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The two-dimensionals2Dd fluid echo is a spontaneous appearance of a diocotron wave after two
externally excited waves have damped away, explicitly demonstrating the reversible nature of
spatial Landau damping. The inviscid damping, or phase mixing, is directly imaged by a low-noise
charge-coupled device camera, which shows the spiral wind-up of the density perturbation.
Surprisingly, the basic echo characteristics agree with a simple nonlinear ballistic theory that
neglects all collectivesi.e., moded effects. Also, the simple 2D picture is violated by end
confinement fields that causevz-dependentu drifts, so the observed echo must be interpreted as a
superposition of separately damping and separately echoing velocity classes. The maximal echo
lifetimes agree with a theory describing weak collisional velocity scattering between velocity
classes. In addition, large second wave excitations degrade the echo up to 53 faster than
collisions. ©2005 American Institute of Physics. fDOI: 10.1063/1.1885006g

I. INTRODUCTION

Echo phenomena have been seen in a variety of systems
spanning many scientific disciplines, including optics,1

atomic physics,2 and plasma physics.3–5 In general, echoes
involve the dissipationless phase mixing of a macroscopic
signal. Later in time, a second excitation is applied and this
perturbation also damps. The echo is the “spontaneous” ap-
pearance of a macroscopic signal long after the two external
excitations damp away, and provides an explicit demonstra-
tion that the phase mixing is thermodynamically reversible.

Here, experimental measurements of two-dimensional
s2Dd fluid echoes are presented, demonstrating the reversible
nature of spatial Landau damping. Fluid echoes have been
predicted theoretically6,7 and studied numerically,8 but vis-
cosity or other nonideal effects have prevented echo obser-
vations in conventional fluids. We use a magnetized electron
column as the “working fluid” to study the echo; the
z-averagedE3B drift dynamics of the electron column is
isomorphic to the 2Dsr ,ud dynamics of an idealsincom-
pressible and inviscidd fluid.9 Thus, the echoes represent
Kelvin wave10 echoes, that is, surface wave echoes on a 2D
inviscid vortex.

We demonstrate that the echo mode number, echo ap-
pearance time, and nonlinear saturation effect agree with a
simple nonlinear ballistic theory. In addition, we find that the
maximal echo lifetime is fundamentally limited by electron-
electron collisions, but can also be limited by large amplitude
effects.

To produce the echo, we first launch a surface drift wave
on a quiescent electron column with densityn0srd. These
“diocotron waves”11 have density perturbation
dnisrdeismiu−vitd with mi =2,3,4, . . ., and areessentially uni-

form in z. The measured wave electric field at the cylindrical
wall is proportional to the radial integral overdn. For our
chosen profilesnsrd, the excited wave rapidly damps away
by the phase mixing of spatial Landau damping:12 strong
radial shear in theE3B rotation frequencyvEsrd causes
progressive spiral wind-up of the perturbationdnisr ,u ,td
near the critical radiusrc, where the wave-particle resonance
vEsrcd=vi /mi is satisfied. Essentially, each “shell” of the
plasma rotates at a different rate, stretching the initially
aligned su localizedd density perturbation into a spiral. The
perturbed density then becomes a rapidly oscillating function
of r, so the wave potentialdf phase mixes to zero. Although
the wave potential vanishes, the spiral phase-mixing pattern
remains stored indnisr ,u ,td.

After a chosen timet, a second diocotron wave is
launched and it too damps away, leaving its own phase-
mixing patterndnssr ,u ,td. The second wave excitation also
modulates the perturbation remaining from the first wave,
producing a second-order perturbationdns2dsr ,u ,td. This
second-order perturbation begins to unmix, and after some
time the perturbations in the various shells realign, producing
a wave electric field which is the echo.

A simple representation of spiral wind-up and echo for-
mation is shown in Fig. 1, using initial azimuthal mode num-
ber mi =2 and second mode numberms=4. Here, white rep-
resents positive dnsr ,u ,td, black represents negative
dnsr ,u ,td, anddn is treated as a passive tracer density field
that is advected by the shearedE3B flow. The essential
feature of the second excitation is to produce radial drifts of
particles, shown in Fig. 1sdd. The modulated spiral pattern
evolves with the shear flowvEsrd, and after some time be-
gins to unwind. At timet=2t, the perturbation forms anme

=2 echo, shown in Fig. 1sfd.
This simple description of the 2D echo is complicated by

3D “end” effects that makevE dependent on an electron’sz
velocity, i.e., vEsr ,vzd.

13 That is, energetic electrons pen-
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etrate further into the end confinement potential, and there-
fore have a different z-averaged vEsr ,vzd. Different
z-velocity classes mustseparatelyphase mix and unmix to
form a combined echo, so it is somewhat surprising that the
echo occurs at allsbecause these 3D end effects lie outside
the 2D fluid perspectived. We will see that collisional veloc-
ity scatterings between velocity classes fundamentally limit
this recombination.

The fluid echoes are closely related to plasma wave
echoes.4,5 Indeed, the description of a plasma wave echo dif-
fers from the above 2D description only in that the wave
electric field is given by an integral over the perturbation in
the phase-space distributiondfsz,pz,td. The Landau damping
of kzÞ0 plasma waves is a phase-mixing process where
dfsz,pz,td becomes progressively more rapidly oscillating in
pz, and the integral vanishes. However, a phase-mixing pat-
tern remains stored indfsz,pz,td, and this produces an echo
when it unmixes after modulation by a second wave.

The spatial Landau damping of fluid echoes is a wave-
particle resonance that occurs in configuration space as op-
posed to the resonance in velocity space for longitudinal
plasma waves. Indeed, phase spacesu ,pud is equivalent to
configuration spacesu ,r2d in a strongly magnetized electron
column, because the angular momentum inE3B drift dy-

namics is given bypu=seB/2cdr2.12 Thus, the phase mixing
and unmixing are observed directly in measurements of
nsr ,u ,td.

II. EXPERIMENTAL SETUP

The experiments are performed on a magnetized pure
electron plasma confined in a Penning–Malmberg trap,
shown in Fig. 2. A hot tungsten source injects electrons into
a stack of cylindrical electrodes. The electrons are trapped
axially by voltages −Vc=−100 V applied to end cylinders;
the strong axial magnetic fields0.2 kGøBø7 kGd provides
radial confinement, and causes rapid cyclotron motion at fre-
quencyVc. The vacuum chamberswith neutral gas pressure
P&10−10 torrd resides inside the bore of the superconducting
solenoid.

The plasma typically has a central densityno<1
3107 cm−3, with a length varied over the range 5øLp

ø70 cm inside a wall radiusRw=3.5 cm. We adjust the
plasma radius toRp<1.5 cm, and create a broad radial tail to
produce strong damping, as shown in Fig. 3.

The electrons have thermal energy 4øTø10 eV,
giving an axial bounce frequency fb; v̄ /2Lp

<s0.5 MHzdT1/2sLp/50d−1 and a Debye shielding lengthlD

<s0.25 cmdT1/2sn/107d−1/2. Here, the thermal velocity isv̄
;ÎT/M. The electron space charge creates a central poten-
tial −fp<−30 V, and the radial electric field causesE3B
rotation at a ratefEsrd;cEsrd /2prB<s150 kHzdsn/107d

FIG. 1. Simple representation of phase mixing and unmixing, usingsad mi

=2 andsdd ms=4, resulting insfd me=2.

FIG. 2. Electron trap with CCD camera density diagnostic. The wall signal
from sectored electrodes is used to measure the wave amplitudes.

FIG. 3. sColord. CCD image ofm=2
surface drift wave. Typical density
nosrd and rotation frequencyvEsrd
profiles are also shown.
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3sB/1 kGd−1. Later, in Sec. V, we consider 3D end effects
that make the rotation frequency depend slightly onvz.

The frequency ordering is thus

Vc/2p @ fb . fE, fm, s1d

whereVc;eB/mc is the cyclotron frequency, andfm is the
frequency of the diocotron mode with azimuthal modem.
The fast cyclotron motion makes guiding-center theories ap-
plicable, and the fast bounce motion compared with theE
3B drift frequency makes the system approximately 2D.

Sectored wall cylinders are used to excite and detect
waves in the plasma. A single wall sector can be used as a
receiver, or sectors can be used in combination to maximize
the signal from a wave with a particular mode numberm.

At a chosen time in the evolution, thez-integrated elec-
tron density nsr ,u ,td can be measured by dumping the
plasma onto a phosphor screensbiased to 15 kVd, imaged by
a low-noise 5123512 charge-coupled devicesCCDd camera.
The shot-to-shot reproducibility is goodfdnsrd /n<0.1%g,
so a time evolution is obtained by creating a sequence of
plasmas with identical wave excitations, each dumped at dif-
fering timest.

Figure 3 shows an image of a dumped plasma with a
m=2 diocotron perturbation; the densitynsr ,ud is repre-
sented logarithmically by the colors. Here, the amplitude of
the surface wavesmeasured by the eccentricity of the density
distributiond is ,1003 larger than the perturbations used in
echo experiments. A typical densitynosrd=knosr ,udl and cal-
culated rotation frequencyvEsrd is shown in the box.

III. ECHO IMAGES

At t=0 an initial wave, with mi =2 and vi =2p
320 kHz, is excited by applying a voltageVi =0.2–10 V to
two 180°-opposed wall sectors for a timeDti ,p /vi. Figure
4 shows the received wall signal as the wave damps away
sa–cd. The corresponding 2D density is initially “circular,”
i.e., n0srd but it is distorted into an ellipticalnsr ,ud by the
initial excitation. The peak received initial and echo wall
signals are denotedSi andSe, respectively.

The “perturbation” images of Fig. 5 have the symmetric
equilibrium subtracted out, displayingdnsr ,u ,td;nsr ,u ,td
−nosrd, wherenosrd is the profile obtained att=0 with no
wall excitation. The colors show magnitude ofdn; the initial
amplitude isudnu<10−2nsrd but the color scale is adjusted
from image to image to maximize the visibility. The elliptical
distortion rotates counterclockwise at frequencyvi but in ,5
wave periods it damps back to a circular cross section due to
spatial Landau damping, with spiral wind-up of the density
perturbation.

At time t, a second wave withms=4 is excited by ap-
plying a voltage Vs=0.2–10 V to four sectors forDts
,p /vs. sThe visible wall signal represents a spurious cou-
pling of the ms=4 excitation into them=2 detection elec-

FIG. 4. Measured wall signal showing initial, second, and echo waves.

FIG. 5. sColord. Experimental density perturbation images at six successive times. The initial wave is excited insad and the density perturbation executes spiral
wind-up as the wave is spatially Landau damped.sdd shows the second wave excitation and the echo peaks insfd.
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tronics.d The remnants of the phase-mixed initial wave are
visible as thin filaments insdd. The second wave excitation
causesu-dependent radial shifts of the filaments; thus, the
filamentsE3B rotate at a new rate becausevEsrd depends
on r.

The third wave packet visible in Fig. 4 is the received
me=2 echo. The initial wave damping effectively unmixed,
producing anme=2 echo response. The peak echo wall sig-
nal Se occurs at a timet<2t for the mode numbers used
here. The corresponding imagesfd shows udnu<s0.3
310−2dnsrd.

IV. COLLISIONLESS BALLISTIC THEORY

Surprisingly, the essential features of the echo are cap-
tured by a collisionless, ballistic theory4 that completely ne-
glects collective effects such as waves. We solve for the free-
streamingE3B drift trajectories of particles, and assume
that particle-guiding centers deviate from circular orbits only
due to the impulsively applied wall excitation voltages. This
ballistic approach is equivalent to treating the particles as
passive tracers that orbit at ratevEsrd; that is, we assume the
perturbed density does not modify theE3B flow.

Here, we calculate the electric fieldEw at the wall of the
electron trap. Themth Fourier component of the electric po-
tential is

dfmsr,td = − eE
0

Rw

r8dr8E
0

2p

du8nsr8,u8,tdGmsr ur8de−imu8,

s2d

wheresr8 ,u8d is the source point andGmsr u r8d is the Green
function.14

Following Ref. 4, we use conservation of particles

r8dr8 du8nsr8,u8,td = rodroduonosrod s3d

to express the particle trajectories in terms of the initialst
=0d coordinatessro,uod and unperturbed densitynosrod. The
electric field at the wall is then

Ew ; − U ]dfmsrd
]r

U
Rw

= eE
0

Rw

rodroE
0

2p

duonosrodgmfr ur8sro,uo,tdge−imusro,uo,td,

s4d

where we drop the prime onu for notational convenience
and the radial derivative of the Green function, evaluated at
r =Rw, is

gmsr ur8d ; U ]Gmsr ur8d
]r

U
Rw

=
rm

Rw
m+1 . s5d

Below, we solve for the particle trajectories described by
usro,uo,td in the exponential argument of Eq.s4d.

The Hamiltonian for 2DE3B drift dynamics is given
by

H = − efosrd + dH, s6d

wherefosrd is the unperturbed plasma potential. In general,
the perturbed HamiltoniandH would include self-consistent
plasma effects; these effects are ignored in this ballistic ap-
proximation. The perturbed Hamiltonian models vacuum po-
tentials created by wall voltagesVi and Vs, applied impul-
sively at t=0 andt=t,

dH = eAisrdsinsmiuddstd − eAssrdsinsmsuddst − td, s7d

whereAisrd;aiViDtisr /Rwdmi, Assrd;asVsDtssr /Rwdms repre-
sent ther dependence of the vacuum potentials from the
initial and second excitations, andDti, Dts represent the ac-
tual durations of the applied wall voltages. Heresai ,asd re-
late the voltages applied on wall sectors to thesmi ,msd spa-
tial Fourier components.

The equations of motion follow from Eqs.s6d and s7d:

]u

]t
;

]H

]pu

=
c

eBr

]H

]r
= vEsrd +

c

Br
F ]Ai

]r
sinsmiuddstd

+
]As

]r
sinsmsuddst − tdG , s8d

]r

]t
=

c

eBr

]pu

]t
; −

c

eBr

]H

]u
=

c

Br
fAisrdmi cossmiuddstd

− Assrdms cossmsuddst − tdg, s9d

where vEsrd;−c/Br]fo/]r is the 2D E3B rotation rate,
and we usepu=seB/2cdr2 to express the canonically conju-
gate variablessu ,pud as su ,r2d. Integrating the equations of
motion from t=0 to a time t,t, before the second wall
excitation, gives

u = uo + vEsrdt + duisuod, 0 , t , t s10d

r2 = ro
2 + Aisrdmi

2c

B
cossmiuod, 0 , t , t, s11d

where dui ;c/Br]Ai /]r sinsmiuod is the impulsiveu drift
from the radial electric field of the initial excitation. Theseu
kicks are ignored in the remaining theory because they are
not multiplied byt, so they do not accumulate with time.

Integrating Eqs.s8d and s9d from t=t to a time t.t,
after the second wall excitation, i.e., when the echo appears,
gives

u = ustd + vEfrst+dgst − td, t . t s12d

r2 = ro
2 + Aisrdmi

2c

B
cossmiuod

− Assrdms
2c

B
cosfmsustdg t . t, s13d

wheret=t+ is the time immediately after the second excita-
tion. The radial displacements caused by the second wall
excitation are given by Eq.s13d. Particles displaced to a new
radial positionrst+d rotate at the new ratevEfrst+dg, en-
abling unmixing.

Using Eqs.s10d and s11d, we evaluateustd as
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ustd = uo + vEFro +
c

Br
miAisrdcossmiuodGt

.Uuo + vEsrodt +
c

Br

]vE

]r
U

ro

Aisrdmi cossmiuodt,

s14d

wherevE is Taylor expanded in the last line. Similarly, the
termvEfrst+dg in Eq. s12d is Taylor expanded. The particleu
trajectories of Eq.s12d are then

usro,uo,td =Uuo + vEsrodt +
c

Br

]vE

]r
U

ro

Aisrdmi cossmiuodt

− Ust − td
c

Br

]vE

]r
U

ro

Assrdms

3 cosFUmsuo + msvEsrodt

+
c

Br

]vE

]r
U

ro

Aisrdmims cossmiuodtG . s15d

We make use of the exponential expansion

e−ia cosx = o
l

s− idlJlsade−ilx , s16d

whereJl is the Bessel function of the first kind of orderl, and
find that the electric field at the wall vanishes unlessm
=qms−pmi. Here, p and q are the harmonic orders of the
initial and second excitations, respectively, similar tol in Eq.
s16d.

For the lowest harmonic numbersp=q=1, the echo
mode number is predicted to be

me = ms − mi . s17d

Experiments with a variety ofsmi ,msd showme=ms−mi and
no echo is seen ifmi .ms.

Furthermore, we use the Bessel function identity

Jpsc − dd = o
s

Jp+sscdJssdd, s18d

and find that the electric field at the wall, fort.t, is given
by

Ewstd = eE
0

Rw

rdrnosrdgmsr ur8dexpF− imevEsrd

3St − t
ms

me
DGJ1F c

Br

]vE

]r
Aisrdmime

3St − t
ms

me
DGJ1F c

Br

]vE

]r
Assrdmsmest − tdG , s19d

where we have dropped the subscript onr for notational
convenience.

A. Time of echo appearance

Equations19d predicts the time of the echo appearance,
which is obtained by setting the phase-mixing terms to zero.
In the experiments, phase mixing is the spiral wind-up of the
density perturbation, creating radial ripples ofdn. The
unique time at which the ripples vanish is found by setting
the r-dependent terms in the exponential argument to zero,
yielding the echo appearance time

te = t
ms

ms − mi
. s20d

We measure the echo appearance timete with an auto-
mated fit to the wall signal, using a symmetric growing/
damping sine wave centered atte. The sine wave frequency
is at the well-defined mode frequency, which does not even
enter the theory. Figure 6 shows the measuredte versus the
second wave launch timet, both normalized to them=2
wave periodT2. The dashed lines are the theory predictions,
and the initial, second, and echo mode numbers are shown in
parentheses. The case withmi =2 andms=4 has the largest
data range due to the large signal-to-noise ratio of the mea-
sured echo amplitude.

To further compare the collisionless theory with experi-
ments, we evaluate Eq.s19d near the echo appearance time
te, and write the “no collision” theory prediction for the peak
echo wall signal as

Se
nc ; GEwst < ted = ViE

0

Rw

dr asrdJ1fbsrdVstg, s21d

whereasrd andbsrd are given by

asrd ; GaiDtie
ecmime

2BRw
S r

Rw
Dmi+me

nosrd
]vE

]r
, s22d

bsrd ; asDtsmims
c

Br
S r

Rw
Dms]vE

]r
. s23d

The gain is given byG;sA/CdG̃, whereA is the area andC

is the capacitance of the detection sectors, and whereG̃ is the
amplifier gain. The small quantitye represents the difference

FIG. 6. Echo appearance timete vs the second wave launch timet, both
normalized to them=2 wave periodT2, using various mode numbers.
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between the theoretical echo appearance timete and the mea-
surement time. This measurement time is defined as the time
of the maximal echo wall signal, and is typically within 1 or
2 plasma rotation periods of the theoreticalte.

Equations21d follows from Eq.s19d because att< te, the
Bessel function argument in Eq.s19d containing theinitial
perturbation amplitude is extremely small, andJ1sxd<x/2
for smallx. The Bessel function argument which contains the
secondperturbation amplitude is large at the time of the echo
appearance, so this Bessel function is not expanded. Theo-
retically, at t= te, the echo wall signal is zero, sinceJ1s0d
=0.

V. COLLISIONAL IRREVERSIBILITY OF END-FIELD u
DRIFTS

In this section, we evaluate a second-order theory that
describes collisional scattering betweenvz velocities, giving
irreversible “u smearing.”u motion outside the 2D perspec-
tive arises from the radial component of the confinement
fields, which createE3B drifts in theu direction.13 Theseu
steps depend on the particle’s end-residence time, and hence
on the particle’sz velocity vz, so one must considervEsr ,vzd.
In the absence of collisions or other randomizing effects,
each particle remains in its original velocity class, which
executes its own spiral wind-upsand unwindingd. Thus, the
spiral wind-up due tovEsrd and the wind-up due tovEsvzd
have similar phase-mixing effects, and thevz-dependentu
steps alone do not destroy the echo.

Collisions, however, cause irreversible velocity mixing.
Particles scattered into a new velocity class change their
bounce-averaged rotation ratevEsr ,vzd, which degrades the
coherence of the spiral “unwinding,” and limits the maximal
echo lifetime.

A. Collisional theory

The Boltzmann equation is used to model collisions act-
ing on the particle distribution functionfsr ,vz,td,

]f

]t
+ ff,H8g = nv̄2 ]2f

]vz
2 , s24d

where n represents the electron-electron parallel scattering
rateni,

15 given by

ni ; 2.8Îpnv̄b2 lnsrL/bd. s25d

Here, rL; v̄ /Vc is the cyclotron radius andb;e2/T is the
distance of closest approach for thermal electrons.

The HamiltonianH8 used here includesz dynamics, and
is given by

H8 =
pz

2

2M
− efosr,zd + dH8. s26d

The perturbed HamiltoniandH8 neglects collective effects,
similar to Eq.s7d, and models the impulsively applied wall
excitations:

dH8 = eAisrdeimiudstd + eAssrde−imsudst − td. s27d

For t,t, the first-order solution from the initial excita-
tion only is

df i
s1d = − imiAi

c

eBr

]fM

]r
· expF− imiu + imivEsrdt

−
imivz

2

VcLr

]L

]r
t − n

4

3

mi
2vz

2v̄2

Vc
2L2r2S ]L

]r
D2

t3G . s28d

The vEsvzd effect is seen in the third term in the exponential
argument. Here,]fM /]r is the radial derivative of the unper-
turbed distribution function, which is assumed to be Max-
wellian, and]L /]r represents the curvature in the ends of the
plasma. In obtaining Eq.s28d, we have made the approxima-
tion ]2/]vz

2df .1/dfs] /]vzdfd2. The rather stranget3 scaling
of the collisional term in the exponent comes from the col-
lision operatornv̄2s]2/]vz

2d acting on df, which has the
vz-dependentu-smearing effect invEsr ,vzd. This brings
down t2 and the integralnv̄e0

t dt8s]2df /]vz
2d then yieldst3.

Solving the Boltzmann equation to second order, and
keeping only terms containing the first power ofn, we find
that the perturbed distribution function att.t is given by

df s2dstd = imi
2msS c

Br
D2]vE

]r

]fM

]r
AiAst

3expFimeu − ivEsr,vzdmeSt −
tms

me
DG ·

3expH− n
4vz

2v̄2

Vc
2L2r2S ]L

]r
D2Fmi

2t3

3

+
me

2st − td3

3
+ mi

2t2st − td − mimetst − td2GJ .

s29d

Again, the time of the echo appearancete is obtained by
setting ther-dependentsphase mixingd terms in the first ex-
ponential argument equal to zero.

At time t= te;tms/me, the second-order collisional so-
lution for the peak echo amplitude is

df s2dsted = imi
2msS c

Br
D2]vE

]r

]fM

]r
AiAst

3expsimeudexpf− g3sn,r,«zdt3g, s30d

where the collisional damping term is given by

g3sn,r,«zd ; n«zTS c

eBr
D2S1

L

]L

]r
D28

3

mi
2ms

me
. s31d

Here, «z;Mvz
2/2 is the electron kinetic energy, and the

plasma lengthLsr ,«zd is defined by the electron end reflec-
tion at L /2:

efsr, ± L/2d − efsr,0d = «z. s32d

Finally, we combine the collisionless result of Eq.s21d
with the collisional result of Eq.s29d, and find that the peak
echo wall signal, near the echo appearance time, is given by
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Se
col = a8ViE

0

Rw

dr rmi+me+1]vE

]r

]no

]r
J1Sb8rms−1]vE

]r
VstD

3
1

2ÎpT
E

0

` d«z

Î«z

expf− «z/T − g3sneff,r,«zdt3g,

s33d

wherea8 andb8 are the coefficients ofa andb in Eqs.s22d
and s23d, and are given by

a8 ; GaiDtie
ecmime

2BRw
mi+me+1 , s34d

b8 ; asDtsmims
c

BRw
ms

. s35d

The 1/Î«z term arises from changing a velocity integraldn
=edv df to an energy integraldn=ed«zdf /Î2M«z. In order
to compare with experiments, the collision raten in the col-
lisional damping termg3 has been written in terms of an
effective collision rateneff:

n ; neff
nsrd
ns0d

s«z/Td−1. s36d

B. Comparison with experiments

We numerically evaluate the double integral in Eq.s33d.
A 2D Poisson solver16 is used to calculate the local density
nsr ,zd and potentialfsr ,zd from the measuredz-integrated
density from a CCD image. In obtaining the solution, local
thermal equilibrium is presumed at everyr andz. The plasma
length Lsr ,«zd is then calculated from Eq.s32d, and the
plasma rotation frequency is calculated fromvEsrd
;−c/Br]fsrd /]r, at z=0.

We obtain an effective electron-electron collision rate
neff by fitting Se

col of Eq. s33d to data sets of the measured
peak echo wall signalSe versust, with neff, a8, and b8 as
fitting parameters. The solid lines of Fig. 7 are examples of
such a fit using two different excitation voltagesVs; all other

parameters are held constant. For the weak second wave ex-
citation of Vs=0.25 V, the fit yieldsneff=31 sec−1, which is
fairly close to the actual electron-electron scattering rate of
ni=21 sec−1. Thus, the decrease inSe represents collisional
irreversibility. The simple collisionless theorysneff=0d is
also shown dashed and dot dashed, using the samea8 andb8
as the solid lines.

At the larger second excitation ofVs=1.0 V, the de-
crease inSe at t<20T2 represents the nonlinear saturation
effect described by the Bessel function in Eqs.s21d ands33d.
Here, the fit yieldsneff=122 sec−1, which does not represent
a measure of collisionality, but rather represents the absence
of the late-time echo recurrence att<85T2 sandt<150T2d.

Figure 8 summarizes the comparison between the colli-
sional theory and echo data. The vertical axis is the experi-
mentally determinedneff, obtained from fits to 65 data sets
such as Fig. 7. The horizontal axis is the actual electron-
electron collision rateni for the specific plasma parameters,
given by Eq.s25d. The measuredneff is always greater than
that expected fromni alone.

In Fig. 8, the strength of the applied wall voltageVs used
to excited the second wave is representedslogarithmicallyd
by the size of the data symbol, with larger symbols corre-
sponding to larger second excitation strengths. At a given
value ofni, identical symbols of different sizes correspond to
identical plasma parameters, but with different values of the
second wave excitation strength. The strength ofVs is varied
over a factor of 50 in the data plotted here. The arrows iden-
tify the data points corresponding to Fig. 7.

Figure 8 shows that the echo lifetime is limited by col-
lisional irreversibility of end-fieldu smearing when the sec-
ond wave excitation is sufficiently small. At large second
wave amplitudes, a differentsunknownd effect destroys the
echo as effectively as collisions enhanced by 1003. These
large values ofneff represent the absence of echo recurrence
at large values ofVst.

Note that the large variations inneff translate into much
smaller variations in the time of echo destruction, because of
the t3 scaling in the collisional exponential decay argument
in Eq. s33d. Thus, a factor of 100 enhancement inneff gives
only a 4.63 reduction in the echo viability time.

FIG. 7. Measured peak echo wall signalSe vs the second wave launch time
t for two different second excitation voltagesVs. The solid lines show fits
from numerically integrating the collisional theory expression of Eq.s33d.
The dashed and dot-dashed lines haveneff=0.

FIG. 8. Echo data showing the measuredneff vs actual electron-electron
collision rateni. The size of the data symbols represents the strength of the
second wave perturbation.
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VI. LARGE AMPLITUDE EFFECT

The absence of echo recurrence at large second wave
amplitudes may be due to collective plasma effects, includ-
ing particle trapping by the wave potential.17 This trapping
effect causes particles to deviate from ballistic, free-
streaming orbits, and limits phase unmixing.

Figure 9 shows that the peak measured echo signalSe is
linearly proportional to the initial excitation voltageVi, as
predicted by Eq.s33d, until Vi *2 V. As the excitation am-
plitude is increased, nonlinear bouncing oscillations are ob-
served in the wall signal of the initial wave damping, indi-
cating that particles are trapped by the initial wave potential.

Presumably, large second wave excitations also cause
particle trapping by the second wave potential, although sec-
tor geometry prevents direct observation of trapping oscilla-
tions. This particle trapping may be responsible for the ob-
served increase inneff at largeVs in Fig. 8.

VII. SUMMARY

We have observed fluid echoes in a pure electron
plasma, explicitly demonstrating the reversible nature of spa-
tial Landau damping. The phase mixing and unmixing asso-

ciated with wave damping and echo generation are imaged
directly, and the echo mode number, appearance time, and
saturation effect agree with a simple ballistic theory. The
pure electron plasma behaves like an ideal 2D fluid, despite
3D end effects that makevE dependent on an electron’sz
velocity. Different velocity classes separately phase mix and
unmix, surprisingly forming the same echo. At late times the
echo is degraded, and collisional scattering between velocity
classes gives a fundamental limit to the echo lifetime. In
addition, large amplitude effects degrade the echo up to 53

faster than collisions.
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