al< 1. By linearizing Eq. (9 1) in the 
small’quantity 1 ,sin2 0, we find that this quantity satisfies 

22 

1 -sin2 0= 
a2a, i=L; 4 

(a:---af)” (l-/3)2 pXi-1 . i 1 

Thus, in order that sin2 8<1 as fit -+ O+, we require 

P<A3/A2. 

If we now substitute Eq. (92) into this relation, we find 
that a,/a, and a3/al must satisfy the condition 

AS-AI 
A2+A3-A,"' 

c+$$+O(fi~), 
or 

Since A,>A, only when a3<ql, this condition is satisfied 
only where either a3<al, or A,-AI+A2c0. However, in 
the latter-case $gO, as we now show. The plasma fre- 
quency is found by taking sin2 f3= 1, fit = 0 in Eq. (66) 
and substituting for @  via Eq. (92). The result is 

and 

u ah 
a2=! 

adal+a,(aX 
2 +o(b;), -, 

and 

a31s+0(6:). I 
3 2 

For the former case in which a3 + cu as fiz + 0, Eq. (68a) 
implies that 

(ai-& (1 -PI2 : 
2 

a2 
fiz (gin2 O- 1) +sin2 f3(,1 -p) 2-s ( 1 3 2 

a: 
+1-$+(1-B) q=o(n;), (91) 

w 2 
G=&=A~+A~-A,. - 

Thus, if A3-A, +A,<O, 5&O, and so Eq. (92) describes a 
physical fit = 0 equilibrium only for a3 <a,. 

. If we now return to the other case where a3 remains 
finite and a2-+ UJ as fiz --t 0, we find after a similar analysis 
that the equation for the existence boundary is identical to 
Eq. (91) except that the 2 and 3 labels are interchanged 
and now sin2 8-O rather than unity along the boundary. 
This fiz = 0 curve is 

4A.2 
'f=2+(A2+A3-A,)' 

(93) 

and a2<a, is required for a physical solution. This exist- 
ence boundary is shown in Fig. 12 as a function of a,/a, for 
three values of a3/aI. 
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FIG. 12. Solutions of Eq. (93) for fit = 0 existence boundaries for three 
values of ag’a,. Solid line: al/a, = l/2. Dashed line: a,/~, = 1. Dotted line: 
ax/al =2. 

For a certain range of Fiji,” the two 6: = 0 existence 
boundaries cross in the (a2/al,a3/al) plane; that is, there 
are values of a2/a, and a3/al which satisfy Eqs. (92) and 
(93) simultaneously. Since the two equations are symmet- 
ric under interchange of the 2 and 3 labels, this crossing 
must occur at some point where A,=A,, which implies 
a2=a3. An equation for the crossing point then follows 
from either Eq. (92) or Eq. (93), along with Eq. (A4): 

e-4 c 
Al=-? (94) 

where A, is evaluated for a2=a3. Furthermore, the cross- 
ing of the fiz curves can occur only where both curves are 
valid, i.e. a&al and a2<al. However, in this regime Eq. 
(A4) implies O<A,<2/3, and Eq. (94) then implies that a 
crossing of the curves occurs only for fif in the range 
4,<@<6. 

4. The regions of existence 
We are now ready to consider the form of the regions 

of existence of tilted equilibria in the (a,/a,,a,/a,) plane as 
a function of @ . We employ the analytic forms for the 
existence boundaries derived in the previous subsection as 
well as numerical solutions of Eq. (69) in order to deter- 
mine the topology of the regions of existence as a function 
of fiz. The existence boundaries determine where a physi- 
cal solution vanishes, and the numerical solutions of Eq. 
(69) allow us to track this solution from one boundary to 
another, thus identifying the region of the (az/al,a3/al) 
plane in which the solution exists. The regions have differ- 
ent topologies depending on whether @6, 6>@)4, 
4>@>3, or 3>@2, and examples of each are shown in 
Fig. 13. These topologies can be understood from the an- 
alytic behavior of the existence boundaries, as we will see. 
For @<2, there are no tilted ellipsoids, just as for the case 
of the aligned ellipsoids. 

The regions of existence for a:>6 are shown in Figs. 
13(a) and 13(b) for the cases @= 16 and @=6.25. The 
behavior of the solutions in this regime is also plotted in 
Fig. 14, which shows the solutions along a line through the 

(a2/al,a3/al) plane. Figure 14(a) illustrates that solutions 
with plasma densities elevated well above the Brillouin 
limit can occur for plasmas that are sufficiently disklike, 
just as for the aligned ellipsoids. Here, however, these high- 
density disk equilibria are tilted with respect to the mag- 
netic field [see Fig. 14(c)]. 

Figures 13 are symmetric about the line a2=a3, as ex- 
pected from symmetry under interchange of the (2,3) body 
axes. The points M  and M ’ are the Brillouin limit beyond 
which rigid-rotor spheroidal equilibria cease to exist. Point 
M  is determined by Eq. (58), and the behavior of M  as fi$ 
varies can be taken from Fig. 6. Along the line segments 
[( l,O),M] or [(O,l),M’], the equilibria become the usual 
rigid-rotor spheroids, described by Eq. (44), with an infi- 
nitessimal tilt (2,l) linear perturbation added that rotates 
at one of the three frequencies given by the solution of Eq. 
(7 1) . On the former line segment, sin2 8 -+ 0, and sin’ 8 4 1 
on the latter, and furthermore c$ approaches the same 
rigid-rotor equilibrium value for all three solutions. 

The line segments [ ( 1,O) , M] and [ (0,l) ,M’] are also 
existence boundaries for the three solutions that describe 
the conditions sin’ 8=0 and sin2 8= 1, respectively. A nu- 
merical examination of the solutions on either side of 
1(LO),Ml and L(O,l A M ’1 reveals that, in the regime &S, 
all three equilibria exist only to the left of (S,M) and 
below (S,M’ ), where the point S corresponds to a spher- 
ical equilibrium. This region of existence agrees with the 
6&l limiting form of the existence region, given by Eq. 
(74). However, this limiting form breaks down near the 
points M  or M ’, where the rotation frequency approaches 
C&/2. Indeed, at the point M, the condition sin2 8=0 is 
superceded by fit = 0 along curve A [described by Eq. 
(93)], as well as the condition Im($) = 0. This latter 
condition is satisfied along curve B, which is found by 
numerically solving Eq. (69) for fit and determining at 
what values of (a2/aI,a3/al ) the solution is no longer real. 
Along curve B, Im( ai) becomes nonzero for two solu- 
tions, which we call solutions 1 and 2; solution 1 has the 
larger value of [ fi, I. These two solutions must therefore 
merge and disappear along B and one can see this behavior 
in Fig. 14. Thus the regime of existence of solutions 1 and 
2 is delineated by the a,/a,=O axis, and the curves 
[(O,l ),S], [S,M], and B-that is, the gray area of Fig. 
13 (a). The other solution, solution 3, has a larger region of 
existence delineated by the a2/al =0 axis and the curves 
[( 0,l ),S], [S,M] and A-the horizontally lined region. 
When f2,.%op solutions 1 and 3 become the plasma oscil- 
lations of Eq. (75), and solution 2 is the upper hybrid 
oscillation. 

We note that various /2”=0 curves also run through 
the (a2/al,a3/al) plane, as described by Eqs. (89) and 
(90). However, a solution that disappears on one side of 
the i12=0 curve is replaced on the other side by a solution 
on the opposite branch of a2 and a3 with the same physical 
properties and we regard these two branches as the same 
solution. These unimportant A’=0 curves are not shown; 
we display only those curves that contribute to the exist- 
ence boundaries. 

The next figure in the sequence, Fig. 13(b), is still in 
the first regime fiif>6, but is plotted for a lower cyclotron 
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frequency given by @=6.25. As one can see, as 6: nears 
6, the points M  and M’ approach S [see Rq. (58) for the 
spherical case A,=2/3, and see Fig. 61. Furthermore, the 
fi: = 0 curves labeled A and A’ push the existence of so- 
lution 3 into an ever-decreasing area (see Fig. 12, which 
shows this behavior as a function of @). As df+6+, so- 
lution 3 approaches fit = 0 except along the line [ ( 1,0) ,M], 
where fii takes on the finite values associated with a linear 
mode. Thus the behavior of solution 3 is quite singular in 
the limit fii =+ 6. Solutions 1 and 2, which are bounded by 

‘curve B, also exist in a smaller (but finite) region of the 
plane as @-+ 6. ,- 

As fia. drops below 6, the character of the existence 
regions changes. The topology of the regions is displayed in 

-solIl5 

(e) 

BIG. 13. Existence regions for the tilted ellipsoids, plotted in the 
(a,/~,,a~/a,) p lane for five values of the normal ized cyclotron f requency 
6,. Regions of existence are bounded  by the lines az/ul =  1  and  ~,/a,= 1, 
as  well as  by  the solid curves labeled A-D and  their mirror images in the 
nz=a3 line, A’-D’. Along curve A, a,=0 and  0=0 for solutions 3  and  6. 
Along curve B, solutions 1  and  2  merge and  disappear as  Im fi: becomes 
nonzero.  Along curve C, 8=  77/2 for solutions 4  and  6, and  for solution 5  
below C$. Along curve D, d’=O for solutions 4  and  5. Special points are 
M, the Brillouin limit; S = ( 1, 1  ), the spherical limit; the points R, C,, and  
C, (which are points of intersection of the existence boundaries);  and  
their pr imed counterparts below the a,=as line. The  dashed lines [which 
are difficult to see in (c) and  (d) because of their proximity to curves B 
and  B’] provide the triaxial shape required for a  Dedekind ellipsoid so- 
lution at the given values of @. (a) df= 16. (b) @=6.25.  .(c) fi:=5. 
(d) df=4. (e) 6:=2.89. 

Fig. 13(c) for the case @=5, and for this cyclotron fre- 
quency the solutions are displayed in Fig. 15 along the line 
a,/al=0.6. Here, we concentrate only on the region for 
which a3)a2 in order to simplify the discussion, since the 
region as <a, may be obtained by reflection. As @~6-, 
curves A and A’ suffer a discontinuous change. For 
@--t6+, curve A approaches the line segments 
[(O,l),(O,c~)l and [(0,1),(S)]. However, as @+6-, the 
former segment is replaced by [( O,O), (0,l )]. This behavior 
can be extracted by eye from Fig. 12. As fit decreases 
further, the two curves A and A’ emerge from these lim- 
iting cases as shown in Fig. 13(c). The two curves cross 
along the a2=a3 line at the point R, described by Rq. (94). 
Furthermore, a sin’ 8= 1 curve now appears, which we call 
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FIG. 14. Behavior of the tilted ellipsoids as u2/u, varies for fif= 16 and 
n,/a, = 3 [i.e., along the line Q,/Q, =3 in Fig. 13(a) 1. Solutions are labeled 
1, 2, and 3 [see text and Fig. 13(a)]. (a) shows the plasma frequency of 
the solutions, normalized to the cyclotron frequency in order to compare 
to the Brillouin limit. (b) shows the vortex frequency of the solutions, 
and (c) the tilt angle of the three-body axis with respect to the magnetic 
field. 

curve C (see Fig. 9, which shows that 0: must be less than 
6 in order for this existence boundary to appear). This 
curve intersects the rigid-rotor equilibria at C,. The depen- 
dence of C!, on fif is given by the dashed line in Fig. 9. For 
a3/a,> 1, curve C approaches the line a2/ul = fi,“- 2. This 
follows from the limiting form of the sin2 6= 1 curve dis- 
cussed in the paragraph following Eq. (8 1). Finally, a seg- 
ment of one of the h2=0 curves (curve D) becomes an 
existence boundary, intersecting C at C,. The behavior of 
C, as @  varies is shown in Fig. 16. 
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FIG. 15. Behavior of the tilted ellipsoids as o/a, varies for @= 5 and 
~/a, =0.6 [i.e., along the line u,/a,=O.6 in Fig. 13(c)]. Solutions are 
labeled 1, 2, 5, and 6 [see text and Fig. 13(c)]. In (a), solutions 1 and 2 
have nearly the same plasma frequency. 

Three new solutions appear within these new bound- 
aries, replacing solution 3. One of the three solutions, so- 
lution 4, is bounded by the triangular region between 
curves C and D-the diagonally lined area. Jt approaches 
sin2 6= 1 along C and merges with another new solution, 
solution 5, as R approaches zero along curve D. Solution 5 
can be regarded as a smooth continuation of solution 3, 
reappearing from the a2=0 axis as @  drops below 6. So- 
lution 5 approaches sin’ 8= 1 only along curve C below Czt 
since only one solution approaches this limit and solution 4 
has already done so above C,. Above C2, solution 5 extends 
out to curve D where it merges with solution 4. Thus it 
exists in the area delineated by the a,=0 axis, and the 
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FIG. 16. Behavior of the point C, as fiz varies. As dfL6, GL ( W,OO ). 
The points 3, 4, and 5 mark the position of C, for these values of fi:. 

curves [ ( 1,O) ,Cr], [C&J, and D-the ‘horizontally lined 
area. We also note that, along the line a2=a1, solutions 4 
and 5 become the tilted spheroid equilibria shown in Fig. 
11. The third new solution, solution 6, is a1so.a continua- 
tion of solution 3 but it exists for ~<a, in the region 
bounded by the curves [(O,O),Ci], [C,,M], [M,R], and 
[R, (O,O)]-the vertically lined region. Finally, solutions 1 
and 2 are now bounded in the region determined by the 
~,/a, axis, curve B and the line segment [ (0,l ),M’]. The 
behavior of these solutions along the line a,/a,=0:6 is 
shown in Fig. 15. 

As 6: falls below 4, the point R disappears into the 
origin [see Eq. (94)] and the region of existence of solution 
6 changes, being delineated now by the curves [(O,O),C,], 
[Ct,M’], and A’. This behavior is displayed~ in Fig. 13(d). 

This’topology of the regions, of existence is preserved 
until fiz falls below 3, where there is’another discontinuous 
change in behavior. As @  + 3, solutions 4 and 5 approach 
wz=O, in accord with the discussion surrounding Eq. (85). 
Solution 4 disappears when @  < 3, and solution 5 becomes 
bounded on the right by curve C, the sin2 8 1 line. Its 
region of existence is now delineated by the &/al = 1 axis 
as well as the curves [(O,l),Ct], and C. Since curve C no 
longer crosses the u2=u1 line when 6: < 3 the tilted sphe- 
roids disappear, as we discussed previously. Solutions 1; 2, 
and 6 remain in their respective existence regions. Finally, 
as (ii2 ,-+2, M ’ and Ci move toward the point (0,l) and all 
of the regions of existence merge into the a2/u1=0 line. 
Below fiz=2, there are no more equilibria, as was the case 
for the aligned ellipsoids. - 

. s* 1 

5. Dedekind ellip&Vds 

The physical solution of Eq. (69), which we have la- 
beled solution 1 in the figures, has an important property. 
For a given value of 0, there exist particular values of 
a2/al and as/al for which the rotation frequency of this 
equilibrium is identically zero; that is, the tilted ellipsoid 
appears to be sfationary in the laboratory frame, although 
internal motions remain. This stationary equilibrium can 
be observed in both Figs. 14(b) and 15 (b) at the point 
where the cyclotron and vortex frequencies are equal. This 

equilibrium is of particular importance in experiments 
since it can resonantly interact with a static external field 
asymmetry.5-7 Fluid ellipsoids whose bounding surface is 
stationary but which have internal motions are referred to 
as the Dedekind ellipsoids in the astrophysics 
literature.12’14 - 

Once it is recognized that such stationary solutions 
exist, characterizing them is relatively straightforward. 
The solution by assumption has ti=O, which implies 
@  = fi,f and /3= - l/2. In turn, this implies through Eq. 
(67) that 

3 (a&& 
u=- 

2 iI; * 

We substitute this result as well as Eqs. (70) into the 
general equilibrium equation, Eq. (69), and isolate on one 
side of the equation those terms that are linear in the 
square-root term, il. Then on squaring both sides, we are 
left after some algebra with a cubic equation for fi; of the 
form 

$gLo. (95) 

The coefficients ci are rather complicated: 
,_. 

x&a:)2, 

+.(A2/A3)2[(3a:-55a:)af+2(a~--a:j~+a42 

+U,/A3( 1 -J&/-43) (a:++) + (A*/A3)2 

X [3(&--a;) +4(a~-4a;)a~--2a;a~] 

+3(a;-a;) +4(a;-4&t+-2&z;), 

c3=-(1-A2/A3)U:[aT-A~/A3(at-3aZ)--3a:]. 

These coefficients have been checked using the algebra ma- 
nipulator MATHEMATICA. This cubic equation for fiz has 
three roots, all three of which can be real and positive, 
depending on the choice of a,/at and a,/a,. However, only 
one of these three roots corresponds to a physical 
solution-solution 1. We have checked the other two roots 
of Eq. (95) numerically over a large range of values of 
a2/a1 and a3/a, and have found no cases for which these 
roots correspond to physical solutions. The values of a2/a1 
and as/al for which the rotation frequency of solution 1 
vanishes are shown in Fig. 13 as dotted lines. For fi: < 6, 
one can see that the lines closely follow curve B, and the 
point of intersection of these lines with the spheroidal equi- 
libria is near M, the Brillouin limit. This behavior is due to 
the rapid variation in fit as solutions 1 and 2 merge, as can 
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be seen in Fig. 15(b). The dotted lines are partially ob- 
scured by curve B in Figs. 13 (c) and 13 (d). We also note 
in passing that the spherical case a1=a2=a3 can be solved 
analytically since c3 and co are zero in this limit, and 
A,=A,=A,=2/3. The solution of Eq. (95) is then 
I&t =5/2, the case plotted in Fig. 13(b). 

lV. CONCLUSIONS 

We have shown that nonlinear quadrupole oscillations 
of a homogeneous non-neutral plasma ellipsoid can be an- 
alyzed as a relatively simple Hamiltonian system with nine 
degrees of freedom, following from a reduction of the pres- 
sureless Euler equations for an ideal cold fluid. The con- 
stants of the motion were found, and the special case of 
cylindrically symmetric oscillations in the length and ra- 
dius of a spheroidal plasma were analyzed in detail, and in 
the limit of large cyclotron frequency this motion was re- 
duced to quadratures. The predicted nonlinear frequency 
shifts should be experimentally observable. 

The equilibria of the general equations were analyzed 
and were shown to fall into two classes. The aligned ellip- 
soids have a principal axis oriented along the magnetic field 
and the fluid velocity is perpendicular to B. The tilted 
ellipsoids contain fluid flows that are no longer perpendic- 
ular to B; instead wj]B, but A[B and these vectors fall in a 
principal plane of the ellipsoid. Simple forms for the equi- 
libria were found in the experimentally relevant limit 
1 fi,l# 1. The regions of parameter space ( G/u~,cT~/u~,~~) 

for which equilibrium solutions exist were analyzed and a 
surprisingly varied range of equilibria was found, including 
tilted spheroids and disks, as well as triaxial ellipsoids that 
are stationary in the lab frame. For given values of the 
parameters, two aligned equilibria were found, correspond- 
ing to finite-amplitude versions of the two (2,2) quadru- 
pole normal modes. Up to three tilted equilibrium solu- 
tions were found, and the topology of the regions of 
existence in the (cz~/‘u~,cz~/cJ~) plane was shown to fall into 
four classes, depending on whether @>6, 6>&!>4, 
4>&3, or 3>6$2. These topologies are displayed in 
Fig. 13. 

In both the aligned and tilted equilibria, solutions were 
found that exceed the Brillouin density limit. Such solu- 
tions are possible because the plasma does not rotate rig- 
idly. High-density equilibria should also occur for certain 
sheared plasma flows in more complicated geometries than 
those considered here. For example, a finite-amplitude I= 2 
diocotron mode set up in any plasma that is already near 
the Brillouin limit should produce some density compres- 
sion. This effect may be observable in present experi- 
ments.” 

In this paper, we have not considered the stability of 
the nonlinear quadrupole motions with respect to small 
perturbations. For example, ideal fluid instabilities such as 
Kelvin-Helmholtz shear flow instabilities will no doubt 
occur if the fluid shear in the ellipsoid is sufficiently large. 
However, such instabilities generally have a finite thresh- 
old for onset, so it is possible that finite-sized quadrupole 
distortions of the cloud may be observable experimentally. 

This important question will be considered in future pa- 
pers. 

Furthermore, throughout the paper we have consid- 
ered only a cylindrically symmetric time-independent ex- 
ternal trap field in order to simplify the analysis. However, 
time dependences and asymmetries can be kept without 
changing the general equations, Eqs. (22), provided that 
these fields remain of the quadrupole form given by Eq. 
(4a). For example, the effect of a squeeze field, in which all 
three diagonal components of E, are different, can be taken 
into account; and the effect of a tilt of the magnetic field 
with respect to the trap electrodes adds off-diagonal terms 
to E,. The effect of these field errors on the equilibrium and 
dynamics of ellipsoidal non-neutral plasmas will be consid- 
ered in future papers. 

ACKNOWLEDGMENTS 

The author gratefully acknowledges useful discussions 
with Dr. C. F. Driscoll and Dr. K. S. Fine. 

This work was supported by National Science Foun- 
dation Grant No. PHY87-06358 and ONR Grant No. 
NOOOl4-89-J-1714. 

APPENDIX A: ELECTROSTATlC POTENTIAL WITHIN 
A HOMOGENEOUS ELLIPSOID 

The plasma potential $p satisfies the Poisson equation 

v2cjp= -4mp, (AlI 
whereas the gravitational potential cjo satisfies the similar 
equation, V2&=4rGmn. This implies that a self- 
gravitating system of masses has the same potential as a 
system of charges interacting via Coulomb’s law, if we 
identify Gc+ - q/m. We can therefore directly apply 
known results for the potential within a homogeneous self- 
gravitating ellipsoidal mass to determine the potential 4p 
within a homogeneous single-species ellipsoidal plasma. 
Chapter 3 of Ref. 14 provides a list of useful relations. 

The potential (6p is quadratic, taking the following sim- 
ple form in the body-axis coordinates x’: 

where o.$=4~q%/m is the square of the plasma frequency, 
Aj=Ai(az/ul,a3/u,) and 1(~1~/ai,~~/ai) is a constant that 
is chosen to match the interior potential onto an exterior 
solution that approaches zero at large distances. The value 
of this constant is 

3 

I= c Ap;. (A31 
i=l 

Since #p satisfies Poisson’s equation, substitution of Eq. 
(A2) into (Al ) yields the relation 

Al+A2+A3=2. (A41 
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The functional form of the Afs is particularly simple 
when the ellipsoid is a spheroid. For a prolate spheroid 
with al=az<a3, 

A3(a3/al)=2q [kh(z)-I], 

where e = ,/T 1 al/a,. For an oblate spheroid, the analytic 
continuation of Afs into the regime al =a2 > a3 yields 

Al(a3/al)= ib;p” (F- \im), 

=&=A1 , (A61 

AJ(ada,) =2 7 ( 7&vy), 

where here e’ = 47 1 a3/a,. For a general triaxial ellipsoid 
with a, > a2 > a3, the Als can be written in terms of elliptic 
integrals: 

a2a3 F(M) --E(G) 
Al (a2/al,a3/al) =2 7 

Ql k2 sin3 0 ’ 

Ah/am/al 1 

a2a3 E(6,k) -k12F(C3,k) - (a3/a2)k2 sin 8 
(A7) 

=2-;;f k2k’2 sin3 9 9 

a2a3 (a2/a3)sin 8-E(8,k) 
4 Wa+dal) = 2 7 k’2sh3 e ’ 

where 

kt2=l-k2, 

and 

B=arcc4x(a3/al). 

In the limit that one principal axis becomes very long, 
these functional forms simplify considerably. By taking 
a3/a, -t 00, a2/al finite, the following limiting forms are 
found, good for all values of a2/al: 

A3=0, 

(A81 

24 A2=- 
al+a2 ’ 

Finally, a simple result relating derivatives of the Afs 
follows from a consideration of the energy required to pro- 
duce an infinitesimal deformation of the ellipsoid: 

APPENDIX 8: LIST OF SYMBOLS AND NOTATION 

N: number of ions; 
T: temperature; 
n: density; 
;tn: Debye length; 
q: ion charge; 
op: plasma frequency; 
a,: cyclotron frequency; 
B: magnetic field vector; 
m: ion mass; 
4e: external trap potential; 
w,: single particle axial bounce frequency; 
2: unit vector in the direction of the trap axis and 

magnetic field; 
w: ellipsoid rotation frequency vector; 
x= (x,y,z): position vector measured from the center 

of the cloud in the laboratory frame of reference; 
x’= (xI,x~,x~): position vector measured with respect 

to principal (body) axes; 
( a1,a2,a3) : lengths of the principal axes of the ellipsoid; 
(2L,Q33) : unit vectors in the directions of the principal 

axes; 
(&0,4) : Euler angles; 
v: fluid velocity vector; 
c: internal vorticity vector; 
( $,-,O,$J) : internal fluid Euler -angles; 
t: time; 
E: electric field vector; 
#p: space-charge potential; 
E,: external electric field tensor; 
E,,: self-electric field tensor; 
Ai(a2/al,a3/al), Ai(a3/a,) : general form and spheroi- 

dal form, respectively, of the normalized space-charge elec- 
tric field components along the principal axes; 

W: velocity tensor; 
I: unit tensor; 
S: ellipsoid shape tensor; 
R: ellipsoid rotation tensor; 
A: internal fluid rotation frequency vector; 
a,: vortex frequency vector; 
(z~,zZ,Z~): components of 2 in body axes; 
2: Lagrangian; 
&: vector potential; 
X: kinetic energy; 
&: magnetic energy; 
.9 : potential energy; 
V: plasma volume; 

pu: momentum conjugate to any coordinate u; 
L: canonical angular momentum vector; 
F: internal fluid rotation tensor; 
( i%fl,iZfL16$f3) : internal fluid unit vectors; 
C: canonical circulation vector; 
dS: area element; 
Z: Hamiltonian; 
K1,K2: linear combinations of constants p4 and pdf; 
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SF,: spheroidal Hamiltonian; 
SF,1 : parallel energy; 
&+ effective parallel potential energy; 
qin: minimum parallel energy; 
02s: frequency of spheroidal plasma oscillation; 
p,po: plasma pressure; 
y: ratio of specific heats; 
C’: constant in the equation of state; 
B: trap parameter; 
czi: ratio of components of internai fluid rotation fre- 

quency and vortex frequency; 
D,E: coefficients in aligned ellipsoid equilibrium equa- 

tion; 
/3, : functions of a1,a2, and a3 employed in derivation 

(2) 
ofEq. (61); 

~&S,,y~,y,,il: parameters in the equations for tilted 
ellipsoids; 

ci: coefficients in the equation for a Dedekind ellipsoid. 
Throughout the paper, a prime (‘) on a vector or ten- 

sor denotes a particular representation in which compo- 
nents are taken with respect to the principal axes. The 
components of any vector v’ are uj, i= 1-3, corresponding 
to components in the directions of the three-body axis unit 
vectors & The subscript r on a vector or matrix implies 
that it is evaluated in a noninertial frame rotating with the 
body axes. An asterisk (*) on any matrix, such as w*, 
implies that it is antisymmetric and has the following re- 
lation with its dual w: 

w*= -w’Xl. 
An overbar ( T ) denotes normalization. Times are normal- 

ized by -1 
% 9 distances are 

a0 = ( 3 Nq2/nof ) 1’3, 
normalized by 

and masses are normalized by Nm/S. 
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