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This paper considers the binding of an electron or a positron to a ground-state hydrogen atom in a uniform
magnetic fieldB, concentrating on states with zero orbital angular momentumJ. It is shown that the affinity of
a positron to a hydrogen atom is 2.23b2e2/a, wherea is the Bohr radius,b;B/B0, B0=2.35053105 T, b
!1 is assumed, and the proton is assumed to have infinite mass. With these assumptions it is also shown that
no J=0 singlet or triplet excited state of H− exists. These results are compared to a previous estimate of the
electron affinity ofJ=0 magnetically bound ionsfV. G. Bezchastnov, P. Schmelcher, and L. S. Cederbaum,
Phys. Rev. A61, 052152s2000dg.

DOI: 10.1103/PhysRevA.71.022504 PACS numberssd: 31.10.1z, 32.10.2f, 36.10.2k

I. INTRODUCTION

This paper discusses the effect of weak magnetic fields on
the binding of a positron or electron to a neutral ground-state
hydrogen atom. Here, weak fields refer to fields such thatb
;a2/ rq

2!1, whererq=Îc" /eB is the electron quantum Lar-
mor radius anda="2/me2 is the Bohr radius. Sinceb can
also be written asb=B/B0 where B0=2.35053105 T, the
weak-field regime corresponds to magnetic fields much less
than 105 T.

It is well known that in the field-free limit, only a single
bound state of H− exists. Neglecting relativistic effects and
assuming infinite nuclear mass, the affinity of this state has
been calculated to bef2g

Eg = 0.027 751 0 . . .e2/a. s1d

This state has zero orbital angular momentumJ, and zero net
spin si.e., it is a singlet stated f2g. Furthermore a positron is
not bound to hydrogen at allf3g. However, it has recently
been shown that magnetic fields enable additional, much
more weakly bound states of H− f1,4g, and that positrons can
also be magnetically bound to form positronic H+ f5g.

These states are bound by the weak short-range attraction
of the outer charge to the atom, caused by the induced dipole
moment of the atom in the field of the outer charge. The
magnetic field provides extra confinement in the plane per-
pendicular to the field, resulting in bound states that would
not otherwise exist. It was argued in Ref.f1g that the most
deeply bound excited state of H− is one withJ=0. The elec-
tron affinity for this J=0 excited state was estimated asEb
=6.31b2e2/a fEq. s43d of Ref. f1gg. We will show that this
result does not apply to H−, but does qualitatively describe
positronic H+. The calculation of Ref.f1g used an adiabatic
assumption for the dynamics of the two electrons, neglected
exchange effects, and neglected the overlap of the excited-
state wave function with the H− ground state. However, as
pointed out in Ref.f1g, these are not good approximations
for the J=0 state of H−. In Ref. f1g it was stated that these
effects would simply lead to a different numerical coefficient
in the affinity of H− but the same overall magnetic field

scaling. However, in later work it was conjectured that the
estimate might not apply to H− at all f6g; and we will see that
this is in fact the case.

In this paper we use an approach that combines a varia-
tional method with perturbation theory to calculate the elec-
tron and positron affinities to hydrogen in the infinite nuclear
mass approximation as a perturbation expansion inb, includ-
ing exchange effects, ensuring that the wave function has no
overlap with the ground state, and making no adiabatic ap-
proximations. We show that there are noJ=0 excited states
of H− in the weak-field regimeb!1, assuming infinite pro-
ton mass. We also show that a positronic H+ ion with J=0 is
bound in a weak magnetic field, with affinity

Eb = 2.23b2e2/a, s2d

again assuming infinite proton mass. The error in the numeri-
cal coefficient is roughly 4%, and the affinity neglects terms
of Osb3d. Effects associated with a moving protonsi.e., finite
proton massd are discussed in Sec. III. The existence of a
positronic bound state that has substantial overlap with the
electron wave function has implications for the annihilation
of positrons on hydrogen, which we discuss in Sec. III. The
scaling ofEb with b2 agrees with the estimate of Ref.f1g,
because the induced-dipole binding considered in Ref.f1g is
essentially the same for positrons and electrons, and for pos-
itrons the complicating effects of exchange interactions and
overlap with a lower-energy state do not occur.

II. VARIATIONAL CALCULATION OF MAGNETICALLY
BOUND STATES

Schrödinger’s equation for a hydrogen atom and an extra
electron or positron in a uniform magnetic fieldBẑ is

Ece = Ĥce = F−
1
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wherecesr 1,r 2d is the wave function, the subscript 1 denotes
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the hydrogenic electron, and the subscript 2 denotes the
weakly bound outer charge, the upper and lower signs cor-
respond to either an electron or positron at positionr 2, sr ,fd
are polar coordinates,r is the spherical radius,r12= ur 1−r 2u,
distances are measured in units of the Bohr radiusa, and
energies are measured in units ofe2/a=27.2 eV. The central
proton is assumed to be fixed at the origin and relativistic
and spin effects are neglected.

Rather than solving Eq.s3d directly to find magnetically
induced bound states withJ=0, we apply the Rayleigh-Ritz
variational method,

E ø
kcuĤucl
kcucl

, s4d

wherecsr 1,r 2d is a variational wave function, with equality
in Eq. s4d whenc=ce. By employing the assumption that the
outer charge in the ion is weakly bound, with a wave func-
tion that varies slowly on the atomic scale, we are able to
Taylor expand the inner products in Eq.s4d in powers ofb,
and so obtain variational equations for the wave function
good to orderb2. Details of the calculation differ depending
on whether the outer charge is a positron or an electron. We
employ the following variational functions forc:

csr 1,r 2d = c0sr 1,r 2d +
x0

Î2p
Dcsr 1,r 2d selectrond, s5d

where

c0sr 1,r 2d =
1

Î2p
fe−r1xsr2,z2d ± e−r2xsr1,z1dg, s6d

and

csr 1,r 2d =
1

Îp
e−r1xsr2,z2d +

x0

Îp
Dcsr 1,r 2d spositrond,

s7d

whereDc is a function whose form will be determined pres-
ently by the variational method,x is the ground-state eigen-
function for an electron or positron in a magnetic field,

xsr,zd =Î b

2p
e−br2/4fszd, s8d

x0=xs0,0d, and fszd is a function to be determined by the
variational calculation, chosen so thate−`

` f2dz=1.
We will find that

fszd = Îk e−kuzu s9d

wherek.0 is of orderb. This wave function is highly elon-
gated in thez direction due to quantum uncertainty and the
very weak binding of the outer charge. An identical form was
also found for eigenfunctions withuJu@1 f5g. For future ref-
erence, note that the fact that Eq.s8d along with k=Osbd
implies that

x0 = Osbd. s10d

The functione−r1/Îp is the ground-state wave function
for an isolated hydrogen atom. Thesappropriately symme-

trizedd product of this function andxsr2,z2d provides an ap-
proximate two-particle wave function representing a hydro-
gen atom and a magnetically bound electron or positron.

The termDc is a correction to this approximate wave
function. By solving the variational problem forDc, we will
see thatDc is short ranged compared tox, and is, to lowest
order inb, independent of the magnetic field. For the case of
the singlet statefupper sign in Eq.s6dg, the variation must be
performed under the constraint thatc has no overlap with the
ground state of H−.

A. Positronic H+ ion

We first consider the case of a positron. Substituting Eq.
s7d for c in Eq. s4d, we first evaluatekc ucl:

kcucl = 1 +
2x0

p
ke−r1xsr2,z2duDcsr 1,r 2dl +

x0
2

p
kDcuDcl.

s11d

We now apply the following approximation: sinceDc ap-
proaches zero on the atomic scale, andx is slowly varying
on this scale,xsr2,z2d may be taken to bexs0,0d in the inner
product, yielding

kcucl = 1 +
2x0

2

p
ke−r1uDcl +

x0
2

p
kDcuDcl + Osb3d. s12d

The error in this approximation is ofOsb3d, since on the
atomic scalexsr ,zd varies from xs0,0d by a fractional
amount of orderb, andxs0,0d is already ofOsbd. Next, we

evaluatekcuĤucl. Again using the fact thatx varies slowly
on the atomic scale, the result is

kcuĤucl = −
1

2
+

b

2
+

b2

4
−

1

2
kf9sz2dufsz2dl −

x0
2

p

3Ke−2r1US 1

r12
−

1

r2
DL +

2x0
2

p

3Ke−r1US−
1

2
+

b

2
+

b2r1
2

8
−

1

2

f9sz2d
fs0d

−
1

r12

+
1

r2
DUDcL +
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p
kDcuĤuDcl + Osb3d, s13d

where theOsb3d magnitude of the error follows from the
same argument as for Eq.s12d . The first term in Eq.s13d is
the ground-state energy of hydrogen, and the second term is
the ground-state energy of a free positron in a magnetic field.
The third term is the well-known magnetic correction to the
ground-state energy of hydrogen. The other terms arise from
the interaction of the positron and the atom. The second in-
ner product can be directly evaluated as

Ke−2r1US 1

r12
−

1

r2
DL = − 2p2. s14d

This term is the electrostatic energy of the hydrogen atom in
a background charge of uniform density, which approximates
the outer charge density on the atomic scale.
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We now further approximate Eq.s13d, keeping terms in
the third inner product only toOsb2d. Here we apply Eqs.s9d
and s10d. The result is

kcuĤucl = −
1

2
+

b

2
+

b2

4
−

1

2
kf9sz2dufsz2dl + 2px0
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r2
DUDcL

+
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2

p
kDcuĤ0uDcl + Osb3d s15d

whereĤ0 is the Hamiltonian evaluated atB=0, given by

Ĥ0 = −
1

2
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2d −

1
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−

1

r12
. s16d

Substituting Eqs.s12d and s15d into Eq. s4d and Taylor
expanding inb, we obtain, to orderb2,

E ø −
1

2
+

b
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b2

4
−

1

2
kf9ufl +

2x0
2

p
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1

r12
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1

r2
DUDcL

+
x0

2

p
kDcusĤ0 + 1

2duDcl + 2px0
2 + Osb3d. s17d

We next minimizeE by varying separately with respect to
f andDc. Noting thatx0~ fs0d according to Eq.s8d, a varia-
tion with respect tof yields

−
1

2
f9 − kdsz2dfs0d = lfsz2d, s18d

wherel is the Lagrange multiplier associated with the con-
straint thate−`

` f2dz2=1, and where

k = −
b

2p2F2Ke−r1US−
1

r12
+

1

r2
DUDcL

+KDcUSĤ0 +
1

2
DUDcLG − b. s19d

Equation s18d is an eigenvalue problem with a single
bound state forf, provided thatk.0. The solution forf is
given by Eq.s9d, and the eigenvalue isl=−k2/2. In other
words, thez dependence of the wave function for the outer
charge is approximately that of a particle bound to a
d-function potential, because the induced dipole attraction
that provides the binding is short ranged andf varies slowly
on this scale.

Note that Eq.s19d implies k=−b if we take Dc=0. This
negative value ofk arises from the electrostatic repulsion of
the positron from the unperturbed hydrogen atom charge
cloud, as described by Eq.s14d . Thus, binding is possible
only for DcÞ0, describing correlations between the electron
and positronsi.e., polarization of the atom in the electric field
of the positrond.

Substituting the solution forf into Eq. s17d yields

E = −
1

2
+

b

2
+

b2

4
−

k2

2
. s20d

The first three terms are the energy of a ground-state hydro-
gen atom and a free positron in a magnetic field, up to order
b2 sneglecting spin energyd. Thus, the last term in Eq.s20d
provides the affinityEb of the positron to the hydrogen atom:

Eb =
k2

2
. s21d

Note that Eq.s19d predicts thatk is of Osbd, so Eq. s21d
implies that the binding energy is of orderb2, and we are
therefore justified in droppingOsb3d terms in Eq.s17d .

Next, we vary Eq.s17d with respect toDc, holding f
fixed. The result is

SĤ0 +
1

2
DDc = e−r1S 1

r12
−

1

r2
D . s22d

Thus,Dc is independent of magnetic field, as stated previ-
ously. However, Eq.s22d neglects theOsb3d corrections to
Eq. s17d . Such corrections would add smallOsbd corrections
to Eq. s22d, and hence toDc. These corrections addOsb3d
terms to the affinity, and so are neglected.

We solve Eq.s22d for Dcsr 1,r 2d numerically using the
Galerkin method. First, we note that symmetry implies that
Eq. s22d has solutions of the formDc=Dcsr1,r2,r12d. Sec-
ond, we transform to perimetric coordinatesf2g su,v ,wd de-
fined by

u = sr2 + r12 − r1d«,

v = sr1 + r12 − r2d«, s23d

w = 2sr1 + r2 − r12d«,

where« is a free parameter of the coordinate system. In Ref.
f2g « was chosen as«=Î1/2+Eg.0.726, but here we will
find that «,0.2–0.3 provides the most rapidly convergent
results forDc.

These perimetric coordinates are independent, each run-
ning from 0 to`. Furthermore, it can be shown thatf2g

d3r1d
3r2 =

p2

32«6su + vds2u + wds2v + wddu dv dw.

s24d

We write Dcsu,v ,wd as a sum over basis functions with
sM +1d3 terms:

Dc = o
,=0

M

o
m=0

M

o
n=0

M

a,mnu,mnl s25d

where

u,mnl = e−su+v+wd/2L,sudLmsvdLnswd s26d

and whereL,sud is a Laguerre polynomial, defined by

L,sud = o
k=0

, S,

k
D s− udk

k!
. s27d
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Taking moments of Eq.s22d with respect to thesesM
+1d3 basis functions yields a set of linear equations for the
a,mn’s:

o
,̄m̄n̄

M

k,mnuĤ0 + 1
2u,̄,m̄,n̄la,̄m̄n̄

=K,mnu2«
e−s2v+wd/4«sw − 2vd

su + vds2u + wd L . s28d

The matrix elements appearing in Eq.s28d can be evaluated
analytically using Eqs.s24d, s26d, and s27d, and the proper-
ties of Laguerre polynomialsf2g. The form of the elements is
too complex to merit display here, but aMATHEMATICA mod-
ule that evaluates the elements is available upon request.

Once we obtainDc by solving Eqs.s28d for a given value
of «, we then evaluatek using Eq.s19d. Noting thatk is in
fact positive as required by Eq.s9d, we obtain the positron
affinity via Eq.s21d . In so doing, we note that the expression
for k can be simplified by using Eq.s22d in Eq. s19d :

k =
b

2p2Ke−r1US 1

r12
−

1

r2
DUDcL − b

=
b

2p2 o
,mn

M

a,mnK,mnu2«e−s2v+wd/4«
sw − 2vd

su + vds2u + wdL − b,

s29d

where in the second equality we have used Eqs.s23d and
s25d.

Values ofk/b as a function of« are plotted in Fig. 1 for
different values ofM. For eachM value, a maximumk
value,kmax, occurs at a particular value of«, providing the
best estimate forEb at thatM value. The values ofkmax are
provided in Table I versusM, along with the values of« at
which they occur, and the positron affinity that results from
Eq. s21d.

A fit to the data of the form

kmaxsMd = kmaxs`d − a/Mb

ssee Fig. 2d yields kmaxs`d /b=2.11±0.04,a=s3.41±0.6db,
andb=1.44±0.1.

The positron affinity to ground-state hydrogen is therefore
found to beEb=s2.23±0.08db2, which is the result quoted in
Eq. s2d.

B. Electron affinity

We now repeat the previous calculation, applying it to the
case where the outer charge is an electron. The calculation
depends on whether the two-electron system has spin zerosa
singletd or spin 1sa tripletd. We will find that for b!1, no
J=0 excited state exists in either case.

For the triplet state, we employ Eq.s5d for c, taking the
lower sign in Eq.s6d. For the singlet state, we take the upper
sign, but we must also ensure thatc is orthogonal to the
ground state of H−, cg. This is most easily assured by choos-
ing Dc in Eq. s5d as

FIG. 1. k/b for different values ofM and «, evaluated for aJ
=0 positronic H+ ion via Eq.s29d , and for the triplet state of H− via
Eq. s51d.

TABLE I. Solution for positronic H+ affinity Eb versusM.

M kmax/b « for k=kmax Eb/b2

7 1.91012 0.37615 1.8243

8 1.94245 0.34697 1.8866

9 1.96611 0.32303 1.9328

10 1.98574 0.30216 1.9716

11 2.00059 0.28332 2.0012

12 2.01342 0.26719 2.0269

13 2.02337 0.25303 2.0470

14 2.03219 0.24157 2.0649

15 2.03924 0.22949 2.0792

16 2.04553 0.22035 2.0921

17 2.05070 0.21071 2.1027

18 2.05544 0.20099 2.1124

` 2.11±0.04 2.23±0.08

FIG. 2. kmax/b versusM, taken from Tables I and II. Lines are
the fits described in the text.
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Dc = −
Î2p

x0
kcguc0lcg + Dcs s30d

whereDcssr 1,r 2d is a symmetric function under interchange
of r 1 and r 2, chosen so that

kDcsucgl = 0. s31d

Then Eq.s5d can be written, for the singlet state, as

csr 1,r 2d = c0sr 1,r 2d − kc0ucglcgsr 1,r 2d +
x0

Î2p
Dcssr 1,r 2d.

s32d

Proceeding with the evaluation of the inner products re-
quired in the Rayleigh-Ritz method, Eq.s4d, we use Eqs.s5d
and s6d to obtain

kccl = 1 ± 2KUxsr 1dxsr 2d
2p

Ue−r1−r2L
+ 2

x0

2p
kDcufxsr 2de−r1 ± xsr 1de−r2gl +

x0
2

2p
kDcuDcl.

s33d

We again apply the approximation thatx varies slowly on the
atomic scale, replacing it byx0 in the inner products. For the
singlet case we requirekc0ucgl, which can be approximated
as

kc0ucgl =
x0

Î2p
kse−r1 + e−r2ducgl + Osb2d. s34d

Then using the fact thatke−r1 ue−r2l=64p2, we obtain for the
triplet state

kcucl = 1 +
x0

2

2p
f− 128p2 + 2kDcuse−r1 − e−r2dl + kDcuDclg

+ Osb3d, s35d

and for the singlet state

kcucl = 1 +
x0

2

2p
f128p2 + 2kDcsuse−r1 + e−r2dl

− kcguse−r1 + e−r2dl2 + kDcsuDcslg + Osb3d. s36d

The extra term in the square brackets arises from the overlap
of the H− ground state withc0.

Next we evaluatekcuĤucl. For the singlet state, Eqs.s5d
and s30d imply

kcuĤucl = kc0uĤuc0l + kcguĤucglkcguc0l2 +
x0

2

2p
kDcsuĤuDcsl

− 2kcguc0lkc0uĤucgl +
2x0

Î2p
kDcsuĤuc0l

−
2x0

Î2p
kDcsuĤucglkcguc0l. s37d

Using Eq.s34d, and dropping terms of orderb3 or higher,
we may neglect magnetic corrections to the ground statecg,

and replaceĤ by Ĥ0 in all but the first term, where

Ĥ0 = −
1

2
s¹1

2 + ¹2
2d −

1

r1
−

1

r2
+

1

r12
s38d

is the Hamiltonian evaluated atB=0. Then applyingĤ0cg

=−s 1
2 +Egdcg, along with Eq.s31d, yields

kcuĤucl = kc0uĤuc0l +
x0

2

2p
fsEg + 1

2dkcguse−r1 + e−r2dl2

+ 2kDcsuĤ0use−r1 + e−r2dl + kDcsuĤ0uDcslg + Osb3d.

s39d

The second term in the square brackets can be reduced to

kDcsuĤ0use−r1 + e−r2dl

= −
1

2
kDcsuse−r1 + e−r2dl

+KDcsUFe−r1S 1

r12
−

1

r2
D + e−r2S 1

r12
−

1

r1
DGL .

s40d

The first term in Eq.s39d can also be evaluated toOsb2d,
yielding

kc0uĤuc0l = −
1

2
+

b

2
+

b2

4
−

1

2
kf uf9l

+
x0

2

p
FKe−2r1US 1

r12
−

1

r2
DL

−
1

2
ke−r1ue−r2l +Ke−r1−r2US 1

r12
−

1

r2
DLG + Osb3d.

s41d

Each inner product in the square brackets can be evaluated
analytically, resulting in

kc0uĤuc0l = −
1

2
+

b

2
+

b2

4
−

1

2
kf uf9l − 46p x0

2 + Osb3d.

s42d

Finally, we substitute Eqs.s36d, s39d, s40d, and s42d into
Eq. s4d, and expand toOsb2d noting thatkf u f9l=Osb2d. The
result for the singlet state is

E ø −
1

2
+

b

2
+

b2

4
−

1

2
kf uf9l − 14px0

2 +
x0

2

2p

3HEgkcguse−r1 + e−r2dl2 + kDcsusĤ0 + 1
2duDcsl

+ 2KDcsUFS 1

r12
−

1

r2
De−r1

+ S 1

r12
−

1

r1
De−r2GLJ + Osb3d. s43d

For the triplet state, the same analysis yields
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E ø −
1

2
+

b

2
+

b2

4
−

1

2
kf uf9l + 10px0

2

+
x0

2

2p
HKDcUSĤ0 +

1

2
DUDcL

+ 2KDcUFS 1

r12
−

1

r2
De−r1 − S 1

r12
−

1

r1
De−r2GLJ

+ Osb3d. s44d

Here there are no terms involving the ground state, and the
coefficient ofpx0

2 differs due to the antisymmetry ofc0.
Variation of either Eq.s43d or s44d with respect tof, using

the fact thatx0~ fs0d, again yields Eq.s18d for f. The form
of k differs depending on the symmetry of the state:

k = 7b −
b

s2pd2HEgkcguse−r1 + e−r2dl2

+ kDcsusĤ0 + 1
2duDcsl

+ 2KDcsUFS 1

r12
−

1

r2
De−r1 + S 1

r12
−

1

r1
De−r2GLJ

ssingletd, s45d

k = − 5b −
b

s2pd2HkDcusĤ0 + 1
2duDcl

+ 2KDcUFS 1

r12
−

1

r2
De−r1 − S 1

r12
−

1

r1
De−r2GLJ

stripletd. s46d

In order for a bound state to exist,k must be positive. We
will show numerically that this is not the case.

Variation of Eqs.s45d ands46d with respect toDc yields,
for the triplet state,

SĤ0 +
1

2
DDc = − S 1

r12
−

1

r2
De−r1 + S 1

r12
−

1

r1
De−r2, s47d

and for the singlet state

SĤ0 +
1

2
DDcs = lcg − S 1

r12
−

1

r2
De−r1 − S 1

r12
−

1

r1
De−r2,

s48d

where l is a Lagrange multiplier associated with the con-
straint thatkDcs,cgl=0. Taking an inner product of both
sides of Eq.s48d with respect tocg yields the value ofl:

l =KcgUFS 1

r12
−

1

r2
De−r1 + S 1

r12
−

1

r1
De−r2GL . s49d

Furthermore, substitution of Eqs.s47d ands48d into Eqs.s45d
and s46d, respectively, allows us to simplify the forms ofk
for singlet and triplet states:

k = 7b −
b

s2pd2HEgkcguse−r1 + er2dl2

+KDcsUFS 1

r12
−

1

r2
De−r1 + S 1

r12
−

1

r1
De−r2GLJ

ssingletd, s50d

k = − 5b −
b

s2pd2

3KDcUFS 1

r12
−

1

r2
De−r1 − S 1

r12
−

1

r1
De−r2GL stripletd.

s51d

Finally, we solve Eqs.s47d and s48d using the Galerkin
method, using the same basis functions as beforefEq. s26dg,
written in perimetric coordinates. For the singlet case we
also requirecg. Following Pekerisf2g, we expandcg in the
same basis functions and the same perimetric coordinates,
using the same value of« as we use in determiningDc, and
keeping the same number of termsM.

In Fig. 1 we displayksM ,«d for the triplet case as a func-
tion of «, for increasing values ofM. One can see the maxi-
mum possiblek value remains negative. For eachM, this
maximum value is given in Table II, along with the value of
« at which the maximum occurs.

A fit to this data of the formkmaxsMd=kmaxs`d−a /Mb

yields kmaxs`d=s−1.759±0.02db, with a=2.449b and b
=1.36 ssee Fig. 2d.

Therefore, the triplet state is not bound for weak magnetic
fields. This is consistent with previous numerical calculations
of the triplet statef7g, where it was observed that the triplet
state remains unbound for all field strengths that were con-
sidered, over the range 8310−4,b,4000.

Turning next to the singlet state, we plot values of

k̄1sM,«d ; − kcguse−r1 + er2dl2Eg/s2pd2

and

TABLE II. Best values ofk for the triplet state of H−.

M kmax/b « for which k=kmax

7 −1.9329 0.3512

8 −1.9032 0.3231

9 −1.8831 0.3033

10 −1.8657 0.2822

11 −1.8533 0.2670

12 −1.8422 0.2514

13 −1.8340 0.2391

14 −1.8265 0.2281

15 −1.8207 0.2172

` −1.76±0.01
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k̄2sM,«d

;−KDcsUFS 1

r12
−

1

r2
De−r1 + S 1

r12
−

1

r1
De−r2GLYs2pd2

along withk/b= k̄1+ k̄2+7 in Figs. 3–5. As a test of the code,
we also plot values ofEg in Fig. 6. Convergence to the
known result of 0.02775. . . can be seen for a range of« asM

increases. The maximum value ofk̄2 at a given value ofM is
listed in Table III, along with the limit atM→`, found by
fitting to the formk2 maxsMd=k2 maxs`d+a /Mb.

The best estimates fork̄1 come from fitting the data at

fixed « values to the formk̄1sMd= k̄1s`d+a /Mb. The result-

ing data are displayed in Table IV. Sincek̄1s`d.−21 and

k̄2s`d.8, Eq.s50d impliesks`d /b=−21+8+7.−6, with an
estimated error of roughly ±0.5. Sincek is negative there is
no bound singlet state.

Therefore, forb!1 the only bound state of H− with zero
angular momentum is the ground-state singlet. There are no
magnetically bound excited states of H− with zero orbital
angular momentum.

Although this contradicts the previous estimate of Ref.f1g
for the binding energy of magnetically bound H−, the authors
of that work laterf6g pointed out that the estimate might not
apply to H− because their approach neglected the symmetry
of the wave function, and did not ensure that the wave func-
tion is orthogonal to the ground state. As we have seen, these
effects are essential in accurately determining the energy, and
for H− are sufficient to destroy theJ=0 excited bound state,
which substantiates the concerns put forward in Ref.f6g.
However, we also saw that the bound-state scalingEb
~b2e2/a does apply to positronic H+, which does not have a
field-free bound state. This is consistent with the intuition of
Ref. f6g that this scaling applies to ions without field-free
bound states, such as positronic H+ or He−, but may not
apply to ions with such states.

Referencesf1,4,6g were also concerned withJÞ0 excited
states, for which the effects of symmetry and ground-state

FIG. 3. sColor onlined k̄1 for different values ofM and«, evalu-
ated for the excitedJ=0 singlet state of H−. Dashed lines corre-
spond to oddM.

FIG. 4. k̄2 for different values ofM and«.

FIG. 5. sColord k/b for different values ofM and « for the
singlet state of H−. Dashed lines correspond to oddM.

FIG. 6. Ground-state energy of H−, in atomic units, versus« for
different values ofM.
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overlap are not important. In fact, it is worth noting thatJ
Þ0 bound states can also be derived using a straightforward
modification of the variational functions employed in Eqs.
s5d–s8d, and that the resulting bound-state energies closely
follow those of Ref.f1g, particularly forJ@1.

III. DISCUSSION

The positron affinity to hydrogen given by Eq.s2d was
calculated assuming that the proton was fixed at the origin.
However, for such weak binding, motional effects of the cen-
tral proton can be quite important. For example, it is well
known that motion of the central proton couples to the pos-
itron motion through the magnetic fieldf4,5,8–12g, and this
can, in certain circumstances, excite the positron into the
continuumf4,5,8,9g.

In addition, effects due to motion of the proton may be
expected to shift the bound-state energy given by Eq.s2d.
Considerable effort has gone into calculating these shifts for
ground-state H− f10–13g, where they are observed to reduce
the affinity. For smallb the largest shifts are due to mass
polarization terms and zero-point ion cyclotron energy, and
are of orderm/M andbm/M f10g. If this is also the case for
magnetically bound ions, then magnetically bound states
may exist only forb larger than some value that depends on
m/M f4g. On the other hand, one cannot rule out that the
finite-nuclear-mass shifts mightincreasethe binding energy
of magnetically bound ions, although this seems unlikely,
particularly in light of the stability limits discussed in Refs.
f4,5,9g. A definite answer to this important question must
await further calculations.

The outer charge in a magnetically bound ion could be
lost through field ionization due to ambient or applied elec-
tric fields. Since binding in the axial direction is weak, elec-
tric fields in the axial direction are most important. A
straightforward calculationf14g of the ionization rate due to
an axial electric fieldF yields, for small fields, an ionization
rate given in atomic units by

nion = k2e−2k3/3u«u, s52d

where«=Fa2/e; or in Gaussian units by

nion = 1.843 1017 Hz 3 b2e−s1.073108b3d/Fsstatvolt/cmd,

where we have used the valuek=2.11b, from Table I. This
field ionization rate is very large unless the electric field is
very small, or the magnetic field is very large. ForB=10 T,
a field F=13 mV/m givesnion=1 s−1.

Another positron loss process is annihilation with the
bound electron. However, since the positron is only weakly
bound to the ion, this loss process is rather slow. One can
estimate the positron lifetime using known results for the
annihilation rate of a low-energy positron in a hydrogen gas
f15g,

nH = pr0
2c ZeffnH,

wherer0 is the classical electron radius,nH is the density of
the hydrogen gas, andZeff.8 for atomic hydrogen. Turning
this around, we can obtain the annihilation rate of a hydrogen
atom in a positron gas of densitynp as

np = pr0
2cZeffnp.

Finally, to estimate the lifetime of the positronic ion, we treat
the weakly bound positron as a low-density gas with density
of roughlyx0

2 sneglecting the correlation effects contained in
Dc, since these are presumably approximated byZeffd. This
gives us an annihilation rate of

TABLE III. k̄2 max versusM.

M k̄2 max « at which k̄2= k̄2 max

7 7.17 0.343

8 7.39 0.318

9 7.47 0.304

10 7.59 0.284

11 7.64 0.269

12 7.72 0.257

13 7.75 0.243

14 7.80 0.233

` 8.3±0.4

TABLE IV. k̄1 versusM.

M k̄1 at «=0.6 k1 at «=0.7 k̄1 at «=0.8 k̄1 at «=0.9

7 −20.508 −20.075 −19.230 −18.086

8 −21.110 −20.666 −20.020 −19.140

9 −20.869 −20.751 −20.391 −19.794

10 −21.158 −20.985 −20.712 −20.277

11 −20.984 −20.969 −20.834 −20.556

12 −21.146 −21.073 −20.962 −20.764

13 −21.028 −21.040 −20.995 −20.874

14 −21.129 −21.093 −21.048 −20.962

` −21.1±0.05 −21.1±0.05 −21.2±0.04 −21.4±0.06
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np <
r0

2cZeffkb

2a3 = 8.5
r0

2cb2

a3 , s53d

where we have used the value fork from Table I, andZeff
=8.

For bound positronic states, the exact annihilation rate can
be evaluated using the formulaf16g

np =
pr0

2c

a3

kcudsr 1 − r 2ducl
kcucl

.

The required inner products can be simplified using Eqs.s7d
and s12d:

np =
r0

2c

a3 x0
2E d3r1fe−r1 + Dcsr 1,r 1dg2,

where we have dropped terms ofOsb3d or higher, and have,
as usual, approximatedxsr1,z1d by x0 in the integral. The
integral can be evaluated analytically using Eqs.s23d, s25d,
ands26d, and the properties of Laguerre polynomials. Keep-
ing terms in the sums up toM =14, we find that the integral
asymptotes to 27±0.3. Thus,

np =
s27 ± 0.3d

2p

r0
2c

a3 kb. 9.1
r0

2c

a3 b2,

=1.53 1011b2 s−1, s54d

in close agreement with the estimate of Eq.s53d. In a mag-
netic field of 10 T,np=0.03 s−1.

Finally, we note that the variational perturbation method
used here can be generalized to magnetically bound ions
with more electrons, such as He−, or positronic He+. Given
the larger number of degrees of freedom in these ions, the
wave function can no longer be described using basis func-
tions expressed in perimetric coordinates; but other basis
functions are available, such as correlated Gaussian basis
functions. Although such basis sets have been used exten-
sively to obtain accurate results for ionic energy levelsf17g,
our calculation for positronic H+ indicates that high-accuracy
wave functions are required in order to achieve even moder-
ately accurate affinities:M =18 corresponds to a basis set of
6859 functions, required to achieve 4% accuracy in the pos-
itron affinity. Evidently, the affinity is strongly affected by
fine details in the wave function. It remains to be seen
whether such fine detail is achievable in calculations with
larger numbers of electrons.
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