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Vortex crystals from 2D Euler flow: Experiment and simulation
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Vortex-in-cell simulations that numerically integrate the 2D Euler equations are compared directly
to experiments on magnetized electron colurfi®sS. Fine, A. C. Cass, W. G. Flynn, and C. F.
Driscoll, “Relaxation of 2D turbulence to vortex crystals,” Phys. Rev. L&, 3277 (1995],

where turbulent flows relax to metastable vortex crystals. A vortex crystal is a lattice of intense
small diameter vortices that rotates rigidly in a lower vorticity background. The simulations and
experiments relax at the same rates to vortex crystals with similar vorticity distributions. The
relaxation is caused by mixing of the background by the intense vortices: the relaxation rate is
peaked when the background circulation is 0.2—0.4 times the total circulation. Close quantitative
agreement between experiment and simulation provides strong evidence that vortex crystals can be
explained without incorporating physics beyond 2D Euler theory, despite small differences between
a magnetized electron column and an ideal 2D fluid. 1899 American Institute of Physics.
[S1070-663(199)00404-3

I. INTRODUCTION lattice in rigid rotation; to our knowledge, no previous ex-

The free relaxation of 2D turbulence has been a topic 0t)erlment or simulation has demonstrated the spontaneous

active research for decades, with applications in astrophys,[i% rmtatrlgnl Orf1 vortltra]x (;(rjys;t?ls fr:ovn\; Irr]e(talt);] relatt)xmgvngr;d:s?pt?-n
ics, geophysics, and plasma physicExperiments and nu- € turbulence. In order 1o sho atthe observed refaxatio

merical simulations have shown that the relaxation procesgf turbule?t fIOV\r/]to_vor;t)ex Cr}:jStfhls (_:;m :)ezgxglalg(ljned ;wtlhout
typically involves the chaotic advection and merger of in-ncorporating physics beyond the idea tid mode’, we

tense vortices and the production of vorticity filaments thatc,om‘?"’“,e the ;xpenment; ?Iwec_tly to vorteﬁ—ln—ge\MIC) |
evolve to increasingly fine length scales. In the past, varia®mu gtlogg that numerically mtt_agrate_ the 2D Euler
tional principles have been used to predict the final state ofduations.” The experiments and simulations are shown to

the coarse-grained vorticity distribution. In some cases, th&€lax at the same rates to vortex crystals with similar vortic-
final states are seen to maximize entropy functiofalsyt |ty dlstr'lbutlons.. Close agreement between experiment and
different initial conditions can lead to states of minimum Simulation provides strong evidence that 2D Euler theory
enstrophy*57 alone can explain the formgtioq of vortex crystals.

Strongly magnetized electron columns have recently ~©Of course, any numerical integration of the 2D Euler
been used to study the relaxation of 2D turbulence eXperiequatlons will differ from an exact solution. There is always
mentally. One of the first of these experiments showed thagoncern that a new result is an artifact of the particular dis-
certain hollow vortices relax to minimum enstrophy statesCretization scheme. However, we have confirmed that the
after they experience a Kelvin—Helmholtz instabilitiore VIC simulations conserve the robust integral invariants of
recent experiments on electron C(ﬂuﬁnsﬂggest that ideal 2D Euler flow. Moreover, the relaxation to a vortex Crystal
2D turbulence can self-organize into states where enstrophstate occurs at the same rate whether the number of point-
is not globally minimized and entropy is not globally maxi- Vortices in a simulation is 810°, 4x1C°, or 1xX10°. In
mized. In these experiments, the chaotic advection of intens@ddition, the rate of relaxation does not change when the
vortices “cools,” mergers cease and the vortices settle into &imulation’s grid-point spacingcell sizg is increased by a
lattice that rotates rigidly in a lower vorticity background. factor of 2 or 4. Only subtle differences in the final vorticity
These rigid patterns persist for around* ¥@tation periods distribution appear when the simulation parameters are
before they are finally dissipated by nonideal effects. Wherchanged. For example, an additional small vortex may ap-
the intense vortices have equal strength, the patterns are syfear in the final pattern.
metric, and for this reason they have been called vortex crys- By adding a slight random walk to each point-vortex in
tals. A selection of vortex crystals is displayed in Fig. 1 our simulation, we can observe the effect of a simple diffu-
(taken directly from Ref. B sive viscosity on the formation of vortex crystalsUsing

Although similar vortex crystals have been seen in dis-this technique, we will show explicitly that viscosity in the
sipative systems such as two-fluid liquid helidrthe rapid  Navier—Stokes equations acts to counter the formation of
relaxation of a strongly magnetized electron column is bevortex crystals rather than enhance the rate at which the sys-
lieved to closely follow 2D Euler dynamics. It is surprising tem of intense vortices relaxes to a pattern in rigid rotation.
that inviscid fluid equations should provide a mechanism fofThe reason is simple; viscosity acts to diffuse the intense
cooling the chaotic advection of the intense vortices to avortices and level the vorticity distribution. The very high
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vorticity (107 sec)

FIG. 1. Vortex crystals observed in magnetized electron colufi®e& 8. The color map is logarithmic. This figure shows vortex crystals \ithm left to
right) M=3, 5, 6, 7, and 9 intense vortices immersed in lower vorticity backgrounds. In a vortex crystal equilibrium, the entire vorticity dist{loutipn
is stationary in a rotating frame; i.€ s a function of the variable- ¢+ %Qrz, wherey is the stream function an@ is the frequency of the rotating frame.

Reynolds number that is required to see vortex crystals malation of the intense vortices. Presumably, the relaxation rate

help explain why the formation of vortex crystals has notgoes to zero in this limit because the vortices become inef-

been observed in previous experiments or simulations of théective mixers. As expected, the relaxation rate peaks at

Navier—Stokes equations. some intermediate level of the background, which is strong
As mentioned previously, vortex crystals cannot be ex-enough to influence the intense vortices but weak enough to

plained either by considering global maximum entropybe mixed.

states or minimum enstrophy stat8sAlthough complex

vorticity patterns consisting of several asymmetric vortices; coNCERNS WITH 2D EULER THEORY AND THE
can be predicted on the basis of maximum global entrop\EED TO COMPARE EXPERIMENT TO
theory for certain special initial conditions, these patternssiMULATION

(corresponding to negative temperature statgsically con-

sist of rather large slowly varying vortices that fill the con-

finement region, not the intense small vortices observed here. Figure 2 shows the experimental apparatBenning—

Furthermore, it is clear from observations of the evolutionMalmberg trap with CCD imaging diagnostic. The electrons

that the central regions of intense vorticity in the strong vor-are confined radially by the Lorentz force of a uniform mag-

tices arise from the initial flow, which consists of an intensenetic field that is applied along theaxis. They are trapped

striated vorticity pattern, and that these central regions reaxially by negative voltages at opposite ends of the confine-

main unmixed with the larger low vorticity background. Glo- ment cylinder.

bal maximum entropy theory, which presumes ergodic mix- The imaging diagnostic destructively measures the

ing of all vorticity elements, clearly does not apply to this z-integrated electron density. By raising one end-potential

flow. rapidly to ground, the electrons are dumped onto a phosphor
However, maximum entropy theory may apply to part of screen that radiates photons in proportion to the number of

the flow—the low vorticity background. In a recent Lettér, incident electrons, and the image is recorded with a 512

Jin and Dubin hypothesized that the turbulent flow is brought< 512 pixel CCD camera. Although the imaging is destruc-

to a vortex crystal equilibrium due to the violent mixing of tive, variations in the initial conditions are smalbr{/n

the diffuse background by the intense vortices. Assuming<10 2), so by dumping the electrons at a sequence of times

that the mixing of the background is ergodic, they arguedve are able to study flows with this technique.

that a vortex crystal is a state that maximizes disoféer

tropy) in the packground, su_bject to _the constraints of 2Dg |qeal 2D fluid approximation

Euler flow. This regional maximum fluid entropy theqspo-

called because only the background vorticity is mixed, and ~ We can approximate thre-¢ flow of electron density in

the strong vortices are taken to be pointlike without internalour magnetized electron columns with the 2D drift-Poisson

degrees of freedojrwas shown to accurately predict the fi- equations;’

nal positions of the intense vortices and the final background

vorticity distributions of the experiments in Fig. 1, given the

number of vortices and the energy, angular momentum, and

circulation. Vix E B_—»
Here, we present further evidence that the system is

driven to a vortex crystal equilibrium through the turbulent
mixing of the background by the intense vortices. First, we :_ H Phosphor
observe that the intense vortices do not cool to a vortex crys-IG 5 Cvindrical Penning—Malmberd t 4 destructive imaging di

. . . . 2. Cylindrical Penning—Malmberg trap and destructive imaging diag-
tal Wh_en the baCk_ground IS re_moved from the SImUIatlon' W ostic.E is the electric field produced by the electrons & the uniform
a_lls_o find that the intense vort!ces dF’ not CO(_)l in the Opposn%pplied magnetic field/gg denotes the counterclockwigx B drift of the
limit, when the background circulation dominates the circu-electronsR,,=3.5 cm, R,~1.5-2.5 cm, and.,~50 cm.

A. Experiment
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anlot+v-Vn=0, (18 Another correction to ideal fluid theory arises from the
finite numbem of “point-vortices” in the experiment. Each
v=2XcV¢/B, (1b)  electron is like a 2D point-vortex after averaging over its

2, z-motion. The Euler equations evolve the ensemble averaged
Vig=4amen. (10 density of a point-vortex gas only in the lowest order mean-

Here,n(r, 6,t) is thez-averaged electron density(r, 6,t) is field approximation, which neglects fluctuations due to finite
the EXB drift in the r— @ plane, anda(r, 6,t) is the electro- N- These fluctuations can be treated with a collision term on

static potential. The equations are 2D because the electrdhe right-hand side of the continuity Eq(al or 2(a).'® This
motion has been averaged over a bounce period in thgollision term is believed to be responsible for the eventual
zdirection. The boundary condition at the wall of the con-dissipation of vortex crystals that occurs in the experiments.
finement cylinder isp(R,, , 8,t) =0. The time scale for a vortex crystal to dissipate radt
The equations that evolve vorticity=2-V X v, can be rotationg far exceeds the time required for a vortex crystal to

obtained directly from the drift-Poisson equations. They ardorm (10—100 rotations However, the collision terrtdue to

the Euler equations, finite_ N) may be enhanced_ at small I_ength scales, and it was
previously feared responsible for driving the turbulent flow
aflat+v-V{=0, (28  to the metastable vortex crystal equilibrium.
v=2XVy, (2b)

C. Vortex-in-cell simulation

2.
Va=¢, (20 In this paper, we address concerns over the ideal 2D

which also govern the flow of 2D inviscid incompressible fluid model by comparing the experiment directly to a VIC
fluids. The new fieldy is a rescaled electrostatic potential, Simulation that numerically integrates the 2D Euler
y=c¢/B, and serves as a streamfunction for the flow. Com_equationsl.O In the simulationN<8x 10° point-vortices are
paring Egs.(1) and (2), we see that the vorticity is propor- distributed to match the initial vorticity profile of the experi-
tional to the electron density by the relatigr= 4mecr/B. ment. The vorticity is interpolated from the point-vortices to
So, by measuring the electron density we are also taking & sduare gridusually 513<513) on which Poisson’s equa-
direct measurement of vorticity, insofar as 2D drift-Poissontion is solved with the boundary conditiop(R,,,6,t)=0.
theory is a good model for the experiment. The conditionThe interpolation transfers vorticity from each point-vortex
that ¢ equals zero aR,, corresponds to a free-slip boundary t© the four nearest grid-points with the method of area
condition at the wall of a circular container. weighting® Poisson’s equation is solved with a five-point
However, there is concern that the approximations usedjnite difference scheme that employs multigrid relaxation.
to derive Egs(1) and(2) neglect terms that are essential to The velocity field is obtained on the grid by taking the gra-
the formation of vortex crystals. To begin with, E¢s) and  dient of yand is then interpolated back to the particle posi-
(2) describe the experiments only if the time scales associlions. The particles move forward in time with second-order
ated with electron motion satisfy the inequalites<r, Adams—Bashforth steps.
<7e4g. Here, 7. denotes the period for an electron’s small In what follows, we will show that the VIC simulations
gyrations around a magnetic field litiés cyclotron motion, are in good quantitative agreement with the experiments and
7, is the time required for an electron to bounce between th&hat the simulation results are not sensitive to large variations

ends of the plasma column in tiadirection, andrg g is the i N or in the grid-point spacing. In doing so, we will dem-
time scale forExB drift. In our experimentsy,~10 3 s,  oOnstrate that vortex crystals are not caused by finite length

7,~2 us, and the internal turnover time for a typical vortex effects, finite cyclotron radius effects, finit¢ effects or by

is Texg~ 20 us. Althoughr, is much less tham, and 7exg, any dynamics on time scales rapid comparedE®B drift

the condition thatr,< rz«g is only weakly satisfied. In ad- (such as cyclotron motion or axial motiorin other words,
dition to time scale constraints, there are length scale cor@!though there exist some differences between a magnetized
straints. For example, the drift-Poisson approximation break§lectron column and an ideal 2D fluid, the observed vortex
down at length scales that are smaller than the cyclotrof'ystals can be explained without incorporating physics be-
radius .~10um). Furthermore, one assumes that theyond 2D Euler theoryEq. (2)].

plasma is infinitely long in deriving Eq$1l) and(2) since all

variation in the zdirection is neglected. In realityl , IIl. COMPARISON OF EXPERIMENT TO SIMULATION
~50cm andR,/L,~0.05.

A well-studied correction to the infinite-length approxi-
mation is that caused by the static electric fields that confine Before making a detailed comparison of experiment to
the plasma in thezdirection. These fields modify the simulation, it is important to verify that both conserve the
bounce-averaged drift that is given by Edb)l and depend- robust integral invariants of 2D Euler flow. The 2D Euler
ing on circumstances this modification can enhance or supequations withf-symmetric boundary conditions conserve
press shear-flow instabilitidd® In general, the modified the energyH=—fdr?;y, the canonical angular momen-
drift increases with the kinetic energy of the electrons and daum P ,= [dr?r?{, the total circulatior g, =/dr?{ (~ num-
spread in electron energy will cause a vorticity profile tober of electrons and all higher moments of the vorticity
smeart® distributionZ = (1/m) fdr?{™, wherem=2,3,...c. By con-

A. Integral invariants
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FIG. 3. Sequence I, the formation of a vortex crystal from an annular vorticity distribi@pexperiment(b) simulation. The color map is logarithmic and
the experimental vorticity is obtained from the relatiosm 4ecn/B. All vorticity below the shot-noise threshold fes~ 2.3X 10° s%) was removed from
the simulation’s initial condition. The evolution is shown in a reference frame that rotates with frequency 5@7ad/s.

struction, our simulations conser¥g,,. They also conserve B. Vortex crystal formation

energy and angular momentum by roughly one part ih 10 e now proceed with a detailed comparison of experi-
The experiments show up to 10% declineslig, over the  ent to simulation. Figure(@ shows an experiment where
first 100 ms(100-1000 rotations whereas the normalized 5, 5nnyar vorticity distribution evolves into a vortex crystal.
quantitiesH/Ti, andP, /T' o, fluctuate by only a few percent. - giq ;e gh) shows the results of a VIC simulation that starts
The experimental decay i, Over time is probably caused it the same annular initial condition. The simulation has

by the slow ionization of background gas, which results in AN =8x10° point-vortices and a 518513 square grid. We
loss of electrons. Although a small decreasé’jy is unde- will refer to the flow in Fig. 3 as Sequence | '

sirable, it seems incidental to the formation of vortex crys- In both the experiment and the simulation, a Kelvin—

tals. As we will see, the simulations produce vortex CryStaISHelmholtz instability generates a “soup” of intense vortices.

while conservingl'yq. These vortices chaotically advect, merge and shed filaments

Although Z, and all higher moments of vorticit¥,,, are . .
conserved by the 2D Euler equations, their measured valuethat stretch and mix to form a diffuse background. Eventu-

are generally not conserved in freely relaxing 2D turbulenceaﬁly the chaotlc_vortex mot!on cools, mergers stqp e_m_d n
This is because any physical measurement of vorticity at gofch cases the '”te”S‘? vortl_c es tend to a pattern in rigid ro-
given position is an average over a cell of small but finitetat"_m' Although our simulation does n_ot_reproduce the ex-
area. As vorticity filaments stretch and narrow to micro-Periment e?(actly, both flows produce S|mllar vortex .crysta.ls.
scopic length scales, the measured vorticity along the fila- Most differences between the experiment and simulation
ments will decrease. An example of this decrease can bgMerge pefore one rotation period. TheseT dlfferences_ include
observed in Fig. 3, where the low vorticiiplue) regions the precise shapes and arrangement of intense vortices, and
increase in area over time. the filamentation which appears to be more “smeared” in
The integralH,P,, andl',, are insensitive to measure- the experiment than in the simulation. We speculate that
ment coarse-graining of the vorticity. On the other handthese differences are primarily due to the additional drifts in
enstrophyZ, and all higher momentg,, are fragile invari- the experiment that are caused by the electrostatic confine-
ants, and their measured values will decrease with time du@ent fields and that vary with the axial kinetic energy of the
to coarse-graining’ In the experiments, vorticity is coarse- electrons:*°
grained on a 512 512 pixel CCD camera, and the measured  Despite subtle differences, the experiment and simula-
enstrophyZ, typically decays by a factor of 2 during the tion show good quantitative agreement in several key areas.
formation of a vortex crystal. In the VIC simulations, vortic- First, they have similar evolutions in the numddrof in-
ity is coarse-grained on a 5%¥&13 square grid, and the en- tense vortices. As in Ref. 8, the vortex census used here is
strophy of the coarse-grained vorticity also decays by a facessentially that of McWilliam$ without the exclusion of
tor of 2 during the formation of a vortex crystal. We elongated vortices; we define an intense vortex as a con-
emphasize that a decay in the enstrophy of a coarse-graingected patch of vorticity for whicli> ¢, and for which the
vorticity distribution is entirely consistent with the 2D Euler mean diameted>d,. Here{ i, andd,,;, are parameters of
equations. the counting algorithm. These parameters were changed
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20— 0 vorticty, [ = (0 Gnn) (o)A dr2({— i) and

10 ViEfAidrz(g_gmin)(v_'zcv)/IAidrz(g_gmin)- Here, Ai de-
notes the region occupied by thh intense vortex and,, is
the flow's center of vorticity defined by the equatiop,
=(1T ) fdr?r{. The mean rotation of the intense vortices
aboutr,, is then subtracted from each, giving a set of
velocity fluctuations{ dv;} about the mean rotatiodv;=v;

(b) —1,Q(t) 8, whereQ(t)=3M v; /=M r; (radial-weighted

averaging. A discussion of the error in the measurement of

év; can be found at the end of this section.

As the pattern of intense vortices approaches uniform
rotation, the root-mean-square value of the velocity fluctua-
tions tends to zero, i.€.0v,me= (=M 6V /M)¥2-0 ast
—oo. We will refer to the graph ofév,,s vs time as the
cooling curve of the flow.

Figure 4b) shows the cooling curves for the experiment
FIG. 4. (@ Number of vorticedvl vs time for Sequence (b) Cooling curves and for the simulation of Sequence I. The cooling curves are
dvumgt) for same flow. Black, dark grey, and light grey correspond to approximately the same. Although one decade of vortex

simulations with N=8x1C°, 4x10°, and 1x10" respectively. Open ¢qpling does not suffice to accurately determine the func-
circles correspond to the experiment. The vertical dashed line indicates th,

time at whichM reaches its terminal value. The slanted dashed lines suggesﬁonaI form of év fmS(t)' a power-law gives a gOOd descrip-
power-law decays. Timeis normalized to the rotation period of the vortex tion at late times,év,,s~t~¢. Linear least-squares fits to
crystal in the simulatiofiFig. 3b)], 7o=1.07 ms. log—log plots of the data givej,= aex,=0.5+0.2 for times
greater than one rotation period.
A similar comparison to simulation has been made for

slightly from those used in Ref. 8, so that vortices smallera experiment that was taken directly from Ref. 8. We will
than d,;;=0.05cm in diameter were not counted. A brief refer to this flow as Sequence II. Here, the vorticity in the
discussion of the uncertainties inherent in this census methd@kPeriment starts as a tightly wound filament, as seen in Fig.
can be found at the end of this section. 5. UsingN=8x 10" point-vortices and a 518513 square
Figure 4a) shows that the evolution of the numbdrof ~ 9rid, our simulation failed to produce a vortex crystal from
intense vortices in the simulatiaisolid circles falls within ~ this initial condition. As reported in Ref. 8, small-scale de-
the scatter of the experimental daten circles The high  tails appear crucial in determining whether the spiral distri-
degree of scatter at late times in the experiment is a cons&ution will evolve into a vortex crystal or into an axisym-
quence of slight differences in the initial conditions associ-metric equilibrium. The essential details may have been lost
ated with each experimental “shot.” Recall that each experi-due to the finite resolution of the CCD imaging. Otherwise,
mental datum is taken from a separate evolution due to théhe simulation’s failure to produce a vortex crystal can only
destructive imaging technique. After the Kelvin—Helmholtz be blamed on slight dynamical differences with the experi-
instability and beforeM reaches its final value, the evolution ment. To compensate, we began the simulation at a later
in the number of intense vortices resembles a power-law destage of the flon(~4 rotations, at which time there were
cay, M~t~¢ for 0.3<t/7,,<6. Here r,,,=1.07ms is the multiple intense vortices = 15).
time averaged rotation period of the vortex crystal in the  Figure &a) shows the evolution in the number of intense
simulation [Fig. 3(b)]. Linear least-squares fits to log—log Vvortices over time for the simulatioisolid black circlesand
plots of the data givets,=0.3+0.1 and &.,=0.2+0.1.  the experimentopen circles The grey data will be dis-
Power-law decays ifM have been observed in previous cussed shortly. The decay rates are similar, but the final
simulations of ideal 2D fluid equatiofsand in simulations number of intense vortices in the simulatioM €5) falls
on discrete vortices that follow punctuated Hamiltonianbelow the experimental averag&l¢7). Note that in the
dynamicst® Power law decays occur in many processessimulation the last merger event occurs at 25 rotation peri-
where the decay rategc are proportional to powers of the ods. The final drop irM from 6 to 5(at t/ 7,,;~450) corre-
concentratiore, such as colloidal aggregation, certain chemi-sponds to a small vortex being sheared apart as it periodi-
cal reactions and two or three body recombinatif?, cally passes regions of intense shear-flow produced by
During the formation of vortex crystals, the chaotic ad- neighboring strong vortices.
vection of the intense vortices slowly relaxes, and as mergers The cooling curves for the simulation and the experi-
stop the intense vortices tend to a pattern that rotates rigidlynent are shown in Fig. (6). These cooling curves show
in a lower vorticity background. We refer to this process asclose agreement during the initial turbulent phase of the
vortex cooling. Vortex cooling is observed to occur at theflow, when mergers of intense vortices occur regularly. Dur-
same rate in the experiment and simulation. To show thisng this time period, least-squares fits to the data give cooling
requires a quantitative measure of vortex cooling. First, thexponentsxg;,= 0.5+ 0.2 anda,,,;=0.4=0.1. However, the
positions{r;} (i=1,2,...M) and the velocitiev;} of the cooling curve in the simulation levels off before cooling
intense vortices are calculated relative to the flow’s center oftops in the experiment. We can resolve this discrepancy in

"

or i 100 1000
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FIG. 5. Sequence I, the formation of a vortex crystal from a spiral vorticity distribut@nexperiment(b) simulation. All vorticity below the shot-noise
threshold ¢resi~2.3X 10° s71) was removed from the simulation’s initial condition. The evolution is shown in the laboratory frame.

part by observing that in both cases cooling appears to stogdditional merger at/ ..~ 100 or from an interaction with
shortly after the last merger event. Beyond the last mergethe low-vorticity (below the shot-noise thresholdack-

least squares fits to the data give cooling exponenis

=0.0+0.1 andae,;=0.1+0.1.

ground that was added to the exterior flow.
We end this section with a brief word on the uncertainty

An additional simulation was initialized to include the in the number of intense vorticdd and in the measure of
measured background vorticity below the shot-noise threshehaotic vortex motionsv,ms. To calculateM and Sv,ms we

old (the grey fuzz in the experimental image$he data for
this simulation are shown in grey in Figgapand Gb). This
flow differs from the previous simulatiotblack) in that the

used an automated vortex sur/&yThis survey has adjust-
able parameter,,, andd,;, that are used to identify intense
vortices in a turbulent flow. Recall that a vortex is defined to

final merger event occurs at a much later time, a time thape a connected patch of vorticity for whighe ¢, and for

appears to be more consistent with the experimepien

which the mean diametel>d,,,. There is good agreement

circles. In addition, the cooling curve levels off at a lower between the experiment and simulation regardless of the
value of dvys. This enhanced cooling may result from the common parameters that we choose to analyze them both.

30} (@)
88
®
M 1 §°~ o8, ° % o 7
00, °og °o°o°
[ o 09
4t o
096\ T T v (b)

1 2 ......iIO L .-...1..0IO PR
t (rotation periods)

FIG. 6. (@) Number of vorticesM vs time for Sequence li(h) Cooling
curvesdv,{t) for the same sequence. Black corresponds to the simulation

sl MY
1000 104

However, the exact values ™ and v s Will change with

the specific parameter choice. For example, we have calcu-
latedM (t) and v ,,(t) for Sequence (Fig. 3 with values

of ¢min between 4.5 10 and 4.5<10°s ! and with values

of dpin between 2.510°2 and 7.5<10 2cm. During the
initial break-up of the annulus, there were large variations in
the number of vorticesM due to changes inf., and
dmin(BM/M~1). However, the uncertainty iV dropped to
~10% after 1 rotation period and to 0% after the last merger.
Before the last merger, the uncertainty dn,,,s was ~20%

on average. After the last merger, the uncertaintysin,,g
dropped to less than 5%.

IV. DISCRETIZATION EFFECTS AND VISCOSITY

A magnetized electron column and a VIC simulation
both consist of a finite number of point-vorticed, (The
electron column consists dfl lines of charge, each line
charge corresponds to an electron trajectory averaged over

the fast axial motion. The 2D Euler equations govern the

in Fig. 5b), open circles correspond to the experiment, and grey corre£Nsemble 'averaged vorticity d|5t”bUt|0!1 of a pom_t—vor.tex
sponds to a simulation that was initialized to include measured vorticitygas only in the lowest order mean-field approximation,

below the shot-noise thresholdrey fuzz in the experimental image3he
dashed lines show that the cooling exponerthanges after mergers stop.
Both lines correspond to power-law fits of the simulation data. Tine

which neglects fluctuations due to finité These fluctua-
tions are thought to cause the slow dissipation of vortex crys-

normalized to the rotation period of the vortex crystal in the simulation tals that is observed in experiments with magnetized electron

where the shot-noise is removef],=0.23 ms.

columns. An example of this dissipation process is shown in
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ters is~1 cm and the average vortex radipssatisfies the
condition p<<L/3.2, which is required to prevent pairwise
mergers?!
Now consider a flow with the same annular initial con-
dition but with kinematic viscosity. Over time, viscosity
1, will expand each vortex such that- \4vt. Define the criti-
o T PYRAREN cal viscosity v, by the equationw,=(L/3.2)*(1/4T). If v
50 ms 1000 ms S000 ms =v., the expanded vortices at time will not be stable
against mergers in the vortex crystal configuration. In other
FIG. 7. _Dis_sipati_on of a metast_at_)Ie vortex crystal in an experiment. Thiswords’ if v=,, viscosity should prevent the formation of a
dissipation is believed to be a flnlt'.é effect and approx!mately conserves vortex crystal. For Sequencet, is approximately 4 chis.
H/I‘ﬁ)t andP, /T, . The color map is the same as in Fig. 3. . . € X L
It is possible to model Navier—Stokes viscosity in a VIC
simulation by adding a Gaussian random walk to the fluid
Fig. 7. Here, the decay occurs between 500 and 1000 rotatiatrift of each point-vortex! Figures 8a) and 8b) show the
periods. The dissipation time scale is much greater than thevolution of the annulus in Sequence | witk=0.127 cn?/s
time required for the system to reach a metastable vorteandv=1.27 cnf/s, respectively. Once again, the simulations
crystal equilibrium(~10-100 rotations but this fact alone use 8<10° point-vortices and a 518513 square grid. In
does not eliminate the possibility that fluctuations due toFig. 8@a), the vorticity distribution evolves into a pattern that
finite N drive vortex cooling. resembles a vortex crystal. The estimated time for viscosity
A statistical treatment of finité\ effects leads to a col- to generate a merger instability in this pattern~490 ms,
lision term on the right-hand side of the continuity Egé)1 which is well beyond the simulation’s run time. In Figh8
or 2(a). Unlike the constant viscosity of Navier—Stokes there appears to be no intermediate time scale during which
flow that leads to a simple diffusion of vorticity along the flow can be described as a vortex crystal. This result
streamlines, g/t +v-V{=vV?{, the collision term of a more or less agrees with our expectation that a vortex crystal
point-vortex gas conservés$ andP,. The correct form for should not form ifv=v,.
the collision term of a point-vortex gas is still unresolved and ~ To summarize our observation in dimensionless terms,
is a topic of current research. For the case of axisymmeétric we define a Reynolds numb& by the equatiorR=1I",/v.
a Klimontovich approach has been used to derive an explicitn Fig. 8@ R=8.7x 10°, and in Fig. 8b) R=8.7x 10", Itis
result’® A more general equation for the collision term hasapparent from Fig. 8 that vortex crystals will form in Se-
yet to be published. However, & decreases the collision quence | only ifR>10°.
term should have an increasing effect on the evolutiod. of
We examined the importance of finité effects on the
formation of vortex crystals by changing the number of
point-vortices in a simulatiofiFig. 3(b)] from 8x 10° to 4
X 10° to 1X10°. For N=4x10° and 1x 10° an additional In this section, we address the question of how 2D Euler
small vortex appeared in the final crystal, but the total circuflow can bring a system that consists of intense self-trapped
lation of the intense macroscopic vortic&, ,T';, remained  vortices and a diffuse background of small scale vorticity
the same within 5%. Furthermore, the cooling curvesNor filaments to a vortex crystal equilibrium. This relaxation is
=4x10° and 1x 10" fall within the scatter of the cooling described by the cooling cunév ,,{t), where v s is the
curve forN=8X 10° [Fig. 4b)]. This result suggests that the root-mean-square velocity fluctuation of the intense vortices.
finite number of point-vortices is not important to the ob- As the flow relaxes to a vortex crystal equilibrium, the cha-
served vortex cooling. This argument is strengthened by thetic advection of the intense vortices cools &g, tends to
fact that the experimeriBequence)lhas~ 10® particles and  zero. In Sequence |, vortex cooling continues indefinitely
cools at the same rate as the simulations. after mergers stoffig. 4), indicating that there exists a cool-
We have also increased the grid-point spacing in théng mechanism that is independent of merger events. Such
simulation by factors of 2 and 4, keepimyfixed at 8<10°  cooling would not occur if the intense vortices were simply
particles. Once again, only subtle changes were observeddvecting in their mutual fields like an isolated Hamiltonian
When the grid-point spacing was doubled, 2 additional vorsystem of point-vortices. However, the vortices are not iso-
tices appeared in the vortex crystal. When the grid-pointated in that they can interact with the background.
spacing was increased by a factor of 4, the two small vortices Recall from the introduction that the observed vortex
dissappeared. In both cases, the cooling curves overlappetystals are in excellent agreement with states that maximize
the original, within the scatter of the data. disorder (fluid entropy in the background? According to
While on the topic of nonideal effects, it is also of inter- the regional maximum fluid entropy theory, vortex cooling is
est to estimate the minimum level of viscosity in the Navier—caused by the ergodic mixing of the diffuse background by
Stokes equations that is required to prevent the formation ahe intense vortices. If the vortices are unable to mix the
a vortex crystal. Specifically consider Sequence |, where &ackground, then no vortex cooling should occur, as verified
vortex crystal forms from an unstable annuigsg. 3. In by the following numerical results.
Sequence |, the final merger occursTat 6 ms (5.6 rota- First consider SequencdFig. 3b)] at 14 rotation peri-
tions). After mergers stop, the spacihgetween vortex cen- ods, after which the number of intense vortiddsand the

V. IDEAL FLUID MECHANISM FOR VORTEX
COOLING
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a)

R=8.7x10"
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FIG. 8. The effect of viscosity in the Navier—Stokes equati¢gasThe evolution of an unstable annulus to a vortex crystal with viscasit.127 cni/s
added to the simulatior{b) Whenv=1.27 cni/s, the viscosity is sufficiently high to prevent formation of a vortex crystal. The color map is the same as in
Fig. 3, and the evolution is shown in a reference frame that rotates with frequency<3.87ead/s. The Reynolds numbgris defined in the text.

total circulation of the intense vortic&" ;T'; remain fixed.  tions) and squares correspond to Sequendstrting at 172
Suppose that all vorticity beloy~10*s ! is artificially re-  rotations. In both sets of simulations, the number of intense
moved from the simulation at this time, leaving only the vortices M remained fixed, with the exception of the data
intense vortices. Evolving this artificial system forward, we point to the far right, in which a small vortex was sheared
observe no cooling of the vortex motion. This result is shownapart toward the end of the simulation. As the background
in Fig. 9 and indicates that vortex cooling is not caused byvorticity level increases from zero, vortex cooling increases
internal motions within the vortices. and we observe growth im. As I'y/T",; continues to in-
Figure 10 offers a more detailed description of how thecrease « reaches a maximum value and then begins to fall.
cooling exponentx varies with the ratio of the background A rise and fall ofa asT', /Ty increases from 0 to 1 is
circulationI'y, to the total circulatior’,,, (the difference be- consistent with our view that vortex coolii@ the absence
tweenT'y,; and 'y is 3M,T;, the total circulation in the of merger$ requires the turbulent mixing of an inhomoge-
intense vortices To obtain these data, the original back- neous background by the intense vortices. When there is no
ground vorticity was multiplied by constants ranging from O
to 3. Circles correspond to Sequencéstarting at 14 rota-

1t ]
700
oL ]
Sv 0 —(19— —_ — —
rms
(cm sec‘l) [ ]
1
o LT,
100 FIG. 10. Cooling exponert vsI'y, /T, . Circles correspond to Sequence |

14 20 30 40 50 60 70 8090100 [Fig. 3(b)] starting at~ 15 ms(14 rotation periods and squares correspond
t (rotation periods) to Sequence I[Fig. 5b)] starting att~40 ms (172 rotation periods The
dark symbols mark the cooling exponents for the original simulated flows.
FIG. 9. Cooling curves for vortex crystal wittblack) and without(grey) To obtain the remaining data, the original background vorticigy<{
background vorticity. Timet is normalized to the rotation period of the x10*s 'in Sequence 17<6.8x10* s *in Sequence Jlwas multiplied by
vortex crystal with background vorticity;,,=1.07 ms. constants ranging from 0 to 3.
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background, there is no vortex cooling. WhéR/T',, is  €quilibrium through a process that requires the ergodic mix-
close to 1, the velocity field is dominated by the contributioning of the background vorticity.

from the background vorticity. Presumably, the cooling rate ~ When the background circulation is much less than the
becomes small in this limit because the vortices essentiallgombined circulation of the intense vorticgmit not zerg, it

become passive test particles and lose their capacity to mi reasonable that the vortices can perform the required mix-
the background. ing. On the other hand, when the background circulation
dominates, the vortices become less effective mixers. There-
fore, if vortex cooling is driven by the turbulent mixing of
the background by the intense vortices, the cooling rate
should first rise and then fall d%, increases from zero. Our
The conventional picture of freely relaxing 2D turbu- simulation results are consistent with this pictFég. 10.
lence (with a single sign of vorticity involves the chaotic When the background was removed, there was no vortex
advection of intense vortices punctuated by occasional mergsooling and the intense vortices remained out of equilibrium.
ers until only a single vortex remains. In experiments withOnly when the intense vortices were immersed in a low level
magnetized electron columns, we have seen that mergers cah background vorticity did they cool toward a pattern in
stop due to the spontaneous formation of a vortex crystal. Imniform rotation. AsI'y/I"y, was adjusted closer to 1, the
this paper, we have argued that the observed vortex crystatgte of vortex cooling dropped below the accuracy of our
can be explained without incorporating physics beyond 2Dneasurements.
Euler theory[Eq. (2)], despite small differences between a Finally, we note that the vorticity distributions in mag-
magnetized electron column and an ideal 2D fluid. Our arhetized electron columns have two distinct features that may
gument was based on a comparison of two experiments teontribute to the arrest of vortex mergers and to the forma-
the results of a VIC simulation that numerically integratestion of vortex crystals. First, they have a single sigrifsi-
the 2D Euler equations. We found good quantitative agreetive) vorticity. The effect on vortex crystal formation of add-
ment in the evolution of the number of intense vortidds ing negative vorticity to the flow is a subject of current
and in the cooling of their chaotic advection, described byresearch. Second, the background vorticity has a sharp edge
v mdt). where ¢ drops rapidly to zero. The interaction between the

Even so, there were some issues to address. A magnédense vortices and surface-wavéselvin-waves at the
tized electron column and a VIC simulation both consist of aedge can not be ignored in a general treatment of the dynam-
finite number of point-vorticedN. The 2D Euler equations ics. A detailed study of this nonlinear interaction has recently
govern the ensemble averaged vorticity distribution of abeen carried out and it has been shown to contain a plausible
point-vortex gas only in the lowest order mean field approxi-mechanism of vortex cooling at late tim&s.
mation, which neglects fluctuations due to finlNeA statis-
tical treatment of these fluctuations leads to a collision termn ACKNOWLEDGMENTS
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