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Regional Maximum Entropy Theory of Vortex Crystal Formation
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Experiments on pure electron plasmas have found that the decay of 2D turbulence can lead
spontaneous formation of “vortex crystals,” which are symmetric arrays of strong vortices within a
background of weaker vorticity. In this paper we show that these vortex crystals can be described
regional maximum fluid entropy states. The theory explains the observed patterns of the vortex crysta
as well as the vorticity distribution of the background. [S0031-9007(98)06133-X]

PACS numbers: 52.35.Ra, 05.45.+b, 47.15.Ki, 47.32.Cc
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The free relaxation of turbulence in inviscid, incom
pressible 2D fluids is an active area of research, with a
plications to geophysical and astrophysical flows. T
evolution of these fluids is described by the 2D Eul
equation≠tv 1 v ? =v ­ 0, where vsr, td ­ ẑ ? = 3

vsr, td is the vorticity of the flow, and̂z is a unit vec-
tor normal to the plane of the flow. The stream functio
csr, td determines the velocity byv ­ = 3 cẑ, and is
related to the vorticity via the Poisson’s equation

=2c ­ 2v . (1)

In recent years, two competing theories have been p
posed to describe the free relaxation of 2D turbulence. O
is the global maximum fluid entropy (GMFE) theory [1]
which states that the turbulent flow can be thought of a
collection of nonoverlapping, incompressible microscop
vorticity elements that become ergodically mixed in th
relaxed state. The other theory is the punctuated sc
ing theory (PST) [2], which states that the turbulent flo
is dominated by well separated strong vortices (inten
patches of vorticity), whose dynamics can be described
the Hamiltonian dynamics of point vortices punctuated
occasional mergers of like sign strong vortices.

However, neither of these theories provides a co
plete description for all 2D turbulent flows. This is clearl
ding
FIG. 1(color). Top: examples of experimental images of vortex crystal states (taken from Ref. [3]). Bottom: correspon
regional maximum fluid entropy states. False color contour plots of vorticity are displayed.
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demonstrated by the recent experimental discovery
“vortex crystals” in a magnetized pure electron plasm
column. The electrons evolve as a nearly inviscid, in
compressible 2D Euler flow in a circular domain with a
free-slip boundary, with the unusual characteristic of
single sign of vorticity, giving a nonzero total circulation.
Initial conditions are chosen so that strong vortices form
due to a Kelvin-Helmholtz instability. The strong vor-
tices move chaotically due to mutual advection, resultin
in pairwise merger events and the formation of filamen
tary structures. These filaments are mixed by the flow
forming a low vorticity background. This turbulent flow
then relaxes spontaneously to a vortex crystal equilibrium
in which a number of strong vortices remain and form
stable pattern in the low vorticity background. The pat
tern persists for104 turnover times of the column, until
dissipation effects destroy the individual strong vortice
[3]. Several experimental images of the vortex crysta
are displayed in the top row of Fig. 1.

Clearly, the GMFE theory cannot explain the vortex
crystals, since the theory predicts a smooth vorticit
distribution without strong vortices [1]. On the other
hand, the PST predicts a power law decrease over tim
of the number of strong vortices [2]. This agrees with
the early evolution of the experimental flow [3], but
the theory does not explain why several strong vortice
© 1998 The American Physical Society
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remain and fall into an equilibrium pattern in the fina
state of the turbulent relaxation.

In this paper we propose that these two theories shou
work together to describe turbulent flows like thos
leading to the formation of vortex crystals. The ke
idea is to recognize that some regions of the flow a
well mixed, while other regions are not. The stron
vortices ergodically mix the background, driving it into
a state of maximum fluid entropy. This mixing, in return
affects the punctuated dynamics of the strong vortice
“cooling” their chaotic motions, and driving them into an
equilibrium pattern. However, the vorticity in the strong
vortices is trapped and remains unmixed. The resulti
equilibrium is called a “regional” maximum fluid entropy
(RMFE) state, in order to distinguish it from the GMFE
state that allows no unmixed regions and hence no stro
vortices. In the rest of the paper, we first characterize t
RMFE states, and then show that the vortex crystal sta
are well described by RMFE theory. Detailed aspects
the theory will be presented in a forthcoming paper [4].

The quantities that determine the RMFE state includ
the conserved quantities of the flow that survive coar
graining: the (nonzero) total circulationG ­

R
dr2v, the

angular momentumL ­ 2
R

dr2 vr2y2 (conserved since
the flow is bounded by a free-slip circular boundary
and the energyH ­

R
dr2jvj2y2 ­

R
dr2 cvy2. Also,

the vorticity levels of the microscopic vorticity elements
making up the background must be specified.

In addition to the above quantities, we need to kno
the numberM of the surviving strong vortices and the
vorticity distribution in each of them. These propertie
of the strong vortices depend on the details of the ea
evolution of the flow, and lie beyond the scope of ou
statistical theory. Here we focus on the evolution of th
flow after mergers of the strong vortices have cease
Then two properties of the flow can be predicted based
the RMFE theory: the coarse-grained vorticity distributio
of the backgroundvbsrd, and the equilibrium positions of
the strong vorticesRi , i ­ 1, . . . , M.

The equations that characterize the RMFE states a
obtained by maximizing the fluid entropySfvbsrdg asso-
ciated with the coarse-grained background vorticity distr
butionvbsrd. The entropy can be calculated by countin
the number of ways of arranging microscopic vorticit
elements to obtain the given coarse-grained vorticity. F
the simplest case of vorticity elements all having th
same positive vorticityvf , the entropy is [1]Sfvbsrdg ­
2

R
dr2hpsrd ln psrd 1 f1 2 psrdg lnf1 2 psrdgj, where

psrd ; vbsrdyvf . The second term is due to the incom
pressibility of the vorticity elements, and does not appe
in the usual (Boltzmann) expression of the entropy for
compressible flow.

The maximization of S while keeping H, L, and
G constant is done by finding the extrema ofS0 ;
S 2 bsH 2 VL 1 mGd with respect to the independen
variableshRij and vbsrd [5]. Here b, V, and m are
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Lagrange multipliers that can be interpreted as inve
“temperature,” rotation frequency, and the chemic
potential, respectively. The extrema ofS0 with respect to
hRij are given by

≠S0

≠Ri
­

≠

≠Ri
sH 2 VLd ­ 0 . (2)

SinceH 2 VL is the Hamiltonian of the system in a fram
rotating at frequencyV, Eq. (2) shows that in the RMFE
state the velocities of the strong vortices are zero in t
rotating frame; in other words, the strong vortices are
equilibrium, rotating rigidly at frequencyV.

The extremum ofS0 with respect tovbsrd is given by
dS0 ­ 0, i.e.,

R
dr2hln psrd 2 lnf1 2 psrdg 1 bvffj 3

dvbsrd ­ 0 for small, arbitrarydvbsrd, wheref ; c 1
1
2 Vr2 1 m is the stream function in the rotating frame
Therefore,

vbsrd ­ vfysebvf f 1 1d . (3)

This is very similar to the Fermi distribution in quantum
statistics, which is not unexpected since the microsco
vorticity elements are incompressible.

Equations (2) and (3) characterize the RMFE states, a
contain vortex crystal solutions. This is illustrated for ze
temperature (b ! 1`). In this case, there are two type
of solutions. One is a shear-free (Boltzmann) equilibriu
with f ­ 0 in the background, and the other solutio
is a Fermi-degenerate equilibrium withf ­ 0 only on
the boundaries of the background (inside the backgrou
f , 0, and outsidef . 0). Which solutions one obtains
depends on the values of the conserved quantities [4].

For the Boltzmann equilibrium, Eq. (3) implies tha
vbsrd is constant within the background, and is less th
vf . Also, sincef ­ 0 in the background, every strong
vortex is completely shielded by a circular “hole,” which i
a circular region that excludes the background with rad
chosen so that the average vorticity of the strong vort
taken over the hole equals the background vorticity. T
strong vortices can take arbitrary (but nonoverlappin
positions, so no vortex crystal state forms in this case. T
is also the only type of solution at zero temperature if t
Boltzmann distribution, rather than Eq. (3), is used.

For the Fermi degenerate equilibrium, Eq. (3) implie
vbsrd ­ vf in the background. As opposed to th
Boltzmann equilibrium, the strong vortices are now eith
partially shielded or unshielded. This can be understo
from the following argument. When the radius of
strong vortex is small,f . 0 on its boundary because
the contribution tof from the strong vortex is positive
and large. Sincef , 0 in the background, a hole mus
therefore form around the strong vortex. However, t
hole cannot cancel out the influence of the strong vorte
becausef changes from positive to negative across t
hole boundary, implying a finite=f exists within the
background. Furthermore, when the radius of a stro
vortex is sufficiently large, it is possible thatf , 0
4435
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on the boundary of the strong vortex. In this case n
shielding hole forms around the strong vortex, and t
vortex is completely unshielded. Since the vortices a
not shielded from each other, Eq. (2) implies that the
interaction sets up a vortex crystal state. The size of t
crystal is determined from Eq. (2) by a balance betwe
the repulsive force between the strong vortices and t
rotational “pseudopotential” force arising from angula
momentum conservation.

We now show that the observed vortex crystals are w
described by RMFE states. From an experimental flo
we first determine the numberM of strong vortices by
counting the clumps with local vorticity extrema muc
larger than the average vorticity of the flow [6]. Next, th
vorticity distribution in theith strong vortex is specified by
the vorticity radial profilezisjr 2 Rijd around the local
extremum. The vorticity profile (rather than merely th
circulation) of each strong vortex is required because t
self-energy of the strong vortex must be included inH.

In order to completely specify the problem, we mu
choose a value for the Fermi vorticityvf associated
with the vorticity elements of the background. In fac
the general theory [1] allows for a distribution of value
for vf , but we have found that a single value i
sufficient to explain the experiments. The value ofvf

is determined by the following two considerations: (i)vf

must be larger than or equal to the maximum observ
background vorticity level, which is coarse grained b
the experimental imaging system; (ii) since the observ
vortex crystal states appear to be nearly Fermi degener
in some finite region of the background the coars
grained vorticity should approachvf . We therefore take
vf ­ vmax, wherevmax is the maximum of the observed
background vorticity. Furthermore, we find that all of th
observed vortex crystal states havevmax ­ 2.15 6 0.05,
apparently because their initial conditions are simila
Therefore,vf ­ 2.15 is used in all of our calculations.
Lengths are scaled byrw (the radius of the circular free-
slip boundary), and vorticities are scaled byGyr2

w .
Along with vf andzi, we also evaluate the conserve

quantities H, L, and G from the experimental flow
FIG. 2. Comparison between theory (solid line) and experiment (symbol¶) for the u-averaged vorticity profiles of the vortex
crystal states in Fig. 1.
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using their previous definitions. These inputs from the
experimental flow determine the corresponding RMFE
state with no free parameters. For fixedvf and zi we
numerically search for the proper values ofb, V, andm

needed to match the experimental values ofH, L, andG.
Specifically, for given values ofb, V, m, and the

positions of the strong vorticeshRij, the stream function
c and the background vorticityvb are found by solving
Eqs. (1) and (3) using the FAS algorithm [7] on513 3

513 uniform grids. The relative error of the solution is
of order1024. The positionshRij are then varied using
Broyden’s method [7] andc andvb are recalculated until
the force-balance criteria, Eq. (2), are satisfied. The initia
guess for the positions of the strong vortices is taken from
the experimental flow. Parametersb, V, andm are varied
using Broyden’s method until the correct values ofH, L,
and G are obtained. Solutions forb, V, m, and hRij
converge within a relative error of order1022.

The RMFE solutions reproduce the observed vortex
crystal patterns, as shown in Fig. 1. Also, the observed
background vorticity is close to the theory, as can be
seen in theu-averaged vorticity profiles of Fig. 2. The
background of these finite temperature solutions has th
following features: the edge falls off gradually, since
the vorticity elements near the edge can fluctuate in energ
by an amount of order1yb; also, near a strong vortex the
background vorticity is slightly depressed, sincef tends
to increase due to the influence of the strong vortex, as ca
be observed around the large central vortex in Fig. 1(d).

Some of the patterns appear to agree more closely wit
the theory than others. There are two natural ways o
quantitatively measuring this accuracy: the deviation of
the crystal geometry and the deviation of the background
vorticity. The geometry deviationG is defined asG2 ­P

ifijsdexp
ij 2 dth

ij d2yMsM 2 1d, whered
exp
ij anddth

ij are the
distances between theith and thejth strong vortices in
experiment and in theory, respectively. The background
deviation B is defined asB2 ­

R
dr2 vbsrd fvexp

b srd 2

vbsrdg2y
R

dr2 vbsrd, where v
exp
b srd and vbsrd are the

vorticity distribution of the background in experiment and
in theory, respectively. Here the region of integration
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FIG. 3. The evolution of the geometry deviationG (symbol
1) and the background deviationB (symbol ¶) for the flow
discussed in Ref. [1]. Symbolsa,b,c,d,e(for geometry devia-
tions), andA,B,C,D,E(for background deviations) correspond
to the states shown in Fig. 1.

excludes regions occupied by the strong vortices both
experiment and in theory. The average is weighted
vbsrd in order to reduce the experimental noise from th
regions of low vorticity.

The values of these deviations for the vortex crysta
displayed in Figs. 1 and 2 are indicated in Fig. 3 a
the times when the patterns were observed. HeretR ­
170 ms is the bulk rotation time of the fluid as in Ref. [3].
The deviations in Figs. 1(e) and 2(e) are relatively larg
We argue that this is because these data were taken
an early time, and the flow has not yet settled into th
RMFE state. To justify this claim, we have analyze
the time evolution of the flow that led to vortex crystal
discussed in Ref. [3]. For each experimental image
this flow after strong vortices have formed, geometry an
background deviations from the corresponding RMFE sta
were calculated. The results are shown in Fig. 3, whic
clearly show that the deviations decrease as time elaps
The dynamics leads the system towards RMFE states.

In conclusion, the following physical picture of vortex
crystal formation emerges from our analysis: an initiall
unstable vorticity profile breaks up into many strong vo
tices. While these strong vortices undergo chaotic mer
ers described by the PST, they also ergodically mix th
low vorticity background. The mixing of the background
in return, cools the chaotic motions of the strong vortice
and drives the strong vortices into a vortex crystal equilib
rium. This picture shows that the interaction between th
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strong vortices and the background, a process neglected
the PST, can be important in understanding the relaxati
of 2D turbulence. It also shows that fluid entropy maxi
mization can provide useful results for the relaxed sta
[8], provided that one recognizes that in general only ce
tain parts of the flow may be well mixed.

However, there are questions that remain to be a
swered. In the paper we have assumed that the mic
scopic vorticity elements have the same vorticity levelvf .
It is important to understand why this simple assumptio
works so well. Also, the dynamics of the backgroun
mixing and the rate at which the strong vortices relax t
the equilibrium patterns should be investigated.
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