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Magnetically bound states of electronic and positronic hydrogen ions:
The case of zero orbital angular momentum
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This paper considers the binding of an electron or a positron to a ground-state hydrogen atom in a uniform
magnetic fieldB, concentrating on states with zero orbital angular momeritulinis shown that the affinity of
a positron to a hydrogen atom is 2t#&%/a, wherea is the Bohr radiush=B/B,, B;=2.3505<x10° T, b
<1 is assumed, and the proton is assumed to have infinite mass. With these assumptions it is also shown that
no J=0 singlet or triplet excited state of Hexists. These results are compared to a previous estimate of the
electron affinity ofJ=0 magnetically bound iong/. G. Bezchastnov, P. Schmelcher, and L. S. Cederbaum,
Phys. Rev. A61, 052152(2000].
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I. INTRODUCTION scaling. However, in later work it was conjectured that the

i i L estimate might not apply to Hat all[6]; and we will see that
This paper discusses the effect of weak magnetic fields ofjis is in fact the case.

the binding of a positron or electron to a neutral ground-state | this paper we use an approach that combines a varia-

hydrogen atom. Here, weak fields refer to fields such khat (o, method with perturbation theory to calculate the elec-
=a’/rg<1, wherery=\ci/eBs the electron quantum Lar- 4o ang positron affinities to hydrogen in the infinite nuclear
mor radius anda=#2/mé is the Bohr radius. Since can  nass approximation as a perturbation expansidy includ-
also be written adh=B/B, where By=2.3505<10° T, the ing exchange effects, ensuring that the wave function has no
weak-field regime corresponds to magnetic fields much Ieséverlap with the ground state, and making no adiabatic ap-
than _16 T. i i o . proximations. We show that there are #©0 excited states

It is well known that in the field-free limit, only a single ¢t 4- in the weak-field regimé< 1, assuming infinite pro-
bound state of H exists. Neglecting relativistic effects and {5y mass. We also show that a positronitish with J=0 is
assuming infinite nuclear mass, the affinity of this state hagy,nd in a weak magnetic field, with affinity

been calculated to he2]
Ep,=2.2D%a, 2

again assuming infinite proton mass. The error in the numeri-
cal coefficient is roughly 4%, and the affinity neglects terms
of O(b%). Effects associated with a moving prottre., finite
proton maspgare discussed in Sec. lll. The existence of a
ositronic bound state that has substantial overlap with the
lectron wave function has implications for the annihilation
of positrons on hydrogen, which we discuss in Sec. Ill. The

. s : .
These states are bound by the weak short-range attracti scaling of &, with b agrees with the estimate of Rét),

of the outer charge to the atom, caused by the induced dipog cause the induced-dipole binding considered in Rigfis
moment of the atom in the field of the outer charge. The ssentially the same for positrons and electrons, and for pos-

Do : ) . itrons the complicating effects of exchange interactions and
magnetic field provides extra confinement in the plane per- p 9 g

pendicular to the field, resulting in bound states that Wouldpverlap with & lower-energy state do not occur.
not otherwise exist. It was argued in Rgf] that the most
deeply bound excited state of s one withJ=0. The elec- ||, VARIATIONAL CALCULATION OF MAGNETICALLY
tron affinity for thisJ=0 excited state was estimated B&s BOUND STATES
=6.31b%?/a [Eq. (43) of Ref. [1]]. We will show that this _ _
result does not apply to H but does qualitatively describe ~ Schrédinger’s equation for a hydrogen atom and an extra
positronic H. The calculation of Ref{1] used an adiabatic €lectron or positron in a uniform magnetic fie is
assumption for the dynamics of the two electrons, neglected . 1 1 1 1 1 1

H — — 2 2 — 20 2 2
exchange effects, and neglected the overlap of the excitedEy, =H, = [— —Vi—-ZV;—-—F —+—+ —b(p7+p3)
state wave function with the Hground state. However, as 2 2 . rz rp 8
pointed out in Ref[1], these are not good approximations ib( J 9 )}w

e

E,=0.027 7510..€"a. (1)

This state has zero orbital angular momentyrand zero net
spin (i.e., it is a singlet stajg2]. Furthermore a positron is
not bound to hydrogen at alB]. However, it has recently
been shown that magnetic fields enable additional, muc
more weakly bound states of Hi1,4], and that positrons can
also be magnetically bound to form positronic Fb].

for the J=0 state of H. In Ref.[1] it was stated that these “2\9a, t E 3
effects would simply lead to a different numerical coefficient 1 2

in the affinity of H but the same overall magnetic field where(r4,r,) is the wave function, the subscript 1 denotes
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the hydrogenic electron, and the subscript 2 denotes theized) product of this function ang(p,,z,) provides an ap-
weakly bound outer charge, the upper and lower signs cofproximate two-particle wave function representing a hydro-
respond to either an electron or positron at positigr{p, ¢) gen atom and a magnetically bound electron or positron.
are polar coordinates, is the spherical radius,,=|r;—r|, The term Ay is a correction to this approximate wave
distances are measured in units of the Bohr radiusand function. By solving the variational problem fadry, we will
energies are measured in unitsedfa=27.2 eV. The central see that\y is short ranged compared 40 and is, to lowest
proton is assumed to be fixed at the origin and relativistioorder inb, independent of the magnetic field. For the case of
and spin effects are neglected. the singlet statupper sign in Eq(6)], the variation must be
Rather than solving E(q3) directly to find magnetically performed under the constraint thahas no overlap with the
induced bound states with=0, we apply the Rayleigh-Ritz ground state of H
variational method,

A. Positronic H* ion

_ (Hw) @ _ _ . -

= d We f|r§t consider the' case of a positron. Substituting Eq.
(7) for ¢ in Eq. (4), we first evaluate | 4):

whered(r,,r»,) is a variational wave function, with equality 5 )

in Eqg. (4) when = y,.. By employing the assumption that the N (e Xo

outer charge in the ion is weakly bound, with a wave func- (W =1+ m € x(p22)| AU ) + ’7T<A¢|Aw>.

tion that varies slowly on the atomic scale, we are able to (11)

Taylor expand the inner products in Ed) in powers ofb,

and so obtain variational equations for the wave functionWe now apply the following approximation: sindey ap-

good to ordemb?. Details of the calculation differ depending proaches zero on the atomic scale, gni slowly varying

on whether the outer charge is a positron or an electron. Wen this scalex(p,,z,) may be taken to bg(0,0) in the inner

E

employ the following variational functions faf: product, yielding
_ Xo_ 2X6, - X 3
Plry,12) = do(ra,rp) + ,,Z—Atlf(rl,rz) (electron, (5) () =1+ 2T Ayg) + Z(AYAY) + O(b). (12)
N2m T T
where The error in this approximation is dd(b®), since on the

1 atomic scaley(p,z) varies from x(0,0) by a fractional
Po(r 1,7 2) = =[€"x(p2, 2) € "2x(p1,21)], (6)  amount of ordeb, and x(0,0) is already ofO(b). Next, we
V2 evaluate(y{H|#). Again using the fact thay varies slowly

and on the atomic scale, the result is
1 Xo , A 1 b b 1 2
11,1 2) = ——€"x(py, ) + T=AY(r1,r,)  (positron, e A _Xo
1r2) = € ) + AL WAl =2+ 2+ = S @)lf(2) -
7 2
o | -~ fem|(2-2)). 2
whereAy is a function whose form will be determined pres- ro Io T
ently by the variational method is the ground-state eigen- 1 b b2 1f" 1
function for an electron or positron in a magnetic field, x{ g1 <_ el 11(z) i
5 2 2 8 2f0 rp
2
x(p,2) =\ - (2, (8) 1 2 .
2m += )| a0) + 22agiHlap + 007, (19
aa
x0=x(0,0), and f(2) is a function to be determined by the 2
variational calculation, chosen so thit f2dz=1. where theO(b% magnitude of the error follpws from_the
We will find that same argument as for E€L2) . The first term in Eq(13) is
T ki the ground-state energy of hydrogen, and the second term is
f(2) = vk € (9)  the ground-state energy of a free positron in a magnetic field.

The third term is the well-known magnetic correction to the
eground—state energy of hydrogen. The other terms arise from

very weak binding of the outer charge. An identical form wasthe inte(;action ofbth((aj.posiltron alnd th; atom. The second in-
also found for eigenfunctions witd|> 1 [5]. For future ref- N€r product can be directly evaluated as

erence, note that the fact that E®) along with k=O(b) < o, (i 1>> L2 "
fp T2 .

implies that
_XO =0(b). (10 This term is the electrostatic energy of the hydrogen atom in
The functione /7 is the ground-state wave function a background charge of uniform density, which approximates
for an isolated hydrogen atom. THeppropriately symme- the outer charge density on the atomic scale.

wherek>0 is of orderb. This wave function is highly elon-
gated in thez direction due to quantum uncertainty and th
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We now further approximate Eq13), keeping terms in 1 b b K
the third inner product only t®(b?). Here we apply Eq<9) E=-St3t 7% (20)
and(10). The result is
The first three terms are the energy of a ground-state hydro-

- 1 b b 1 ) gen atom and a free positron in a magnetic field, up to order
(YiH| ) = - PR §<f”(22)|f(22)> +27xg b? (neglecting spin energy Thus, the last term in Eq20)
provides the affinityg, of the positron to the hydrogen atom:
a 2 r12 I‘2 'J/ Eb = E . (21)

2
+X—°<Az//|I:|0|Az,/;>+O(b3) (15) Note that Eq.(19) predicts thatk is of O(b), so Eq.(21)
77 implies that the binding energy is of ordbf, and we are
R therefore justified in droppin@(b®) terms in Eq.(17) .
whereH, is the Hamiltonian evaluated &=0, given by Next, we vary Eq.(17) with respect toAy, holding f
fixed. The result is
1 1 1
r1+ r, rip (16 <H0+%)Aw=e"1(i—l>. (22

ro Iz
Substituting Eqs(12) and (15) into Eqg. (4) and Taylor
expanding inb, we obtain, to ordeb?,

~ 1
Ho==5(Vi+ V)~

Thus, Ay is independent of magnetic field, as stated previ-
ously. However, Eq(22) neglects theO(b% corrections to

1 b B2 1 )2 11 Eq.(17) . Such corrections would add sm@l(b) corrections
E<-=+o+0 - (f[fy+ ﬁ<e—r1 <_ 4 —) A¢> to Eq. (22), and hence ta\y. These corrections add(b®)
2 2 4 2 T ro r2 terms to the affinity, and so are neglected.

X2 . We solve EQq.(22) for Ay(rq,r,) numerically using the
+ _<A¢|(Ho+ E)‘A@ +2mx5+ O(b®). (17)  Galerkin method. First, we note that symmetry implies that
& Eq. (22) has solutions of the form\y=Ay(r,,r,,r1,). Sec-
We next minimizeE by varying separately with respect to ond, we transform to perimetric coordinaf®s (u,v,w) de-
f andAy. Noting thaty, f(0) according to Eq(8), a varia-  fined by

tion with r t tdf yiel
0 espect td yields U= (rp+ Tip= e,

- %f” - kd(z,)f(0) = M(zp), (18) v=(r1+r15=r))e, (23)

. . . ) w=2(ry+r,—ry)e,
where\ is the Lagrange multiplier associated with the con-

straint thatf”,f2dz=1, and where wheree is a free parameter of the coordinate system. In Ref.
[2] & was chosen as=11/2+E4=0.726, but here we will

b 1 1 find that e ~0.2—0.3 provides the most rapidly convergent
k=- 22 2\ e|| - ot results forAy.
1272 These perimetric coordinates are independent, each run-

~ 1 ning from 0 toce. Furthermore, it can be shown tH&]
+{ Ay Ho+ > Ay) | -b. (19)

_ , _ . _ d®r,d%, = ie(u +v)(2u+w)(2v + w)du b dw.
Equation (18) is an eigenvalue problem with a single 32

bound state forf, provided thatk>0. The solution forf is (24)
given by Eq.(9), and the eigenvalue is=-k?/2. In other

words, thez dependence of the wave function for the outerWe write Ag(u,v,w) as a sum over basis functions with
charge is approximately that of a particle bound to a(M+1)3 terms:

S-function potential, because the induced dipole attraction M M M
that provides the binding is short ranged dnearies slowly Ag=2 D > agmdtmn) (25)
on this scale. £=0 m=0 n=0 o

Note that Eq.(19) implies k=-b if we take A¢=0. This
negative value ok arises from the electrostatic repulsion of Where
the positron from the unperturbed hydrogen atom charge lemn) = e @02 ()L (0)Ly(W) (26)
cloud, as described by El4) . Thus, binding is possible ) ) )
only for Ags# 0, describing correlations between the electronand whereL ,(u) is a Laguerre polynomial, defined by

and positror{i.e., polarization of the atom in the electric field ¢l (- W)
of the positron. Lo(u) =2, ( )— (27)
Substituting the solution fof into Eq. (17) yields ko \K/  K!
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FIG. 1. k/b for different values ofM and e, evaluated for al
=0 positronic H ion via Eq.(29) , and for the triplet state of Hvia
Eq. (51).

Taking moments of Eq(22) with respect to theséM

+1)% basis functions yields a set of linear equations for the

aymnS:

M
> (emniHo + 316, M Magmy

£mn

—(2v+w)/4e _
€ w-2
( v) > . (28)

=\ €mn2
< e 2u W
The matrix elements appearing in E&8) can be evaluated
analytically using Eqgs(24), (26), and(27), and the proper-
ties of Laguerre polynomial®]. The form of the elements is
too complex to merit display here, butvV&THEMATICA mod-

PHYSICAL REVIEW A 71, 022504(2009

TABLE I. Solution for positronic H affinity E, versusM.

M Ko/ D & for K=Knmax Ey/b?

7 1.91012 0.37615 1.8243
8 1.94245 0.34697 1.8866
9 1.96611 0.32303 1.9328
10 1.98574 0.30216 1.9716
11 2.00059 0.28332 2.0012
12 2.01342 0.26719 2.0269
13 2.02337 0.25303 2.0470
14 2.03219 0.24157 2.0649
15 2.03924 0.22949 2.0792
16 2.04553 0.22035 2.0921
17 2.05070 0.21071 2.1027
18 2.05544 0.20099 2.1124
% 2.11+0.04 2.23+0.08

Kmad M) = Kpa(©) = alMP

(see Fig. 2 yields kya{©)/b=2.11+0.04,a=(3.41+0.6b,
and8=1.44+0.1.

The positron affinity to ground-state hydrogen is therefore
found to beE,=(2.23+0.08b?, which is the result quoted in

Eq. (2).

B. Electron affinity

We now repeat the previous calculation, applying it to the
case where the outer charge is an electron. The calculation
depends on whether the two-electron system has spin(aero
singley or spin 1(a tripley. We will find that forb<<1, no

ule that evaluates the elements is available upon request. J=0 excited state exists in either case.

Once we obtair\ ¢ by solving Eqs(28) for a given value
of &, we then evaluat& using Eq.(19). Noting thatk is in
fact positive as required by E@9), we obtain the positron

For the triplet state, we employ E¢b) for ¢, taking the
lower sign in Eq.(6). For the singlet state, we take the upper
sign, but we must also ensure thatis orthogonal to the

affinity via Eq.(21) . In so doing, we note that the expression ground state of H - This is most easily assured by choos-

for k can be simplified by using Eq22) in Eq. (19) :

k:L<e"1 (i—l) A¢>—b
212 ro I
b M

£mn

(w=2v) b
(u+v)2u+w) '
(29)

where in the second equality we have used E@8) and
(25).

Values ofk/b as a function ofe are plotted in Fig. 1 for
different values ofM. For eachM value, a maximumk
value, k., OCcuUrs at a particular value @f providing the
best estimate foE, at thatM value. The values of,,, are
provided in Table | versuM, along with the values of at

which they occur, and the positron affinity that results from

Eq. (21).
A fit to the data of the form

ing Ay in Eq. (5) as

25

positronic H *

3
3

14
—1

triplet H™

8 10 12 14 16 18 20
M

FIG. 2. kyay/b versusM, taken from Tables | and Il. Lines are

the fits described in the text.
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V2 and replacd:l by I:|0 in all but the first term, where
A‘//: - <'70g| ‘/’0>‘/’g + A’/’s (30)
"o Fo=- (V2472 - =14+ L (38)
whereA(rq,r,) is a symmetric function under interchange 07 optf17 T2 ry r, I

of r, andr,, chosen so that -
is the Hamiltonian evaluated &=0. Then applyingHyi,

(Addibg = 0. (32) =—(%+Eg)dfg, along with Eq.(31), yields

Then Eq.(5) can be written, for the singlet state, as 2
' W) = Wolfil o) + 22 (B + 3)cuglie™s + 722
Y(r1,T2) = ol 1,7 2) = (ol hg) g1 1,7 ) + EAlﬁs(rlarz)- A ™ A
- + 2AA gl (€71 + €7) + (AgelFgl Ay | + O(b9).

(39
Proceeding with the evaluation of the inner products re- )
quired in the Rayleigh-Ritz method, E@l), we use Eqs(5)  'he second term in the square brackets can be reduced to

and(6) to obtain

(AgdHol(e™2+ &)
X(roxa) | -
=12\ ———|eth 1
i < 2n |° =Sy e)
Xo T T2 X—S 1 1 1 1
+ 222 (Ax(r)E £ ()T + 22 (AgAY). sy {e_rl(___> +e_r2<___”
° ro Iz fa 11 .
(33 (40)
We again apply the approximation thataries slowly on the The first term in Eq.39) can also be evaluated ©(b?)

atomic scale, replacing it by, in the inner products. For the

singlet case we requirgp| #;,), which can be approximated yielding
2
- Pl =-3 + 2+ =2l
(oldg = (€M1 + € ) +OB).  (34) ,
2 X_K (i_1)>
Then using the fact thag"1|e"2)=64x2, we obtain for the ™ ro 12
triplet state - _ %(e‘r1|e_r2> n <e—rl—r2 (ri _ rl)>} +0(b3).
(W) =1+ 22~ 1287 + 2Ayl(€72 - €72) +(AyjAy)] S
2 (41)
+0(b%, (350 Each inner product in the square brackets can be evaluated
and for the singlet state analytically, resulting in
X6 14 e (glH| ):—}+9+b—2—}<f|f”)—4&r 2+ 0(b®
(W =1+ (1287 + AA (€1 +€72) Yl == 5 2" 4 72 Xo+ O
(42

— (Yl(e71+ €72)? + (Ayd Ay ] + O(b%). (36)

The extra term in the square brackets arises from the overl
of the H™ ground state with/,.

Next we evaluaté{H|y). For the singlet state, Eqé5)
and (30) imply 1 b b 1 X5

E<-C+_o+—=(flf")-1dm¢+ 2>
22t Mmoo

Finally, we substitute Eq€36), (39), (40), and(42) into
al'?q. (4), and expand t@®(b?) noting that(f|f")=0(b?). The
result for the singlet state is

2
A1) = ol o) + el w0 + 2 A BRIA Y )
x4 Egtugl(e+ e12)2+ (ay (Fo+ 1) ve)

. 2 -
= 20 Xl ) + A A gl o) L1
\'277 +2 Al,bs |:<___)e—r1
ro T2

2Xo ~
= = (A H[ ) il o) - (37)
P +(i_1)e-rz}>}+0(bs>. @3

Using Eq.(34), and dropping terms of ordér or higher, fz N1

we may neglect magnetic corrections to the ground sigte For the triplet state, the same analysis yields

022504-5



DANIEL H. E. DUBIN PHYSICAL REVIEW A 71, 022504(2009

b b2 1 TABLE II. Best values ofk for the triplet state of H.
E$—E+E+Z—E<f|f”>+10ﬂxg
Kmax! b & for which k=Kpax
2
A 1
+ ;(—°{<A¢‘ <H0+ E) ‘ A¢> 7 ~1.9329 0.3512
m 8 -1.9032 0.3231
+2<Ad" [(i_i)e_”‘ (i_1>e—rz]>} 9 -1.8831 0.3033
fo Ip Mo I 10 -1.8657 0.2822
12 —-1.8422 0.2514
Here there are no terms involving the ground state, and th&3 -1.8340 0.2391
coefficient ofrrxé differs due to the antisymmetry af,. 14 -1.8265 0.2281
Variation of either Eq(43) or (44) with respect tdf, using 15 -1.8207 0.2172
the fa_ct thatXOOCf(O_), again yields Eq(18) for f. The form ~1.76+0.01
of k differs depending on the symmetry of the state:
k=7b- L E (¢ |(e"1+ e"2))2 b -r ro\\2
(277)2 g\ g k=7b- (277_)2 Eg<¢g|(e 1+ ¢2))
ool
{80 (o ) e +<A¢,S [(ii)e(ig)em
vl A {( 1 1) _r1+< 1 1) ‘f2:| ro T2 fo I3
—=-—e —=-—e
Us ro Iy ro rp (singled, (50)
(singled, (45)
b
. k=-5b-—
k==5b- )2{<A¢|(Ho+ 1)|ay) (2m)?
i 101\ . (1 1)\, _
1 1 1 1 X\ Ay ——-—]Jel-|—=—]e"2 (triplet).
+ 20 Ayl —=-=]emi-|—=-=]eT2 ro I friz I
ro T2 fo I (51)
(triplet). (46)

Finally, we solve Eqs(47) and (48) using the Galerkin

In order for a bound state to exidt,must be positive. We mgthod,. using_ the same ba;is functions as b_e[Iqu(ZG)],
will show numerically that this is n(;t the case written in perimetric coordinates. For the singlet case we

Variation of Egs.(45) and(46) with respect taA ¢ yields, also req“'Fe‘/’g- Fo_IIowmg Pekerig2], we expa”% n thg
: same basis functions and the same perimetric coordinates,
for the triplet state, . . .
using the same value efas we use in determinindy«, and
.1 1 1 1 1 keeping the same number of teras
(H0+ —)Alp: - (— - —)e"l + (— - —)e‘fz, (47 In Fig. 1 we displayk(M, ) for the triplet case as a func-
2 M2 T2 Mz N tion of ¢, for increasing values dfl. One can see the maxi-
mum possiblek value remains negative. For eabh, this

and for the singlet state maximum value is given in Table II, along with the value of

¢ at which the maximum occurs.
(p'0+ E>A¢S= Ao — (i _ l)e—rl _ (i _ 1>e—r2, A fit to this data of the formkyay(M)=Kpay(®)—a/M#
2 S\t 1 fo T yields Kya(®)=(-1.759£0.03b, with «=2.44% and S

(48) =1.36(see Fig. 2
Therefore, the triplet state is not bound for weak magnetic
where\ is a Lagrange multiplier associated with the con-fields. This is consistent with previous numerical calculations
straint that(Ays, ¢,)=0. Taking an inner product of both of the triplet statg 7], where it was observed that the triplet

sides of Eq(48) with respect toy, yields the value of: state remains unbound for all field strengths that were con-
sidered, over the rangex8104<b<4000.
1 1 1 1 Turning next to the singlet state, we plot values of
([ (2o (2] o
ro 12 2 M

ky(M,e) = - 1+ g2))2E, /(27)2
Furthermore, substitution of Eqgl7) and(48) into Eqgs.(45) 1(M.e) gl (€72 + €2)) B/ (2m)

and (46), respectively, allows us to simplify the forms kf
for singlet and triplet states: and
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k/b
Q
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ated for the excited=0 singlet state of H Dashed lines corre-

spond to odadM.

ka(M, &)

=- <Al//s

[

12

1 )e—r1+ (i - l)e"2]>/(2w)2
I ra I

FIG. 5. (Color) k/b for different values ofM and e for the
singlet state of H. Dashed lines correspond to obitl

Therefore, forb< 1 the only bound state of Hwith zero
angular momentum is the ground-state singlet. There are no
magnetically bound excited states of kith zero orbital
angular momentum.

Although this contradicts the previous estimate of REF.
for the binding energy of magnetically bound Hhe authors

along Withk/b=E+E+7 in Figs. 3-5. As a test of the code, of that work later{6] pointed out that the estimate might not
we also plot values o, in Fig. 6. Convergence to the apply to H because their approach neglected the symmetry
known result of 0.02775... can be seen for arangeasM  of the wave function, and did not ensure that the wave func-

increases. The maximum vaIue@fat a given value oM is
listed in Table IIl, along with the limit aM — oo, found by

fitting to the formky ma(M) =Ky ma{) +a/M~.

The best estimates fd_?l come from fitting the data at

tion is orthogonal to the ground state. As we have seen, these
effects are essential in accurately determining the energy, and
for H™ are sufficient to destroy th&=0 excited bound state,
which substantiates the concerns put forward in Réf.
However, we also saw that the bound-state scalifig

fixed & values to the forrﬂ(l(M):?l(oc)"’a/_M'B- The result-  «b2e?/a does apply to positronic H which does not have a
ing data are displayed in Table IV. Sinkg«)=-21 and field-free bound state. This is consistent with the intuition of
E(W)ZS. Eq.(50) impliesk(x)/b=—21+8+7=—6, with an Ref. [6] that this scaling applies to ions without field-free

estimated error of roughly £0.5. Singeis negative there is

no bound singlet state.

8

02 0.

3 04 05 06 07 08 09 1
£

FIG. 4.E for different values oM ande.

bound states, such as positroni¢ dr He, but may not
apply to ions with such states.

Reference$l,4,6] were also concerned with# 0 excited
states, for which the effects of symmetry and ground-state

0.02776

0.02775 ¢

[€/a]

o

0.02774

0.02773 . . : . :
03 04 05 06 07 08 09 1
€

FIG. 6. Ground-state energy of Hin atomic units, versus for
different values oM.
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overlap are not important. In fact, it is worth noting that TABLE IIl. k, max VErsusM.
# 0 bound states can also be derived using a straightforwarg
modification of the variational functions employed in Egs.

! ( Ko max & at whichk=Ky max
(5—8), and that the resulting bound-state energies closely

follow those of Ref[1], particularly forJ>1. 7 7.17 0.343
8 7.39 0.318
I1l. DISCUSSION 9 14t 0.304
10 7.59 0.284
The positron affinity to hydrogen given by E(R) was 11 7.64 0.269
calculated assuming that the proton was fixed at the origim2 7.72 0.257
However, for such weak binding, motional effects of the cen-13 7.75 0.243
tral proton can be quite important. For example, it is well 780 0.233

known that motion of the central proton couples to the pos- 8.340.4

itron motion through the magnetic field,5,8—13, and this
can, in certain circumstances, excite the positron into the
continuum[4,5,8,9.

In addition, effects due to motion of the proton may be Vion = 1.84% 107 Hz x b2 (107 1P7IF (stavoltieny,
expected to shift the bound-state energy given by 4. )
Considerable effort has gone into calculating these shifts fof/here we have used the valke2.11, from Table I. This
ground-state H[10-13, where they are observed to reduce field ionization rate is very Ia_lrge_unless the electric field is
the affinity. For smallb the largest shifts are due to mass Very small, or the magnetic field is very large. F+10 T,
polarization terms and zero-point ion cyclotron energy, and® field F=13 mV/m givesy,=1 s*. o .
are of order/M andbm/M [10]. If this is also the case for  Another positron loss process is annihilation with the
magnetically bound ions, then magnetically bound state§ound electron. However, since the positron is only weakly
may exist only forb larger than some value that depends onPound to the ion, this loss process is rather slow. One can
m/M [4]. On the other hand, one cannot rule out that theesm_ngte_ the positron lifetime usmg_knov_vn results for the
finite-nuclear-mass shifts migimcreasethe binding energy annihilation rate of a low-energy positron in a hydrogen gas
of magnetically bound ions, although this seems unIiker,[15]’
particularly in light of the stability limits discussed in Refs. 5
[4,5,9. A definite answer to this important question must vy = 7C ZegNy,
await further calculations. . i . .

The outer charge in a magnetically bound ion could pawvhererg is the classical electron radlgsH is the density _of
lost through field ionization due to ambient or applied elec-the hydrogen gas, and.=8 for atomic hydrogen. Turning
tric fields. Since binding in the axial direction is weak, elec- this around, we can obtain the annihilation rate of a hydrogen
tric fields in the axial direction are most important. A atom in a positron gas of density as
straightforward calculatiohl4] of the ionization rate due to )
an axial electric field= yields, for small fields, an ionization Vp = 7T oCLefNp.
rate given in atomic units by

Finally, to estimate the lifetime of the positronic ion, we treat
the weakly bound positron as a low-density gas with density

— 12~ 2C13]e . . . .
Vion = K€ “, (52 of roughly x3 (neglecting the correlation effects contained in
Ay, since these are presumably approximatedZy. This
wheree =Fa?/e; or in Gaussian units by gives us an annihilation rate of

TABLE IV. k; versusM.

M ky ate=0.6 k, ate=0.7 k, ate=0.8 ky ate=0.9

7 -20.508 -20.075 -19.230 -18.086

8 -21.110 -20.666 -20.020 -19.140

9 -20.869 -20.751 -20.391 -19.794
10 -21.158 -20.985 -20.712 -20.277
11 -20.984 -20.969 -20.834 -20.556
12 -21.146 -21.073 -20.962 -20.764
13 -21.028 -21.040 -20.995 -20.874
14 -21.129 -21.093 -21.048 -20.962
% -21.1+0.05 -21.1+0.05 -21.2+0.04 -21.4+0.06
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 15CZerkb g _rachk?

14
P 2 a3 a3

: (53)

where we have used the value florfrom Table |, andZ.
=8.

For bound positronic states, the exact annihilation rate ca

be evaluated using the formula6]

b= mr5C (Y S(ry —12)| )
Pal Wy

The required inner products can be simplified using Egs.
and (12):

2
rec
= 56 j orale™ + Ayryry)
where we have dropped terms ©fb®) or higher, and have,

as usual, approximateg(p;,z;) by xo in the integral. The
integral can be evaluated analytically using E@S), (25),

and(26), and the properties of Laguerre polynomials. Keep-
ing terms in the sums up tel =14, we find that the integral

asymptotes to 27+0.3. Thus,

PHYSICAL REVIEW A 71, 022504(2005

27+0.3rc r’c
p:—( 3%kb:9.1%b2,
2 a a

=1.5x 10"p? s7t, (54)

in close agreement with the estimate of E53). In a mag-
petic field of 10 T,»,=0.03 st

Finally, we note that the variational perturbation method
used here can be generalized to magnetically bound ions
with more electrons, such as Heor positronic Hé. Given
the larger number of degrees of freedom in these ions, the
wave function can no longer be described using basis func-
tions expressed in perimetric coordinates; but other basis
functions are available, such as correlated Gaussian basis
functions. Although such basis sets have been used exten-
sively to obtain accurate results for ionic energy levVélg|,
our calculation for positronic Hindicates that high-accuracy
wave functions are required in order to achieve even moder-
ately accurate affinitiedvl =18 corresponds to a basis set of
6859 functions, required to achieve 4% accuracy in the pos-
itron affinity. Evidently, the affinity is strongly affected by
fine details in the wave function. It remains to be seen
whether such fine detail is achievable in calculations with
larger numbers of electrons.
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