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Regional Maximum Entropy Theory of Vortex Crystal Formation
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Experiments on pure electron plasmas have found that the decay of 2D turbulence can lead to
spontaneous formation of “vortex crystals,” which are symmetric arrays of strong vortices within a
background of weaker vorticity. In this paper we show that these vortex crystals can be described as
regional maximum fluid entropy states. The theory explains the observed patterns of the vortex crystals
as well as the vorticity distribution of the background. [S0031-9007(98)06133-X]

PACS numbers: 52.35.Ra, 05.45.+b, 47.15.Ki, 47.32.Cc

The free relaxation of turbulence in inviscid, incom- demonstrated by the recent experimental discovery of
pressible 2D fluids is an active area of research, with ap*vortex crystals” in a magnetized pure electron plasma
plications to geophysical and astrophysical flows. Thecolumn. The electrons evolve as a nearly inviscid, in-
evolution of these fluids is described by the 2D Eulercompressible 2D Euler flow in a circular domain with a
equationd,w + v - Vo =0, wherew(r,r) =2 -V X  free-slip boundary, with the unusual characteristic of a
v(r,t) is the vorticity of the flow, andi is a unit vec- single sign of vorticity, giving a nonzero total circulation.
tor normal to the plane of the flow. The stream functionlnitial conditions are chosen so that strong vortices form
¥ (r,t) determines the velocity by = V X ¢, and is due to a Kelvin-Helmholtz instability. The strong vor-

related to the vorticity via the Poisson’s equation tices move chaotically due to mutual advection, resulting
in pairwise merger events and the formation of filamen-
Vi =-w. (1) tary structures. These filaments are mixed by the flow,

forming a low vorticity background. This turbulent flow

In recent years, two competing theories have been prahen relaxes spontaneously to a vortex crystal equilibrium,
posed to describe the free relaxation of 2D turbulence. One which a number of strong vortices remain and form a
is the global maximum fluid entropy (GMFE) theory [1], stable pattern in the low vorticity background. The pat-
which states that the turbulent flow can be thought of as &ern persists forl0* turnover times of the column, until
collection of nonoverlapping, incompressible microscopicdissipation effects destroy the individual strong vortices
vorticity elements that become ergodically mixed in the[3]. Several experimental images of the vortex crystals
relaxed state. The other theory is the punctuated scabre displayed in the top row of Fig. 1.
ing theory (PST) [2], which states that the turbulent flow Clearly, the GMFE theory cannot explain the vortex
is dominated by well separated strong vortices (intenserystals, since the theory predicts a smooth vorticity
patches of vorticity), whose dynamics can be described bgistribution without strong vortices [1]. On the other
the Hamiltonian dynamics of point vortices punctuated byhand, the PST predicts a power law decrease over time
occasional mergers of like sign strong vortices. of the number of strong vortices [2]. This agrees with

However, neither of these theories provides a comthe early evolution of the experimental flow [3], but
plete description for all 2D turbulent flows. This is clearly the theory does not explain why several strong vortices
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FIG. 1(color). Top: examples of experimental images of vortex crystal states (taken from Ref. [3]). Bottom: corresponding
regional maximum fluid entropy states. False color contour plots of vorticity are displayed.
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remain and fall into an equilibrium pattern in the final Lagrange multipliers that can be interpreted as inverse
state of the turbulent relaxation. “temperature,” rotation frequency, and the chemical
In this paper we propose that these two theories shouldotential, respectively. The extrema$fwith respect to
work together to describe turbulent flows like those{R;} are given by
leading to the formation of vortex crystals. The key oS’ 9
idea is to recognize that some regions of the flow are — =—(H-QL)=0. (2)
well mixed, while other regions are not. The strong IR; IR;
vortices ergodically mix the background, driving it into SinceH — ()L is the Hamiltonian of the system in a frame
a state of maximum fluid entropy. This mixing, in return, rotating at frequency}, Eq. (2) shows that in the RMFE
affects the punctuated dynamics of the strong vorticesstate the velocities of the strong vortices are zero in this
“cooling” their chaotic motions, and driving them into an rotating frame; in other words, the strong vortices are in
equilibrium pattern. However, the vorticity in the strong equilibrium, rotating rigidly at frequenc@.
vortices is trapped and remains unmixed. The resulting The extremum ofS’ with respect tow,(r) is given by
equilibrium is called a “regional” maximum fluid entropy 8S’'=0, i.e., [dr¥{Inp(r) — In[1 — p(r)] + Bwsd} X
(RMFE) state, in order to distinguish it from the GMFE S w,(r) = 0 for small, arbitraryé w,(r), where¢ = ¢ +
state that allows no unmixed regions and hence no stron§Qr> + u is the stream function in the rotating frame.
vortices. In the rest of the paper, we first characterize th&herefore,
RMFE states, and then show that the vortex crystal states . ®
are well described by RMFE theory. Detailed aspects of wp(r) = /(P +1). (3)
the theory will be presented in a forthcoming paper [4]. This is very similar to the Fermi distribution in quantum
The quantities that determine the RMFE state includestatistics, which is not unexpected since the microscopic
the conserved quantities of the flow that survive coarseorticity elements are incompressible.
graining: the (nonzero) total circulatidn = [ dr’w, the Equations (2) and (3) characterize the RMFE states, and
angular momentuni, = — [ dr? wr?/2 (conserved since contain vortex crystal solutions. This is illustrated for zero
the flow is bounded by a free-slip circular boundary),temperature @ — +). In this case, there are two types
and the energyd = [dr?|v]?/2 = [dr’§w/2. Also, of solutions. One is a shear-free (Boltzmann) equilibrium
the vorticity levels of the microscopic vorticity elements with ¢ = 0 in the background, and the other solution
making up the background must be specified. is a Fermi-degenerate equilibrium wih = 0 only on
In addition to the above quantities, we need to knowthe boundaries of the background (inside the background
the numberM of the surviving strong vortices and the ¢ < 0, and outsidep > 0). Which solutions one obtains
vorticity distribution in each of them. These propertiesdepends on the values of the conserved quantities [4].
of the strong vortices depend on the details of the early For the Boltzmann equilibrium, Eg. (3) implies that
evolution of the flow, and lie beyond the scope of ourw,(r) is constant within the background, and is less than
statistical theory. Here we focus on the evolution of thew,. Also, since¢ = 0 in the background, every strong
flow after mergers of the strong vortices have ceasedsortex is completely shielded by a circular “hole,” which is
Then two properties of the flow can be predicted based oa circular region that excludes the background with radius
the RMFE theory: the coarse-grained vorticity distributionchosen so that the average vorticity of the strong vortex
of the backgroundv,(r), and the equilibrium positions of taken over the hole equals the background vorticity. The
the strong vorticeR;,i = 1,..., M. strong vortices can take arbitrary (but nonoverlapping)
The equations that characterize the RMFE states angositions, so no vortex crystal state forms in this case. This
obtained by maximizing the fluid entrog§f w,(r)] asso- is also the only type of solution at zero temperature if the
ciated with the coarse-grained background vorticity distri-Boltzmann distribution, rather than Eq. (3), is used.
bution w,(r). The entropy can be calculated by counting For the Fermi degenerate equilibrium, Eq. (3) implies
the number of ways of arranging microscopic vorticity w,(r) = w; in the background. As opposed to the
elements to obtain the given coarse-grained vorticity. FoBoltzmann equilibrium, the strong vortices are now either
the simplest case of vorticity elements all having thepartially shielded or unshielded. This can be understood
same positive vorticityw ¢, the entropy is [1S[w;(r)] =  from the following argument. When the radius of a
— [dr*{p(r)Inp(r) + [1 — p(r)]In[l — p(r)]}, where strong vortex is small¢ > 0 on its boundary because
p(r) = w,(r)/ws. The second term is due to the incom- the contribution tog from the strong vortex is positive
pressibility of the vorticity elements, and does not appeaand large. Sincep < 0 in the background, a hole must
in the usual (Boltzmann) expression of the entropy for a&herefore form around the strong vortex. However, the

compressible flow. hole cannot cancel out the influence of the strong vortex,
The maximization ofS while keeping H, L, and becausep changes from positive to negative across the
I' constant is done by finding the extrema 8f=  hole boundary, implying a finit&V¢ exists within the

S — B(H — QL + uT') with respect to the independent background. Furthermore, when the radius of a strong
variables{R;} and w,(r) [5]. Here 8, Q, and u are vortex is sufficiently large, it is possible that < 0
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on the boundary of the strong vortex. In this case nausing their previous definitions. These inputs from the
shielding hole forms around the strong vortex, and theexperimental flow determine the corresponding RMFE
vortex is completely unshielded. Since the vortices arestate with no free parameters. For fixeg and {; we
not shielded from each other, Eq. (2) implies that theimumerically search for the proper values®f ), and u
interaction sets up a vortex crystal state. The size of theeeded to match the experimental valuegfof., andI".
crystal is determined from Eq. (2) by a balance between Specifically, for given values of3, 1, w, and the
the repulsive force between the strong vortices and thpositions of the strong vorticeR;}, the stream function
rotational “pseudopotential” force arising from angular ¢ and the background vorticity, are found by solving
momentum conservation. Egs. (1) and (3) using the FAS algorithm [7] 613 X

We now show that the observed vortex crystals are welf13 uniform grids. The relative error of the solution is
described by RMFE states. From an experimental flowpf order 1074, The position{R;} are then varied using
we first determine the numbe of strong vortices by Broyden’s method [7] angs andw,, are recalculated until
counting the clumps with local vorticity extrema much the force-balance criteria, Eq. (2), are satisfied. The initial
larger than the average vorticity of the flow [6]. Next, the guess for the positions of the strong vortices is taken from
vorticity distribution in theith strong vortex is specified by the experimental flow. Parametggs(), andu are varied
the vorticity radial profile;(Jr — R;|) around the local using Broyden’'s method until the correct valuesthfL,
extremum. The vorticity profile (rather than merely theand I are obtained. Solutions fo8, Q, u, and {R;}
circulation) of each strong vortex is required because theonverge within a relative error of ordéo 2.
self-energy of the strong vortex must be includedin The RMFE solutions reproduce the observed vortex

In order to completely specify the problem, we mustcrystal patterns, as shown in Fig. 1. Also, the observed
choose a value for the Fermi vorticity, associated background vorticity is close to the theory, as can be
with the vorticity elements of the background. In fact, seen in thef-averaged vorticity profiles of Fig. 2. The
the general theory [1] allows for a distribution of values background of these finite temperature solutions has the
for ws, but we have found that a single value isfollowing features: the edge falls off gradually, since
sufficient to explain the experiments. The valuewf the vorticity elements near the edge can fluctuate in energy
is determined by the following two considerations:di} by an amount of ordet/g; also, near a strong vortex the
must be larger than or equal to the maximum observethackground vorticity is slightly depressed, singetends
background vorticity level, which is coarse grained byto increase due to the influence of the strong vortex, as can
the experimental imaging system; (ii) since the observedbe observed around the large central vortex in Fig. 1(d).
vortex crystal states appear to be nearly Fermi degenerate, Some of the patterns appear to agree more closely with
in some finite region of the background the coarsethe theory than others. There are two natural ways of
grained vorticity should approaah;. We therefore take quantitatively measuring this accuracy: the deviation of
Wf = Wmax, Wherewmax is the maximum of the observed the crystal geometry and the deviation of the background
background vorticity. Furthermore, we find that all of the vorticity. The geometry deviatiow is defined axG? =
observed vortex crystal states hawga = 2.15 = 0.05,  Y..2;(d;;" — dif)*/M(M — 1), whered;;" andd;} are the
apparently because their initial conditions are similardistances between thigh and thejth strong vortices in
Therefore,w; = 2.15 is used in all of our calculations. experiment and in theory, respectively. The background
Lengths are scaled by, (the radius of the circular free- deviation B is defined asB? = [dr? w,(r)[w; (r) —
slip boundary), and vorticities are scaled Byr2. w,(0)/ [ dr? w,(r), where w;, '(r) and w,(r) are the

Along with w; and ¢;, we also evaluate the conserved vorticity distribution of the background in experiment and
qguantities H, L, and I' from the experimental flow in theory, respectively. Here the region of integration
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FIG. 2. Comparison between theory (solid line) and experiment (sympdbr the 6-averaged vorticity profiles of the vortex
crystal states in Fig. 1.
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FIG. 3. The evolution of the geometry deviati@n (symbol
+) and the background deviatioB (symbol ¢) for the flow
discussed in Ref. [1]. Symboks,b,c,d,e(for geometry devia-
tions), andA,B,C,D,E (for background deviations) correspond
to the states shown in Fig. 1.

strong vortices and the background, a process neglected in
the PST, can be important in understanding the relaxation
of 2D turbulence. It also shows that fluid entropy maxi-
mization can provide useful results for the relaxed state
[8], provided that one recognizes that in general only cer-
tain parts of the flow may be well mixed.

However, there are questions that remain to be an-
swered. In the paper we have assumed that the micro-
scopic vorticity elements have the same vorticity level
It is important to understand why this simple assumption
works so well. Also, the dynamics of the background
mixing and the rate at which the strong vortices relax to
the equilibrium patterns should be investigated.
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experimental data and for helpful discussions.

excludes regions occupied by the strong vortices both in
experiment and in theory. The average is weighted by
wp(r) in order to reduce the experimental noise from the
regions of low vorticity.

The values of these deviations for the vortex crystals
displayed in Figs. 1 and 2 are indicated in Fig. 3 at
the times when the patterns were observed. Hegre=
170 ws is the bulk rotation time of the fluid as in Ref. [3].
The deviations in Figs. 1(e) and 2(e) are relatively large.

We argue that this is because these data were taken at

an early time, and the flow has not yet settled into the
RMFE state. To justify this claim, we have analyzed

the time evolution of the flow that led to vortex crystals

discussed in Ref. [3]. For each experimental image of
this flow after strong vortices have formed, geometry and
background deviations from the corresponding RMFE state
were calculated. The results are shown in Fig. 3, which

[1] J. Miller, Phys. Rev. Lett65, 2137 (1990); R. Robert and
J. Sommeria, J. Fluid Mect229, 291 (1991); J. Miller,
P.B. Weichman, and M. C. Cross, Phys. Rev43 2328
(1992), and references therein.

[2] G.F. Carnevaleet al., Phys. Rev. Lett66, 2735 (1991);

J.B. Weiss and J.C. McWilliams, Phys. Fluids5A 608

(1993).

[3] K.S. Fine, A.C. Cass, W.G. Flynn, and C.F. Driscoll,
Phys. Rev. Lett75, 3277 (1995).

[4] D.Z. Jin and D.H.E. Dubin (to be published).

[5] The extrema ofS’ can be maxima, saddle points, or
minima. To ensure thatS is maximized under the
constraints, the second variation &f must be negative.
We will discuss this issue in Ref. [4].

[6] J.C. McWilliams, J. Fluid Mech219, 361 (1990).

clearly show that the deviations decrease as time elapseg7] W.H. Presset al., Numerical Recipes in Fortra(Cam-

The dynamics leads the system towards RMFE states.

In conclusion, the following physical picture of vortex
crystal formation emerges from our analysis: an initially
unstable vorticity profile breaks up into many strong vor-
tices. While these strong vortices undergo chaotic merg-
ers described by the PST, they also ergodically mix the
low vorticity background. The mixing of the background,
in return, cools the chaotic motions of the strong vortices,
and drives the strong vortices into a vortex crystal equilib-
rium. This picture shows that the interaction between the

bridge University, Cambridge, England, 1992).

[8] Other variational principles, such as maximization of
Boltzmann entropy [see, for example, R. A. Smith, Phys.
Rev. A 43, 1126 (1991); D. Montgomengt al., Phys.
Fluids A 5, 2207 (1993)] or minimization of enstrophy
[see C. Leith, Phys. Fluid27, 1388 (1984)], have also
been employed to understand the decay of 2D turbulence.
For a review, see M. Brown, J. Plasma Ph$3, 203
(1997). However, these principles cannot be applied to
explain the vortex crystal data of Figs. 1 and 2, and hence
are not discussed here. For details, see Ref. [4].

4437



