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An analogy between the nuclear reaction rate in a dense neutral plasma and the energy equipartition
rate in a strongly magnetized non-neutral plasma is discussed. This analogy allows the first detailed
measurements of plasma screening enhancements in the strong screening and pycnonuclear regimes.
In strong magnetic fields and at low temperatures, cyclotron energy, like nuclear energy, is released
only through rare close collisions between charges. The probability of such collisions is enhanced
by plasma screening, just as for nuclear reactions. Rate enhancements of up to 1010 are measured in
simulations of equipartition, and are compared to theories of screened nuclear reactions. © 2008
American Institute of Physics. �DOI: 10.1063/1.2844370�

I. INTRODUCTION

This paper will describe theory and simulations that use
a non-neutral plasma to model aspects of the physics of
nuclear fusion reactions in dense plasmas, such as occur in
degenerate stars, giant planet interiors, and inertially con-
fined laser fusion plasmas. In such plasmas, the Coulomb
coupling parameter ��e2 /aT can approach, or even exceed,
unity. �Here e is the charge of individual nuclei, assumed
identical for simplicity, T is the temperature in energy units,
and a is the Wigner–Seitz radius defined in terms of the
plasma number density n0 as 4�a3n0 /3=1.�

Nuclear reaction rates in dense plasmas are predicted to
be enhanced compared to the rates predicted for reactions at
low densities.1–13 The enhancement is caused by plasma
screening of the repulsive Coulomb potential between nuclei,
which allows them to have closer collisions for a given rela-
tive energy. This plasma screening enhancement of nuclear
reaction rates is predicted to be very large when the plasma
is strongly coupled, and this has important implications for a
range of physical processes in dense plasmas. However, the
twin requirements of high plasma temperature �for measur-
able nuclear reaction rates� and high density �for strong cou-
pling� make laboratory measurements of large plasma
screening enhancements exceptionally difficult. For example,
in a typical white dwarf with n=1030 cm−3 and T=106 K, a
helium plasma is moderately strongly coupled with ��40,
but the plasma pressure �due mostly to the degenerate elec-
trons� is on the order of 1017 atmospheres, well beyond cur-
rent laboratory capabilities.

This paper examines an analogy between screened
nuclear reactions in dense plasmas and energy equipartition
in a strongly coupled and strongly magnetized non-neutral
plasma. The analogy allows the measurement of large plasma
screening enhancements and comparison to theory predic-
tions of the enhancements for the first time.

When a non-neutral plasma is at sufficiently low tem-
perature T and is in a sufficiently strong magnetic field B, the
cyclotron frequency �c=eB /mc can be the highest dynami-

cal frequency, higher even than the frequency v̄ / b̄ associated
with typical collisions. �Here v̄=�T /m is the thermal speed

and b̄=e2 /T is the mean distance of closest approach.� In this
“strongly magnetized” regime where the mean “adiabaticity

parameter” �̄��2�cb̄ / v̄�1, the total cyclotron energy E�

=�i=1
N mv�i

2 /2 �where v�i is the velocity perpendicular to B
of the ith charge� is an adiabatic invariant.14,15 Cyclotron
energy is shared with motion parallel to B only through rare
close collisions that break the adiabatic invariant. Thus, cy-
clotron energy is analogous to the energy stored in nuclei,
which can also be released only through close collisions.

The rate at which cyclotron energy is released, i.e., the
rate � of equipartition of perpendicular temperature T� and
parallel temperature T, is enhanced by plasma screening.
Thus, the rate of equipartition in a strongly magnetized non-
neutral plasma is analogous to the nuclear reaction rate in a
dense neutral plasma. Weak screening, strong screening, and
pycnonuclear regimes can be identified that are analogous to
those for nuclear reactions.

Furthermore, we will see that in the weak and strong
screening regimes, the enhancement factor to the equiparti-
tion rate is identical to the enhancement to the nuclear reac-
tion rate, because both processes are dominated by close col-
lisions that become more likely when plasma screening is
taken into account.

The rate of collisional equipartition in the strongly mag-
netized regime has been previously measured in cryogenic
pure electron plasmas,16 and shows quantitative agreement
with theory.14,15 More recent experiments with cryogenic
pure ion plasmas have also observed this equipartition, and
these experiments have extended into regimes of strong
correlation.17,18 It is possible that these experiments will also
make quantitative comparisons to theory. In this paper, we
focus on the analytic theory and on simulations as “experi-
ments” to corroborate the theory.
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II. THEORY OF EQUIPARTITION IN A STRONGLY
MAGNETIZED NON-NEUTRAL PLASMA

In this section, we present a brief review of the physics
of energy equipartition in a strongly magnetized non-neutral
plasma. We first review the original theory of O’Neil and
Hjorth14 and Glinsky et al.15 that neglects plasma screening,
and we then consider screening effects.

The first step in the calculation of the equipartition rate
is to analyze the collisional dynamics of an isolated pair of
like charges in a strong uniform magnetic field B=Bẑ. The
equations of motion for the two charges are

dv1

dt
=

e2

m

�r1 − r2�
	r1 − r2	3

+ �cv1 � ẑ , �1�

dv2

dt
=

e2

m

�r2 − r1�
	r1 − r2	3

+ �cv2 � ẑ , �2�

where ri and vi are the positions and velocities of charge i.
Adding and subtracting these equations yields equations for
the center of mass velocity V= �v1+v2� /2 and the relative
velocity v=v2−v1,

dV

dt
= �cV � ẑ , �3�

dv

dt
=

e2

�

r

	r	3
+ �cv � ẑ , �4�

where �=m /2 is the reduced mass and r=r2−r1 is the dis-
placement between the charges. Thus, the center of mass
motion does not affect the relative motion, and each can be
considered separately. Furthermore, one can see from Eq. �3�
that V�

2 �t� is an exact constant of the motion. We will now
see that v�

2 �t� is an approximate constant of the motion �an
adiabatic invariant� when the dynamics is strongly magne-
tized. This in turn implies that E�=mv�1

2 /2+mv�2
2 /2 is also

an adiabatic invariant, since E� can also be written as

E� = �v�
2 /2 + 2mV�

2 /2. �5�

By taking the dot product of Eq. �4� with v�, we obtain
the following expression for the rate of change of v�

2 �t�:

d

dt

�v�

2

2
� =

e2v��t� · r�t�
	r	3

. �6�

Thus, the total change is v�
2 over the course of a collision is

	v�
2 =

2e2

�
�

−





dt
v��t� · r�t�

	r	3
. �7�

The value of the integral can be estimated by using approxi-
mate orbits based on guiding-center dynamics,

	v�
2 

2e2

�
v���

−





dt
cos��ct + ��
��2 + z2�t��3/2 , �8�

where �� ,z� is the guiding center approximation for �r� ,z�,
and � is a �constant� phase factor. The relative position in z,
z�t�, is determined by energy conservation of the parallel

motion �neglecting the change in v�
2 �t�, which is assumed

small�,

�

2
ż2�t� +

e2

��2 + z�t�2�1/2 =
�

2
ż2�t = − 
� � E� �

�

2
v�

2. �9�

By suitably scaling distances and times, Eq. �8� can be writ-
ten as

	v�
2 =

2e2

�

v��

b2v�

cos� f��/b,�� , �10�

where b�e2 /E� is the distance of closest approach for a
collision with initial relative parallel energy E� =�v�

2 /2, �
=b�c /v� is the adiabaticity parameter for such a collision,
and

f��̄,�� = �
−



 dt̄ cos��t̄�

��̄2 + z̄2�t̄��3/2
, �11�

where z̄�t� satisfies the scaled version of Eq. �9�,

ż̄2 +
1

��̄2 + z̄2�1/2 = 1. �12�

The function f��̄ ,�� has the following asymptotic form when
��1:

f��̄,�� = h��̄,��e−g����, �13�

where h��̄ ,�� is neither exponentially small nor large in the
region of interest, and g��� is an increasing function of �,
with g�0�=� /2.14 Thus, for large �, 	v�

2 is exponentially
small, taking its largest value at fixed � for head-on colli-
sions with �=0.

Now consider the effect of many such collisions occur-
ring in a uniform plasma of density n, with parallel tempera-
ture T and perpendicular temperature T�. The collisions
eventually bring T� and T into equipartition, according to the
equation

dT�

dt
= ��T − T�� , �14�

where � is the rate of equipartition. O’Neil and Hjorth
showed that � can be written as an integral over a Maxwell-
ian distribution of relative parallel energies E� =�v�

2 /2 and a
differential rate �E�� that depends quadratically on 	v�

2 ,

�0 =� dE�

T
e−E�/T�E�� , �15�

where

�E�� =
n

16�T�
2

�2

�2�T/��1/2 � d2�d2v��	v�
2 �2e−�v�

2 /2T�

=
�

2

ne4

�E�
�2�T/�

�
0




d�̄�̄3f2��̄,�� . �16�

In Eq. �15�, the notation �0 is used to indicate that
screening effects are neglected. The function �E�� is rapidly
increasing as E� increases, due to the exponential in Eq. �13�,
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�E�� =
�

2

ne4

�E�
�2�T/�

s���e−��, �17�

where s��� is a relatively slowly varying function compared
to the exponential.

The combination of the decreasing Maxwellian and the
exponentially increasing function  in Eq. �15� leads to a
sharp peak in the integrand, at an energy EG determined by

� �

�E�

e−E�/T�−���
E�=EG

= 0. �18�

This energy, analogous to the Gamow energy in nuclear re-
actions, is found from Eq. �18� to be

EG = 
 3�

4�2
�̄�2/5

T , �19�

where

�̄ � �2b̄�c/v̄ = 1070�B/1 T�
 m

me
�−1/2
 T

�K
�−3/2

�20�

is the mean adiabaticity parameter, me is the electron mass,

v̄=�T /m, and b̄=e2 /T. For large �̄, EG�T, indicating that
superthermal collisions dominate the equipartition rate.

By using the method of steepest descents, the area under
the Gamow peak in the integral of Eq. �15� can be deter-
mined, yielding

�0 = 4�2nv̄b̄2I��̄� , �21�

where

I��̄� =
�

4

s��G�
�10EG/T

e−5EG/3T �22�

and �G=��EG�= �2 /3��EG /T. The function I��̄� has been
carefully evaluated using both numerical and analytical
methods,15 and the resulting rate � is shown in Fig. 1. Also
shown in the figure are experimental measurements of the
equipartition rate, measured in a pure electron plasma over a
range of temperatures.16 At low temperature where �̄�1, the
predicted exponential suppression of � is evident.

III. THE WEAK SCREENING REGIME

The previous theory for � neglected the effects of plasma
screening on the equipartition rate: A bare Coulomb interac-
tion was employed when calculating 	v�

2 . To account for the
effect of plasma screening, we will follow the argument of
Salpeter as applied to nuclear reaction rates in astrophysical
conditions, focusing first on the case in which the screening
is weak, i.e., where ��1. Salpeter’s argument works here
because, just as for nuclear reactions, equipartition is domi-
nated by superthermal collisions with energy EG for which
the distance of closest approach e2 /EG is much smaller than
a mean interparticle spacing a. Using Eq. �19� for EG implies
that e2 /EG�a when

�̄2/5 � � , �23�

which is valid when the plasma is strongly magnetized and
��1. For such close collisions, evaluation of 	v�

2 using an

unscreened two-body Coulomb interaction via Eq. �8� is a
good approximation.

However, in the presence of screening, the orbital energy
equation, Eq. �9�, must be modified. Following Salpeter, we
replace it by

�

2
ż2 + ����2 + z2� = E� , �24�

where for � we use a Debye-screened interaction,

��r� =
e2

r
e−r/�D, �25�

where �D
2 �T /4�me2. We may further simplify the expres-

sion for ż�t� by noting that the contribution of z�t� to the orbit
integral in Eq. �24� is dominated by the close approach of
z�t� to the origin, where 	z	��D. During the close collision,
we can Taylor expand ��r� in Eq. �24�, obtaining

�

2
ż2 +

e2

��2 + z2
= E� +

e2

�D
. �26�

That is, a colliding pair starting at infinite separation
with relative kinetic energy E� picks up extra kinetic energy
e2 /�D compared to what it has for no screening, and suffers
a stronger collision as a result. This extra energy comes from
the attractive potential of the Debye shielding cloud. How-
ever, the close collisional dynamics itself is still unscreened.
Therefore, we may still employ Eq. �15�, the only difference
being that the relative kinetic energy is shifted by e2 /�D

according to Eq. �26�,

� = �
0


 dE�

T
e−E�/T�E� + e2/�D� , �27�

where this expression for � is valid in the weak-screening
regime ��1. Furthermore, since the integrand is dominated
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FIG. 1. Adapted from Refs. 15 and 16. Equipartition rate vs temperature
�lower x axis� and �̄ �upper x axis� for a pure electron plasma with B
=6.13 T, n=8�108 cm−3. Dots: Experimental results. Line: Eq. �21�.
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by the Gamow peak, we can make a change of variables
from E� to E� +e2 /�D without worrying about the effect of
this on the integration limits. This variable change yields

� = ee2/�DT�0, � � 1, �28�

where �0 is the unscreened result given by Eq. �21�. The
multiplicative factor f =ee2/�DT, valid only for ��1, en-
hances the unshielded equipartition rate �0, and is exactly the
same as the enhancement factor appearing in the theory of
nuclear reactions in the weak-screening regime.2

Equation �28� implies that Debye shielding enhances the
equipartition �or nuclear reaction� rate. This is opposite to
one’s usual intuition for binary collisions in a weakly
coupled plasma, for which the Debye length cuts off the
range of the interaction, so that Debye shielding leads to a
�logarithmic� reduction in the collision rate. However, almost
all of these collisions play no role in the processes consid-
ered here, as their impact parameters are too large. The im-
portant collisions here are close collisions with impact pa-
rameters much smaller than �D. As we have seen, the
probability of such collisions is enhanced rather than de-
creased by Debye shielding.

This analysis, while straightforward, has several appar-
ent weaknesses. For instance, it is only valid in the weak
screening regime where f is nearly unity. Also, the use of an
equilibrium Debye-screening potential would not at first
glance appear to be a correct description of collisions be-
tween superthermal particles. Some authors have attempted
to rectify this apparent flaw by employing “dynamical
screening” theories to account for velocity dependence of the
screening potential, and have obtained quite different results
for the enhancement factor f as a result.19 However, more
careful analysis shows that the use of equilibrium screening
potentials is correct. Nevertheless, it would be useful if the
enhancement could be measured experimentally under con-
trolled laboratory conditions.

IV. THE STRONG SCREENING REGIME

When the plasma is strongly coupled with ��1, the
previous theory based on Debye screening must be modified.
However, when

1 � � � �̄2/5, �29�

a theory based on screened two-body collisions is still justi-
fied because, according to Eq. �19�, e2 /EG�a, so the most
important collisions are close two-body collisions with sur-
rounding particles relatively distant. We can estimate the
screening factor f in this strong-screening regime by noting
that, when ��1, the Debye screening cloud around the re-
acting pair is replaced by a correlation hole with radius of
order a. Particles moving toward the center of the hole pick
up extra kinetic energy of order e2 /a due to the hole’s attrac-
tive potential. We can estimate this effect by replacing Eq.
�15� by

� � �
0


 dE�

T
e−E�/T�E� + e2/a� , �30�

where �E�� is the same differential rate used in unscreened
collisions. Changing integration variables to E� +e2 /a then
immediately leads to

� � e��0. �31�

Therefore in the strong screening regime the rate enhance-
ment factor is roughly f �e�, which is much larger than
unity if ��1. So, equipartition and nuclear fusion are pre-
dicted to occur at greatly enhanced rates when the plasma is
in the strong screening regime.

A more rigorous derivation of the enhancement factor
�Ref. 20� using a Green–Kubo expression for the equiparti-
tion rate proves that in the weak and strong screening re-
gimes,

� = f����0, �32�

and provides an expression for f in terms of partition func-
tions,

f��� = VZUN−1
�n�/ZUN

�0� , �33�

where ZUN
�n� is the configurational portion of the canonical

partition function for a system of N charges, n of which have
charge 2e. This expression is identical to one derived previ-
ously for nuclear reactions in the strong and weak screening
regimes.9 For ��1 it matches the weak screening result, Eq.
�28�. For ��1 the expression has been evaluated by differ-
ent authors using Monte Carlo methods.7,8,10–13 Two such
expressions are given below, valid for ��1, taken from
Refs. 10 and 7, respectively,

ln f��� = 1.132� − 0.0094� ln � , �34�

ln f��� = 1.056299� + 1.039957�0.323064

− 0.545823 ln � − 1.1323. �35�

At large �, ln f is roughly linear in �, as expected from the
estimate of Eq. �31�.

V. SIMULATIONS

In order to test whether strong screening effects are ob-
servable in measurements of energy equipartition, we have
performed molecular-dynamics simulations of the equiparti-
tion of a Penning trap plasma for N identical charges, where
N=200 or 512.20 For the N=200 simulations, the plasma is a
prolate spheroid in a quadratic trap potential �Trap of the
form

�Trap�r� = 1
2m�z

2�z2 + ��x2 + y2�� , �36�

where the trap parameter �=2.41. Here �z is the single-
particle axial bounce frequency. In the simulations, time is
scaled to �z and length to a0��e2 /m�z

2�1/3, which is roughly
an interparticle spacing for a spherical plasma. For the N
=512 simulations, �=1 and the plasma is spherical. For sim-
plicity, trap electrodes are assumed to be far from the plasma,
so that image charges can be neglected. In such a plasma, the

055705-4 Daniel H. E. Dubin Phys. Plasmas 15, 055705 �2008�



plasma frequency �p��4�e2n /m is related to �z and � via
the relation21

�p
2 = �2� + 1��z

2, �37�

which implies that the unscreened equipartition rate, Eq.
�21�, is

�0 =
�2

�
�z

�2� + 1�

T̂3/2
I��̄� , �38�

and the coupling parameter is

� = 
2� + 1

3
�1/3� T̂ . �39�

Here T̂=T /m�z
2a0

2 is the temperature in simulation units.
Also, �̄ is

�̄ = �2
�c

�z
T̂−3/2. �40�

For the first simulation with N=200 and �=2.41, the
cyclotron frequency was �c=30�z, which implies �c /�p

=12.4, �̄=42.4 / T̂3/2, and �=1.25 / T̂. A fourth-order Runge–
Kutta method was used with a fixed time step size of 6
�10−4�z

−1. Over the course of a typical run of 107 time steps,
energy was conserved to within one part in 106. As a test of
accuracy, the time step size was reduced by a factor of 2, and
while this led to a different time evolution for charges in the
system �as one would expect for a chaotic system�, the gross
evolution �neglecting fluctuations� of parallel and perpen-
dicular temperatures was unaffected. These temperatures
were measured in the usual manner, as

T�t� = �
i=1

N

mv�i
2 �t� �41�

and

T��t� = �
i=1

N

mv�i
2 �t�/2. �42�

The initial condition was chosen so that T��T �see Fig. 2�.
Initially, there was no measurable equipartition between T�

and T.
The parallel temperature was then instantaneously in-

creased by multiplying all parallel velocities by a factor of 3.
Again, no equipartition was observed to occur over the
course of a 107 time step run. Parallel velocities were then

multiplied by a factor of 2, so that T̂�0.2 ���6 and �̄
�470�, and this eventually led to equipartition �Fig. 2�. The
observed equipartition rate �sim was then measured using Eq.
�14�,

�sim =
dT�/dt

T − T�

. �43�

Since both T� and T fluctuate in these finite N simulations,
evaluation of dT� /dt must be performed carefully in order to
minimize artifacts caused by the fluctuations. Various meth-
ods were tried, such as fitting an entire T��t� run to different
smooth analytic functions. In most cases, however, the best

results were obtained by fitting T� to line segments over
short time intervals of roughly 20�p

−1.
This algorithm yielded the �sim vs T curve given by the

red dots in Fig. 3. For this run we also fit the initial equipar-
tition to a single straight line �the dashed line in Fig. 2�,
yielding the rate given by the thin red horizontal line in Fig.
3. Also in this figure we plot the predicted unshielded rate �0

of Eq. �38� and the rate � with shielding from Eq. �32�, using
Eq. �35� for f���. The measured rate is substantially larger
than the unshielded rate �0 except at large T, where ��1.
Moreover, �sim does track the shielded prediction for �
within a factor of 2–3.

While the agreement between theory and simulation is
gratifying, it is also rather surprising when looked at from
the following perspective. When equipartition began in the

simulation, at T̂�0.2 and �̄�470, the Gamow energy was
EG�14T according to Eq. �19�. This is so far out on the tail
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FIG. 2. �Color online� Temperature vs time for the simulation shown by the
red lines in Fig. 3. The dashed line is a linear fit to T��t� discussed in the
text.
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FIG. 3. �Color� Equipartition rate vs scaled temperature for several simula-
tions, compared to theory with �dashed� and without �solid� screening. The
enhancement factor is modeled by Eq. �35�.
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of the Maxwellian that, for N=200 particles, it takes
ln�2� / �Ne−EG/T�=6000 realizations of the particle velocities
for there to be a 50% chance of at least one particle having
energy EG or larger. Estimating the velocity correlation time
as roughly �p

−1 in this strongly coupled plasma, we see that it
is not guaranteed that the tail of the Maxwellian will be
populated beyond EG over the time of �5000�p

−1 that equi-
partition initially occurs.

Put another way, it is not clear that, for such unlikely
events as particles having energy EG, a Maxwellian velocity
distribution is the correct description. Before equipartition
begins, Fig. 4 shows that both parallel and perpendicular
velocity distributions are Maxwellian to an excellent ap-
proximation, but the parallel distribution cannot be measured
out to E=EG. On the other hand, when equipartition is pro-

ceeding in earnest, i.e., at T̂�0.4, then �̄ and EG are smaller,
�̄�170 and EG /T�9.5. Now the number of uncorrelated
realizations required for at least one particle to have E�EG

with 50% probability is less than 50, so the velocity distri-
bution should be populated up to and even somewhat beyond
EG during this portion of the evolution. Under these condi-
tions, the theory has a better chance of success.

The best test of the theory in these circumstances is to
simply repeat the simulations for different initial conditions.
Several simulations were performed for the same values of
�, N, and �c /�z but with T��T initially. An example of one
such run is shown in Fig. 5. Now T decreases as the tem-
peratures equilibrate, which reduces the equipartition rate so
that full equipartition does not occur. This is actually useful
because the slower variation in T and T� allows longer av-
eraging and hence a better signal-to-noise ratio when deter-
mining dT� /dt. The measured rates from three such runs
�blue, green, and purple curves in Fig. 3� still agree with
theory including strong screening effects, within the mea-
surement error.

As a further test, two more runs were performed with
N=512, �=1, and �c /�z=10. For these parameters, �̄

=14.1 / T̂3/2 and �=1 / T̂. The measured and predicted rates
are displayed in Fig. 6, and again there is agreement with

theory, within the errors. Note, however, that the predicted

rate displays an unphysical increase as T̂ decreases. This is
because, for these parameters, inequality �23� is not satisfied

for T̂�0.17.
In this low-temperature regime, the distance of closest

approach for particles at the Gamow energy is larger than an
interparticle spacing a, so the strong screening theory based
on close two-body collisions does not apply. The many-body
collision regime ���2/5�1 for which e2 /EG�a is referred
to here as the “pycnonuclear regime,” in analogy to the high-
density regime considered in the theory of screened nuclear
reactions.4,6,8,12,13 This regime will be considered in more
detail in Sec. VI.

An “experimental” measurement of the rate enhance-
ment function f��� can be extracted from the preceding mea-
surements of �sim�T� by simply taking f =�sim /�0 according
to Eq. �32�. This ratio is plotted in Fig. 7 for each simulation,
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and compared to Eqs. �34� and �35�. The measured enhance-
ment factor is in reasonable agreement with the theories, and
the simulations cannot distinguish between them, except pos-
sibly for the largest � run. However, this large � run is on the
edge of the pycnonuclear regime, which probably affects the
results. More simulations with higher accuracy are needed to
distinguish between the theories for f���. As far as we know,
this is the first time that theories for the screening enhance-
ment factor have been tested in the strong screening regime.

VI. THE PYCNONUCLEAR REGIME

In the pycnonuclear regime, the temperature is suffi-
ciently low so that

� � �̄2/5 � 1. �44�

The Gamow peak in the equipartition rate occurs for colli-
sions with impact parameters greater than an interparticle
spacing, i.e., e2 /EG�a. In this regime, the previous strong-
shielding analysis based on binary collisions fails, as can be
seen by the unphysical increase in � as temperature decreases
in Fig. 6.

We have carried out simulations of equipartition in the
pycnonuclear regime. The results of one such simulation are
shown in Fig. 8. For this simulation, N=200, �=2.41, and

�c /�z=10. This implies �=1.25 / T̂, �c /�p=4.14, and �̄

=14.1 / T̂3/2. For T̂�0.12, the simulation is in the strong-
shielding regime and the measured equipartition rate ap-

proaches Eq. �32�, as expected. For T̂�0.12, the simulation
is in the pycnonuclear regime, and the measured rate di-
verges from the strong-shielding theory. At the lowest tem-
peratures, the measured equipartition rate is over 1010 times
larger than the uncorrelated rate �0, and 104 times smaller
than the strong-shielding prediction.

Currently, no theory explains these results in detail. Pre-
vious theories of the pycnonuclear regime, developed for
nuclear reactions, necessarily involve quantum effects, and
so do not apply here. For nonresonant nuclear reactions, the
Gamow energy EN is on the order of EN�T�b /r*�1/3, where

r*=� /me2 is the nuclear Bohr radius. The pycnonuclear re-
gime e2 /EN�a can then be expressed as ��p�T, where �p

is the ion plasma frequency.12 Thus, for nuclear reactions the
pycnonuclear regime requires that lattice vibrations are
quantum-mechanical. In our simulations, however, equiparti-
tion occurs in a classical pycnonuclear regime for which
��p�T is assumed. This classical pycnonuclear regime has
no direct analogue in the theory of screened nuclear reac-
tions. Nevertheless, understanding the physics behind the
large observed rate enhancement in our classical pycno-
nuclear simulations may provide some insights into the
quantum pycnonuclear processes in nuclear reactions.

One possible explanation for the observed rate involves
collective phonon “collisions.” When a description of inter-
actions based on binary collisions fails, it may be more ap-
propriate to describe the interactions as collective processes
involving the emission and absorption of phonons. In a
strongly magnetized non-neutral plasma, the phonons fall
into three frequency regimes: Cyclotron phonons with fre-
quencies of order �c, plasma phonons with frequencies of
order �p, and E�B drift phonons with frequencies of order
�p

2 /�c.
22 In the collective picture of equipartition, breaking

the adiabatic invariant involves the creation or annihilation
of a cyclotron phonon, whose energy is then distributed
among several lower-frequency phonons. The most likely
process is one for which the smallest number of lower-
frequency phonons are emitted, implying that E�B drift
phonons are not involved, only plasma and cyclotron
phonons. Energy conservation then implies that M plasma
phonons are created when a cyclotron phonon is annihilated,
where M is roughly given by

�c = M�p. �45�

The rate for such a process can be estimated from the
exact Green–Kubo expression for the equipartition rate,23
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� =
1

2NT�T
�

−





�Ė��t�Ė��0��dt , �46�

where Ė��t� is the rate of change of total perpendicular ki-

netic energy. A rough estimate of Ė� due to collective mo-
tions is

Ė� � Ne2 v��t� · a

	a2 + �a + 	z�2	3/2 , �47�

where a is the displacement between nearest neighbors in the
strongly coupled plasma, v��t� is the perpendicular velocity
associated with cyclotron motion, and 	z�t� is the small par-
allel displacement associated with plasma phonons. The time
integral in Eq. �46� is then dominated by resonant terms
where 1 / 	a2+ �a+	z�t��2	3/2 has time-variation of the same
frequency scale as �c. Since 	z�t� is small and varies rela-
tively slowly, at frequency �p, we can estimate this effect by
Taylor expansion of 1 / 	a2+ �a+	z�t��2	3/2 up to order M,
where resonance occurs,

Ė� �
�M/2�!!
�M/2�!

Ne2v��t� · a

a3 
	z�t�
a

�M

. �48�

An average over harmonic lattice vibrations, for which
��	z /a�M���M /2�!� �T /m�p

2�M/2, then yields

� �
�p

2

�c�
e−M ln���/M�, �49�

where � is a constant of order unity. This crude estimate for
the equipartition rate is exponentially small since the ratio of
cyclotron to plasma frequencies M =�c /�p is greater than
unity. Equation �49� is plotted in Fig. 8, taking �=1. It is a
surprisingly good fit to the data, indicating that a more care-

ful analysis of this collective picture of equipartition is
warranted.
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