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Vortex crystals from 2D Euler flow: Experiment and simulation
D. A. Schecter, D. H. E. Dubin, K. S. Fine, and C. F. Driscoll
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Vortex-in-cell simulations that numerically integrate the 2D Euler equations are compared directly
to experiments on magnetized electron columns@K. S. Fine, A. C. Cass, W. G. Flynn, and C. F.
Driscoll, ‘‘Relaxation of 2D turbulence to vortex crystals,’’ Phys. Rev. Lett.75, 3277 ~1995!#,
where turbulent flows relax to metastable vortex crystals. A vortex crystal is a lattice of intense
small diameter vortices that rotates rigidly in a lower vorticity background. The simulations and
experiments relax at the same rates to vortex crystals with similar vorticity distributions. The
relaxation is caused by mixing of the background by the intense vortices: the relaxation rate is
peaked when the background circulation is 0.2–0.4 times the total circulation. Close quantitative
agreement between experiment and simulation provides strong evidence that vortex crystals can be
explained without incorporating physics beyond 2D Euler theory, despite small differences between
a magnetized electron column and an ideal 2D fluid. ©1999 American Institute of Physics.
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I. INTRODUCTION

The free relaxation of 2D turbulence has been a topic
active research for decades, with applications in astroph
ics, geophysics, and plasma physics.1–4 Experiments and nu
merical simulations have shown that the relaxation proc
typically involves the chaotic advection and merger of
tense vortices and the production of vorticity filaments t
evolve to increasingly fine length scales. In the past, va
tional principles have been used to predict the final state
the coarse-grained vorticity distribution. In some cases,
final states are seen to maximize entropy functionals,4,5 but
different initial conditions can lead to states of minimu
enstrophy.4,6,7

Strongly magnetized electron columns have recen
been used to study the relaxation of 2D turbulence exp
mentally. One of the first of these experiments showed
certain hollow vortices relax to minimum enstrophy sta
after they experience a Kelvin–Helmholtz instability.7 More
recent experiments on electron columns8 suggest that idea
2D turbulence can self-organize into states where enstro
is not globally minimized and entropy is not globally max
mized. In these experiments, the chaotic advection of inte
vortices ‘‘cools,’’ mergers cease and the vortices settle int
lattice that rotates rigidly in a lower vorticity backgroun
These rigid patterns persist for around 104 rotation periods
before they are finally dissipated by nonideal effects. Wh
the intense vortices have equal strength, the patterns are
metric, and for this reason they have been called vortex c
tals. A selection of vortex crystals is displayed in Fig.
~taken directly from Ref. 8!.

Although similar vortex crystals have been seen in d
sipative systems such as two-fluid liquid helium,9 the rapid
relaxation of a strongly magnetized electron column is
lieved to closely follow 2D Euler dynamics. It is surprisin
that inviscid fluid equations should provide a mechanism
cooling the chaotic advection of the intense vortices to
9051070-6631/99/11(4)/905/10/$15.00
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lattice in rigid rotation; to our knowledge, no previous e
periment or simulation has demonstrated the spontane
formation of vortex crystals from freely relaxing nondissip
tive turbulence. In order to show that the observed relaxa
of turbulent flow to vortex crystals can be explained witho
incorporating physics beyond the ideal 2D fluid model, w
compare the experiments directly to vortex-in-cell~VIC!
simulations that numerically integrate the 2D Eul
equations.10 The experiments and simulations are shown
relax at the same rates to vortex crystals with similar vor
ity distributions. Close agreement between experiment
simulation provides strong evidence that 2D Euler the
alone can explain the formation of vortex crystals.

Of course, any numerical integration of the 2D Eul
equations will differ from an exact solution. There is alwa
concern that a new result is an artifact of the particular d
cretization scheme. However, we have confirmed that
VIC simulations conserve the robust integral invariants
2D Euler flow. Moreover, the relaxation to a vortex crys
state occurs at the same rate whether the number of p
vortices in a simulation is 83105, 43105, or 13105. In
addition, the rate of relaxation does not change when
simulation’s grid-point spacing~cell size! is increased by a
factor of 2 or 4. Only subtle differences in the final vortici
distribution appear when the simulation parameters
changed. For example, an additional small vortex may
pear in the final pattern.

By adding a slight random walk to each point-vortex
our simulation, we can observe the effect of a simple dif
sive viscosity on the formation of vortex crystals.11 Using
this technique, we will show explicitly that viscosity in th
Navier–Stokes equations acts to counter the formation
vortex crystals rather than enhance the rate at which the
tem of intense vortices relaxes to a pattern in rigid rotati
The reason is simple; viscosity acts to diffuse the inte
vortices and level the vorticity distribution. The very hig
© 1999 American Institute of Physics
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FIG. 1. Vortex crystals observed in magnetized electron columns~Ref. 8!. The color map is logarithmic. This figure shows vortex crystals with~from left to
right! M53, 5, 6, 7, and 9 intense vortices immersed in lower vorticity backgrounds. In a vortex crystal equilibrium, the entire vorticity distributionz(r ,u)

is stationary in a rotating frame; i.e.,z is a function of the variable2c1
1
2Vr 2, wherec is the stream function andV is the frequency of the rotating frame
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Reynolds number that is required to see vortex crystals m
help explain why the formation of vortex crystals has n
been observed in previous experiments or simulations of
Navier–Stokes equations.

As mentioned previously, vortex crystals cannot be
plained either by considering global maximum entro
states5 or minimum enstrophy states.6 Although complex
vorticity patterns consisting of several asymmetric vortic
can be predicted on the basis of maximum global entr
theory for certain special initial conditions, these patte
~corresponding to negative temperature states! typically con-
sist of rather large slowly varying vortices that fill the co
finement region, not the intense small vortices observed h
Furthermore, it is clear from observations of the evoluti
that the central regions of intense vorticity in the strong v
tices arise from the initial flow, which consists of an inten
striated vorticity pattern, and that these central regions
main unmixed with the larger low vorticity background. Gl
bal maximum entropy theory, which presumes ergodic m
ing of all vorticity elements, clearly does not apply to th
flow.

However, maximum entropy theory may apply to part
the flow—the low vorticity background. In a recent Letter12

Jin and Dubin hypothesized that the turbulent flow is brou
to a vortex crystal equilibrium due to the violent mixing
the diffuse background by the intense vortices. Assum
that the mixing of the background is ergodic, they argu
that a vortex crystal is a state that maximizes disorder~en-
tropy! in the background, subject to the constraints of
Euler flow. This regional maximum fluid entropy theory~so-
called because only the background vorticity is mixed, a
the strong vortices are taken to be pointlike without inter
degrees of freedom! was shown to accurately predict the
nal positions of the intense vortices and the final backgro
vorticity distributions of the experiments in Fig. 1, given th
number of vortices and the energy, angular momentum,
circulation.

Here, we present further evidence that the system
driven to a vortex crystal equilibrium through the turbule
mixing of the background by the intense vortices. First,
observe that the intense vortices do not cool to a vortex c
tal when the background is removed from the simulation.
also find that the intense vortices do not cool in the oppo
limit, when the background circulation dominates the circ
y
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lation of the intense vortices. Presumably, the relaxation
goes to zero in this limit because the vortices become in
fective mixers. As expected, the relaxation rate peaks
some intermediate level of the background, which is stro
enough to influence the intense vortices but weak enoug
be mixed.

II. CONCERNS WITH 2D EULER THEORY AND THE
NEED TO COMPARE EXPERIMENT TO
SIMULATION

A. Experiment

Figure 2 shows the experimental apparatus~Penning–
Malmberg trap! with CCD imaging diagnostic. The electron
are confined radially by the Lorentz force of a uniform ma
netic field that is applied along thez-axis. They are trapped
axially by negative voltages at opposite ends of the confi
ment cylinder.

The imaging diagnostic destructively measures
z-integrated electron density. By raising one end-poten
rapidly to ground, the electrons are dumped onto a phosp
screen that radiates photons in proportion to the numbe
incident electrons, and the image is recorded with a 5
3512 pixel CCD camera. Although the imaging is destru
tive, variations in the initial conditions are small (dn/n
<1022), so by dumping the electrons at a sequence of tim
we are able to study flows with this technique.

B. Ideal 2D fluid approximation

We can approximate ther –u flow of electron density in
our magnetized electron columns with the 2D drift-Poiss
equations,13

FIG. 2. Cylindrical Penning–Malmberg trap and destructive imaging di
nostic.E is the electric field produced by the electrons andB is the uniform
applied magnetic field.VE3B denotes the counterclockwiseE3B drift of the
electrons.Rw53.5 cm,Rp;1.5– 2.5 cm, andLp;50 cm.
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]n/]t1v•¹n50, ~1a!

v5 ẑ3c¹f/B, ~1b!

¹2f54pen. ~1c!

Here,n(r ,u,t) is thez-averaged electron density,v(r ,u,t) is
theE3B drift in the r –u plane, andf(r ,u,t) is the electro-
static potential. The equations are 2D because the elec
motion has been averaged over a bounce period in
z-direction. The boundary condition at the wall of the co
finement cylinder isf(Rw ,u,t)50.

The equations that evolve vorticity,z[ ẑ•“3v, can be
obtained directly from the drift-Poisson equations. They
the Euler equations,

]z/]t1v•¹z50, ~2a!

v5 ẑ3¹c, ~2b!

¹2c5z, ~2c!

which also govern the flow of 2D inviscid incompressib
fluids. The new fieldc is a rescaled electrostatic potentia
c[cf/B, and serves as a streamfunction for the flow. Co
paring Eqs.~1! and ~2!, we see that the vorticity is propor
tional to the electron density by the relationz54pecn/B.
So, by measuring the electron density we are also takin
direct measurement of vorticity, insofar as 2D drift-Poiss
theory is a good model for the experiment. The condit
that c equals zero atRw corresponds to a free-slip bounda
condition at the wall of a circular container.

However, there is concern that the approximations u
to derive Eqs.~1! and ~2! neglect terms that are essential
the formation of vortex crystals. To begin with, Eqs.~1! and
~2! describe the experiments only if the time scales ass
ated with electron motion satisfy the inequalitiestc!tz

!tE3B . Here,tc denotes the period for an electron’s sm
gyrations around a magnetic field line~its cyclotron motion!,
tz is the time required for an electron to bounce between
ends of the plasma column in thez-direction, andtE3B is the
time scale forE3B drift. In our experiments,tc;1023 ms,
tz;2 ms, and the internal turnover time for a typical vorte
is tE3B;20ms. Althoughtc is much less thantz andtE3B ,
the condition thattz!tE3B is only weakly satisfied. In ad
dition to time scale constraints, there are length scale c
straints. For example, the drift-Poisson approximation bre
down at length scales that are smaller than the cyclo
radius (r c;10mm). Furthermore, one assumes that t
plasma is infinitely long in deriving Eqs.~1! and~2! since all
variation in the z-direction is neglected. In reality,Lp

;50 cm andRp /Lp;0.05.
A well-studied correction to the infinite-length approx

mation is that caused by the static electric fields that con
the plasma in thez-direction. These fields modify the
bounce-averaged drift that is given by Eq. 1~b!, and depend-
ing on circumstances this modification can enhance or s
press shear-flow instabilities.14,15 In general, the modified
drift increases with the kinetic energy of the electrons an
spread in electron energy will cause a vorticity profile
smear.15
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Another correction to ideal fluid theory arises from th
finite numberN of ‘‘point-vortices’’ in the experiment. Each
electron is like a 2D point-vortex after averaging over
z-motion. The Euler equations evolve the ensemble avera
density of a point-vortex gas only in the lowest order mea
field approximation, which neglects fluctuations due to fin
N. These fluctuations can be treated with a collision term
the right-hand side of the continuity Eq. 1~a! or 2~a!.16 This
collision term is believed to be responsible for the event
dissipation of vortex crystals that occurs in the experimen
The time scale for a vortex crystal to dissipate (103– 104

rotations! far exceeds the time required for a vortex crystal
form ~10–100 rotations!. However, the collision term~due to
finite N! may be enhanced at small length scales, and it w
previously feared responsible for driving the turbulent flo
to the metastable vortex crystal equilibrium.

C. Vortex-in-cell simulation

In this paper, we address concerns over the ideal
fluid model by comparing the experiment directly to a VI
simulation that numerically integrates the 2D Eul
equations.10 In the simulation,N<83105 point-vortices are
distributed to match the initial vorticity profile of the exper
ment. The vorticity is interpolated from the point-vortices
a square grid~usually 5133513) on which Poisson’s equa
tion is solved with the boundary conditionc(Rw ,u,t)50.
The interpolation transfers vorticity from each point-vort
to the four nearest grid-points with the method of ar
weighting.10 Poisson’s equation is solved with a five-poi
finite difference scheme that employs multigrid relaxatio
The velocity field is obtained on the grid by taking the gr
dient of c and is then interpolated back to the particle po
tions. The particles move forward in time with second-ord
Adams–Bashforth steps.

In what follows, we will show that the VIC simulation
are in good quantitative agreement with the experiments
that the simulation results are not sensitive to large variati
in N or in the grid-point spacing. In doing so, we will dem
onstrate that vortex crystals are not caused by finite len
effects, finite cyclotron radius effects, finiteN effects or by
any dynamics on time scales rapid compared toE3B drift
~such as cyclotron motion or axial motion!. In other words,
although there exist some differences between a magne
electron column and an ideal 2D fluid, the observed vor
crystals can be explained without incorporating physics
yond 2D Euler theory@Eq. ~2!#.

III. COMPARISON OF EXPERIMENT TO SIMULATION

A. Integral invariants

Before making a detailed comparison of experiment
simulation, it is important to verify that both conserve th
robust integral invariants of 2D Euler flow. The 2D Eul
equations withu-symmetric boundary conditions conserv
the energyH[2 1

2*dr2zc, the canonical angular momen
tum Pu[*dr2r 2z, the total circulationG tot[*dr2z ~; num-
ber of electrons! and all higher moments of the vorticit
distributionZm[(1/m)*dr2zm, wherem52,3,...,̀ . By con-
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FIG. 3. Sequence I, the formation of a vortex crystal from an annular vorticity distribution:~a! experiment,~b! simulation. The color map is logarithmic an
the experimental vorticity is obtained from the relationz54pecn/B. All vorticity below the shot-noise threshold (z thresh;2.33103 s21) was removed from
the simulation’s initial condition. The evolution is shown in a reference frame that rotates with frequency 5.8723103 rad/s.
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struction, our simulations conserveG tot . They also conserve
energy and angular momentum by roughly one part in 13.
The experiments show up to 10% declines inG tot over the
first 100 ms~100–1000 rotations!, whereas the normalize
quantitiesH/G tot

2 andPu /G tot fluctuate by only a few percent
The experimental decay inG tot over time is probably cause
by the slow ionization of background gas, which results i
loss of electrons. Although a small decrease inG tot is unde-
sirable, it seems incidental to the formation of vortex cry
tals. As we will see, the simulations produce vortex cryst
while conservingG tot .

Although Z2 and all higher moments of vorticityZm are
conserved by the 2D Euler equations, their measured va
are generally not conserved in freely relaxing 2D turbulen
This is because any physical measurement of vorticity a
given position is an average over a cell of small but fin
area. As vorticity filaments stretch and narrow to micr
scopic length scales, the measured vorticity along the
ments will decrease. An example of this decrease can
observed in Fig. 3, where the low vorticity~blue! regions
increase in area over time.

The integralsH,Pu , andG tot are insensitive to measure
ment coarse-graining of the vorticity. On the other ha
enstrophyZ2 and all higher momentsZm are fragile invari-
ants, and their measured values will decrease with time
to coarse-graining.17 In the experiments, vorticity is coarse
grained on a 5123512 pixel CCD camera, and the measur
enstrophyZ2 typically decays by a factor of 2 during th
formation of a vortex crystal. In the VIC simulations, vorti
ity is coarse-grained on a 5133513 square grid, and the en
strophy of the coarse-grained vorticity also decays by a
tor of 2 during the formation of a vortex crystal. W
emphasize that a decay in the enstrophy of a coarse-gra
vorticity distribution is entirely consistent with the 2D Eule
equations.
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B. Vortex crystal formation

We now proceed with a detailed comparison of expe
ment to simulation. Figure 3~a! shows an experiment wher
an annular vorticity distribution evolves into a vortex cryst
Figure 3~b! shows the results of a VIC simulation that sta
with the same annular initial condition. The simulation h
N583105 point-vortices and a 5133513 square grid. We
will refer to the flow in Fig. 3 as Sequence I.

In both the experiment and the simulation, a Kelvin
Helmholtz instability generates a ‘‘soup’’ of intense vortice
These vortices chaotically advect, merge and shed filam
that stretch and mix to form a diffuse background. Even
ally the chaotic vortex motion cools, mergers stop and
both cases the intense vortices tend to a pattern in rigid
tation. Although our simulation does not reproduce the
periment exactly, both flows produce similar vortex crysta

Most differences between the experiment and simulat
emerge before one rotation period. These differences inc
the precise shapes and arrangement of intense vortices
the filamentation which appears to be more ‘‘smeared’’
the experiment than in the simulation. We speculate t
these differences are primarily due to the additional drifts
the experiment that are caused by the electrostatic con
ment fields and that vary with the axial kinetic energy of t
electrons.14,15

Despite subtle differences, the experiment and simu
tion show good quantitative agreement in several key ar
First, they have similar evolutions in the numberM of in-
tense vortices. As in Ref. 8, the vortex census used her
essentially that of McWilliams18 without the exclusion of
elongated vortices; we define an intense vortex as a c
nected patch of vorticity for whichz.zmin and for which the
mean diameterd.dmin . Herezmin anddmin are parameters o
the counting algorithm. These parameters were chan



lle
ef
th

ns
ci
r
th

ltz
n
d

he
g

s

an
e

e
i

d
e
id
a
he
th
th

r

s

of

rm
ua-

nt
are
tex
nc-
-

o

for
ill

he
Fig.

m
e-
tri-
-

lost
e,
ly
ri-

ater

se

nal

eri-

odi-
by

ri-

the
ur-
ling

g
y in

to

s t
ge
x

909Phys. Fluids, Vol. 11, No. 4, April 1999 Schecter et al.
slightly from those used in Ref. 8, so that vortices sma
than dmin[0.05 cm in diameter were not counted. A bri
discussion of the uncertainties inherent in this census me
can be found at the end of this section.

Figure 4~a! shows that the evolution of the numberM of
intense vortices in the simulation~solid circles! falls within
the scatter of the experimental data~open circles!. The high
degree of scatter at late times in the experiment is a co
quence of slight differences in the initial conditions asso
ated with each experimental ‘‘shot.’’ Recall that each expe
mental datum is taken from a separate evolution due to
destructive imaging technique. After the Kelvin–Helmho
instability and beforeM reaches its final value, the evolutio
in the number of intense vortices resembles a power-law
cay, M;t2j for 0.3,t/t rot,6. Here t rot51.07 ms is the
time averaged rotation period of the vortex crystal in t
simulation @Fig. 3~b!#. Linear least-squares fits to log–lo
plots of the data givejsim50.360.1 and jexp50.260.1.
Power-law decays inM have been observed in previou
simulations of ideal 2D fluid equations18 and in simulations
on discrete vortices that follow punctuated Hamiltoni
dynamics.19 Power law decays occur in many process
where the decay ratesċ/c are proportional to powers of th
concentrationc, such as colloidal aggregation, certain chem
cal reactions and two or three body recombination.18,20

During the formation of vortex crystals, the chaotic a
vection of the intense vortices slowly relaxes, and as merg
stop the intense vortices tend to a pattern that rotates rig
in a lower vorticity background. We refer to this process
vortex cooling. Vortex cooling is observed to occur at t
same rate in the experiment and simulation. To show
requires a quantitative measure of vortex cooling. First,
positions $r i% ( i 51,2,...,M ) and the velocities$vi% of the
intense vortices are calculated relative to the flow’s cente

FIG. 4. ~a! Number of vorticesM vs time for Sequence I.~b! Cooling curves
dv rms(t) for same flow. Black, dark grey, and light grey correspond
simulations with N583105, 43105, and 13105, respectively. Open
circles correspond to the experiment. The vertical dashed line indicate
time at whichM reaches its terminal value. The slanted dashed lines sug
power-law decays. Timet is normalized to the rotation period of the vorte
crystal in the simulation@Fig. 3~b!#, t rot51.07 ms.
r
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vorticity, r i[*Ai
dr2(z2zmin)(r2r cv)/*Ai

dr2(z2zmin) and

vi[*Ai
dr2(z2zmin)(v2 ṙ cv)/*Ai

dr2(z2zmin). Here, Ai de-

notes the region occupied by thei th intense vortex andr cv is
the flow’s center of vorticity defined by the equationr cv

[(1/G tot)*dr2rz. The mean rotation of the intense vortice
about r cv is then subtracted from eachvi , giving a set of
velocity fluctuations$dvi% about the mean rotation,dvi[vi

2r iV̄(t) û, whereV̄(t)[( i 51
M v i ,u /( i 51

M r i ~radial-weighted
averaging!. A discussion of the error in the measurement
dvi can be found at the end of this section.

As the pattern of intense vortices approaches unifo
rotation, the root-mean-square value of the velocity fluct
tions tends to zero, i.e.,dv rms[(( i 51

M dvi
2/M )1/2→0 as t

→`. We will refer to the graph ofdv rms vs time as the
cooling curve of the flow.

Figure 4~b! shows the cooling curves for the experime
and for the simulation of Sequence I. The cooling curves
approximately the same. Although one decade of vor
cooling does not suffice to accurately determine the fu
tional form of dv rms(t), a power-law gives a good descrip
tion at late times,dv rms;t2a. Linear least-squares fits t
log–log plots of the data giveasim5aexp50.560.2 for times
greater than one rotation period.

A similar comparison to simulation has been made
an experiment that was taken directly from Ref. 8. We w
refer to this flow as Sequence II. Here, the vorticity in t
experiment starts as a tightly wound filament, as seen in
5. Using N583105 point-vortices and a 5133513 square
grid, our simulation failed to produce a vortex crystal fro
this initial condition. As reported in Ref. 8, small-scale d
tails appear crucial in determining whether the spiral dis
bution will evolve into a vortex crystal or into an axisym
metric equilibrium. The essential details may have been
due to the finite resolution of the CCD imaging. Otherwis
the simulation’s failure to produce a vortex crystal can on
be blamed on slight dynamical differences with the expe
ment. To compensate, we began the simulation at a l
stage of the flow~;4 rotations!, at which time there were
multiple intense vortices (M515).

Figure 6~a! shows the evolution in the number of inten
vortices over time for the simulation~solid black circles! and
the experiment~open circles!. The grey data will be dis-
cussed shortly. The decay rates are similar, but the fi
number of intense vortices in the simulation (M55) falls
below the experimental average (M'7). Note that in the
simulation the last merger event occurs at 25 rotation p
ods. The final drop inM from 6 to 5 ~at t/t rot'450) corre-
sponds to a small vortex being sheared apart as it peri
cally passes regions of intense shear-flow produced
neighboring strong vortices.

The cooling curves for the simulation and the expe
ment are shown in Fig. 6~b!. These cooling curves show
close agreement during the initial turbulent phase of
flow, when mergers of intense vortices occur regularly. D
ing this time period, least-squares fits to the data give coo
exponentsasim50.560.2 andaexp50.460.1. However, the
cooling curve in the simulation levels off before coolin
stops in the experiment. We can resolve this discrepanc

he
st
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FIG. 5. Sequence II, the formation of a vortex crystal from a spiral vorticity distribution:~a! experiment,~b! simulation. All vorticity below the shot-noise
threshold (z thresh;2.33103 s21) was removed from the simulation’s initial condition. The evolution is shown in the laboratory frame.
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part by observing that in both cases cooling appears to
shortly after the last merger event. Beyond the last mer
least squares fits to the data give cooling exponentsasim

50.060.1 andaexp50.160.1.
An additional simulation was initialized to include th

measured background vorticity below the shot-noise thre
old ~the grey fuzz in the experimental images!. The data for
this simulation are shown in grey in Figs. 6~a! and 6~b!. This
flow differs from the previous simulation~black! in that the
final merger event occurs at a much later time, a time t
appears to be more consistent with the experiment~open
circles!. In addition, the cooling curve levels off at a lowe
value ofdv rms. This enhanced cooling may result from th

FIG. 6. ~a! Number of vorticesM vs time for Sequence II.~b! Cooling
curvesdv rms(t) for the same sequence. Black corresponds to the simula
in Fig. 5~b!, open circles correspond to the experiment, and grey co
sponds to a simulation that was initialized to include measured vorti
below the shot-noise threshold~grey fuzz in the experimental images!. The
dashed lines show that the cooling exponenta changes after mergers stop
Both lines correspond to power-law fits of the simulation data. Timet is
normalized to the rotation period of the vortex crystal in the simulat
where the shot-noise is removed,t rot50.23 ms.
op
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additional merger att/t rot'100 or from an interaction with
the low-vorticity ~below the shot-noise threshold! back-
ground that was added to the exterior flow.

We end this section with a brief word on the uncertain
in the number of intense vorticesM and in the measure o
chaotic vortex motiondv rms. To calculateM and dv rms we
used an automated vortex survey.18 This survey has adjust
able parameterszmin anddmin that are used to identify intens
vortices in a turbulent flow. Recall that a vortex is defined
be a connected patch of vorticity for whichz.zmin and for
which the mean diameterd.dmin . There is good agreemen
between the experiment and simulation regardless of
common parameters that we choose to analyze them b
However, the exact values ofM anddv rms will change with
the specific parameter choice. For example, we have ca
latedM (t) anddv rms(t) for Sequence I~Fig. 3! with values
of zmin between 4.53104 and 4.53105 s21 and with values
of dmin between 2.531022 and 7.531022 cm. During the
initial break-up of the annulus, there were large variations
the number of vorticesM due to changes inzmin and
dmin(dM/M;1). However, the uncertainty inM dropped to
;10% after 1 rotation period and to 0% after the last merg
Before the last merger, the uncertainty indv rms was;20%
on average. After the last merger, the uncertainty indv rms

dropped to less than 5%.

IV. DISCRETIZATION EFFECTS AND VISCOSITY

A magnetized electron column and a VIC simulatio
both consist of a finite number of point-vortices,N. ~The
electron column consists ofN lines of charge, each line
charge corresponds to an electron trajectory averaged
the fast axial motion.! The 2D Euler equations govern th
ensemble averaged vorticity distribution of a point-vort
gas only in the lowest order mean-field approximatio
which neglects fluctuations due to finiteN. These fluctua-
tions are thought to cause the slow dissipation of vortex cr
tals that is observed in experiments with magnetized elec
columns. An example of this dissipation process is shown
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Fig. 7. Here, the decay occurs between 500 and 1000 rota
periods. The dissipation time scale is much greater than
time required for the system to reach a metastable vo
crystal equilibrium~;10–100 rotations!, but this fact alone
does not eliminate the possibility that fluctuations due
finite N drive vortex cooling.

A statistical treatment of finiteN effects leads to a col
lision term on the right-hand side of the continuity Eqs. 1~a!
or 2~a!. Unlike the constant viscosityn of Navier–Stokes
flow that leads to a simple diffusion of vorticity alon
streamlines,]z/]t1v•¹z5n¹2z, the collision term of a
point-vortex gas conservesH and Pu . The correct form for
the collision term of a point-vortex gas is still unresolved a
is a topic of current research. For the case of axisymmetrz,
a Klimontovich approach has been used to derive an exp
result.16 A more general equation for the collision term h
yet to be published. However, asN decreases the collisio
term should have an increasing effect on the evolution oz.

We examined the importance of finiteN effects on the
formation of vortex crystals by changing the number
point-vortices in a simulation@Fig. 3~b!# from 83105 to 4
3105 to 13105. For N543105 and 13105 an additional
small vortex appeared in the final crystal, but the total cir
lation of the intense macroscopic vortices,( i 51

M G i , remained
the same within 5%. Furthermore, the cooling curves forN
543105 and 13105 fall within the scatter of the cooling
curve forN583105 @Fig. 4~b!#. This result suggests that th
finite number of point-vortices is not important to the o
served vortex cooling. This argument is strengthened by
fact that the experiment~Sequence I! has;108 particles and
cools at the same rate as the simulations.

We have also increased the grid-point spacing in
simulation by factors of 2 and 4, keepingN fixed at 83105

particles. Once again, only subtle changes were obser
When the grid-point spacing was doubled, 2 additional v
tices appeared in the vortex crystal. When the grid-po
spacing was increased by a factor of 4, the two small vorti
dissappeared. In both cases, the cooling curves overla
the original, within the scatter of the data.

While on the topic of nonideal effects, it is also of inte
est to estimate the minimum level of viscosity in the Navie
Stokes equations that is required to prevent the formatio
a vortex crystal. Specifically consider Sequence I, wher
vortex crystal forms from an unstable annulus~Fig. 3!. In
Sequence I, the final merger occurs atT'6 ms ~5.6 rota-
tions!. After mergers stop, the spacingL between vortex cen

FIG. 7. Dissipation of a metastable vortex crystal in an experiment. T
dissipation is believed to be a finiteN effect and approximately conserve
H/G tot

2 andPu /G tot . The color map is the same as in Fig. 3.
on
he
x

o

it

f

-

e

e

d.
-
t
s
ed

of
a

ters is;1 cm and the average vortex radiusr satisfies the
condition r,L/3.2, which is required to prevent pairwis
mergers.21

Now consider a flow with the same annular initial co
dition but with kinematic viscosityn. Over time, viscosity
will expand each vortex such thatr;A4nt. Define the criti-
cal viscositync by the equationnc[(L/3.2)2(1/4T). If n
*nc , the expanded vortices at timeT will not be stable
against mergers in the vortex crystal configuration. In ot
words, if n*nc , viscosity should prevent the formation of
vortex crystal. For Sequence I,nc is approximately 4 cm2/s.

It is possible to model Navier–Stokes viscosity in a V
simulation by adding a Gaussian random walk to the fl
drift of each point-vortex.11 Figures 8~a! and 8~b! show the
evolution of the annulus in Sequence I withn50.127 cm2/s
andn51.27 cm2/s, respectively. Once again, the simulatio
use 83105 point-vortices and a 5133513 square grid. In
Fig. 8~a!, the vorticity distribution evolves into a pattern th
resembles a vortex crystal. The estimated time for visco
to generate a merger instability in this pattern is;190 ms,
which is well beyond the simulation’s run time. In Fig. 8~b!,
there appears to be no intermediate time scale during w
the flow can be described as a vortex crystal. This re
more or less agrees with our expectation that a vortex cry
should not form ifn*nc .

To summarize our observation in dimensionless term
we define a Reynolds numberR by the equationR[G tot /n.
In Fig. 8~a! R58.73105, and in Fig. 8~b! R58.73104. It is
apparent from Fig. 8 that vortex crystals will form in S
quence I only ifR@105.

V. IDEAL FLUID MECHANISM FOR VORTEX
COOLING

In this section, we address the question of how 2D Eu
flow can bring a system that consists of intense self-trap
vortices and a diffuse background of small scale vortic
filaments to a vortex crystal equilibrium. This relaxation
described by the cooling curvedv rms(t), wheredv rms is the
root-mean-square velocity fluctuation of the intense vortic
As the flow relaxes to a vortex crystal equilibrium, the ch
otic advection of the intense vortices cools anddv rms tends to
zero. In Sequence I, vortex cooling continues indefinit
after mergers stop~Fig. 4!, indicating that there exists a coo
ing mechanism that is independent of merger events. S
cooling would not occur if the intense vortices were simp
advecting in their mutual fields like an isolated Hamiltoni
system of point-vortices. However, the vortices are not i
lated in that they can interact with the background.

Recall from the introduction that the observed vort
crystals are in excellent agreement with states that maxim
disorder ~fluid entropy! in the background.12 According to
the regional maximum fluid entropy theory, vortex cooling
caused by the ergodic mixing of the diffuse background
the intense vortices. If the vortices are unable to mix
background, then no vortex cooling should occur, as verifi
by the following numerical results.

First consider Sequence I@Fig. 3~b!# at 14 rotation peri-
ods, after which the number of intense vorticesM and the

is
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FIG. 8. The effect of viscosity in the Navier–Stokes equations.~a! The evolution of an unstable annulus to a vortex crystal with viscosityn50.127 cm2/s
added to the simulation.~b! Whenn51.27 cm2/s, the viscosity is sufficiently high to prevent formation of a vortex crystal. The color map is the same
Fig. 3, and the evolution is shown in a reference frame that rotates with frequency 5.8723103 rad/s. The Reynolds numberR is defined in the text.
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total circulation of the intense vorticesS i 51
M G i remain fixed.

Suppose that all vorticity belowz'104 s21 is artificially re-
moved from the simulation at this time, leaving only th
intense vortices. Evolving this artificial system forward, w
observe no cooling of the vortex motion. This result is sho
in Fig. 9 and indicates that vortex cooling is not caused
internal motions within the vortices.

Figure 10 offers a more detailed description of how t
cooling exponenta varies with the ratio of the backgroun
circulationGb to the total circulationG tot ~the difference be-
tween G tot and Gb is S i 51

M G i , the total circulation in the
intense vortices!. To obtain these data, the original bac
ground vorticity was multiplied by constants ranging from
to 3. Circles correspond to Sequence I~starting at 14 rota-

FIG. 9. Cooling curves for vortex crystal with~black! and without~grey!
background vorticity. Timet is normalized to the rotation period of th
vortex crystal with background vorticity,t rot51.07 ms.
n
y

tions! and squares correspond to Sequence II~starting at 172
rotations!. In both sets of simulations, the number of inten
vortices M remained fixed, with the exception of the da
point to the far right, in which a small vortex was shear
apart toward the end of the simulation. As the backgrou
vorticity level increases from zero, vortex cooling increas
and we observe growth ina. As Gb /G tot continues to in-
crease,a reaches a maximum value and then begins to f

A rise and fall ofa asGb /G tot increases from 0 to 1 is
consistent with our view that vortex cooling~in the absence
of mergers! requires the turbulent mixing of an inhomog
neous background by the intense vortices. When there is

FIG. 10. Cooling exponenta vs Gb /G tot . Circles correspond to Sequence
@Fig. 3~b!# starting att'15 ms~14 rotation periods!, and squares correspon
to Sequence II@Fig. 5~b!# starting att'40 ms~172 rotation periods!. The
dark symbols mark the cooling exponents for the original simulated flo
To obtain the remaining data, the original background vorticity (z<1
3104 s21 in Sequence I;z<6.83104 s21 in Sequence II! was multiplied by
constants ranging from 0 to 3.
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background, there is no vortex cooling. WhenGb /G tot is
close to 1, the velocity field is dominated by the contributi
from the background vorticity. Presumably, the cooling r
becomes small in this limit because the vortices essent
become passive test particles and lose their capacity to
the background.

VI. CONCLUSION

The conventional picture of freely relaxing 2D turb
lence ~with a single sign of vorticity! involves the chaotic
advection of intense vortices punctuated by occasional m
ers until only a single vortex remains. In experiments w
magnetized electron columns, we have seen that mergers
stop due to the spontaneous formation of a vortex crysta
this paper, we have argued that the observed vortex cry
can be explained without incorporating physics beyond
Euler theory@Eq. ~2!#, despite small differences between
magnetized electron column and an ideal 2D fluid. Our
gument was based on a comparison of two experiment
the results of a VIC simulation that numerically integrat
the 2D Euler equations. We found good quantitative agr
ment in the evolution of the number of intense vorticesM
and in the cooling of their chaotic advection, described
dv rms(t).

Even so, there were some issues to address. A ma
tized electron column and a VIC simulation both consist o
finite number of point-vorticesN. The 2D Euler equations
govern the ensemble averaged vorticity distribution o
point-vortex gas only in the lowest order mean field appro
mation, which neglects fluctuations due to finiteN. A statis-
tical treatment of these fluctuations leads to a collision te
on the right-hand side of the continuity equation 2~a!, which
goes to zero asN goes to infinity and the fluctuations becom
negligible.16 There was concern that the collision term due
finite N was responsible for vortex cooling. However, t
cooling curvedv rms(t) did not change in Sequence I~Fig. 3!
when N was decreased from 83105 to 43105 to 13105

@Fig. 4~b!#. Moreover, the simulation curves fell within th
scatter of the cooling curve for the experiment, which h
N;108 point-vortices. These results strongly suggest t
finite N effects are not important to the formation of vorte
crystals.

Another question concerned viscosity in the Navie
Stokes equations. In Sec. IV, we showed that a small leve
viscosity can destroy the process of vortex crystal format
entirely ~Fig. 8!. Specifically, we found that Sequence I r
quires a Reynolds numberR[G tot /n much greater than 105

to produce a vortex crystal. ForR&105, viscosity expands
the vortices sufficiently fast so that they merge before th
have time to settle into a vortex crystal geometry.

We have also discussed a mechanism for vortex coo
that is consistent with inviscid incompressible 2D fluid d
namics@Eq. ~2!#. In a recent paper,12 Jin and Dubin showed
that vortex crystals are well described as states that m
mize an entropy functional of the background vorticity d
tribution, subject to the constraints of 2D Euler flow. Th
result suggests that the system is driven to a vortex cry
e
ly
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equilibrium through a process that requires the ergodic m
ing of the background vorticity.

When the background circulation is much less than
combined circulation of the intense vortices~but not zero!, it
is reasonable that the vortices can perform the required m
ing. On the other hand, when the background circulat
dominates, the vortices become less effective mixers. Th
fore, if vortex cooling is driven by the turbulent mixing o
the background by the intense vortices, the cooling r
should first rise and then fall asGb increases from zero. Ou
simulation results are consistent with this picture~Fig. 10!.
When the background was removed, there was no vo
cooling and the intense vortices remained out of equilibriu
Only when the intense vortices were immersed in a low le
of background vorticity did they cool toward a pattern
uniform rotation. AsGb /G tot was adjusted closer to 1, th
rate of vortex cooling dropped below the accuracy of o
measurements.

Finally, we note that the vorticity distributions in mag
netized electron columns have two distinct features that m
contribute to the arrest of vortex mergers and to the form
tion of vortex crystals. First, they have a single sign of~posi-
tive! vorticity. The effect on vortex crystal formation of add
ing negative vorticity to the flow is a subject of curre
research. Second, the background vorticity has a sharp
wherez drops rapidly to zero. The interaction between t
intense vortices and surface-waves~Kelvin-waves! at the
edge can not be ignored in a general treatment of the dyn
ics. A detailed study of this nonlinear interaction has recen
been carried out and it has been shown to contain a plaus
mechanism of vortex cooling at late times.22
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