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Effect of Nonlinear Collective Processes on the Confinement of a Pure-Electron plasma
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For an electron plasma which is magnetically confined in a cylindrical field geometry, radial ex-
pansion occurs only if the angular momentum of the plasma changes. We discuss nonlinear collec-
tive processes by which perturbing, static, asymmetric fields can transfer angular momentum, but
not energy, to the plasma and produce radial expansion. For example, the field asymmetry can act
as a pump which excites daughter modes via the decay instability. Alternatively, the pump can
drive a mode by induced scattering from particles.

PACS nUmbers: 52.55.Dy, 52.25.Fi, 52.35.Fp, 52.35.Mw
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where rj is the radial position of the jth electron and
hatt is the azimuthal velocity of the jth electron. We

J
~ 1have taken the vector potential Ae(r) = —,Br, corre-

sponding to a uniform axial magnetic field. For the
ordering mentioned above, the mechanical part of the
angular momentum is negligible compared to the vec-
tor potential part, and we can set Ptt = ( —eB/
2c) g rg. To the extent that the field geometry has
cylindrical symmetry, P is conserved and there is a
constraint on the allowed radial positions of the elec-
trons: g r~ =const. The mean square radius of the
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FIG. 1. Plasma confinement geometry.

Recent experiments'2 have involved the confine-
ment of a pure-electron plasma in a field geometry
which is nominally cylindrical. The radial confinement
is provided by an axial magnetic field and the axial
confinement is provided by electrostatic fields which
are due to negatively biased end cylinders; this ar-
rangement is shown in Fig. 1. Because the column is
nonneutral, there is a radial electric field, and this
field, together with the axial magnetic field, produces
an Ex 8 drift rotation of the column. For typical ex-
perimental parameters the cyclotron frequency, plasma
frequency, and rotation frequency satisfy to, » co~

&) co~. Also, the Larmor radius is typically much
smaller than the plasma radius.

To understand radial confinement in such a system,
it is useful to introduce the total canonical angular
momentum for the electrons

plasma can increase only if angular momentum is
transferred to the plasma, that is, only if a torque is ap-
plied. This heuristic argument can be made rigorous.

Of course, in an experiment, the field geometry
lacks perfect cylindrical symmetry; there are static,
weak, perturbing fields which break the symmetry. In
this paper, we discuss nonlinear collective processes
whereby such fields can transfer angular momentum
to the column and produce radial expansion, i.e., in-
crease g gr2. Since recent experiments suggest that
field errors are the dominant source of angular
momentum, ' we neglect all other sources of external
torque, such as electron-neutral collisions.

The nonlinear processes are generalizations of a
linear process which was recently discussed theoretical-
ly4 and observed experimentally. 2 For a rotating
column, a mode can occur which propagates backward
(upstream) on the column and has zero frequency in
the laboratory frame. A field asymmetry, with a
Fourier component e' '~+~ which matches the mode,
can resonantly (i.e. , secularly) drive such a wave to
large amplitude. Because the field asymmetry has zero
frequency (to = 0) and nonzero azimuthal wave
number (lAO), it transfers angular momentum, but
not energy, to the plasma. Correspondingly, the
resonantly driven mode has zero energy and nonzero
angular momentum, that is, W'= AN = 0 and L
= lNe0, where W, L, and N are the mode energy, an-
gular momentum, and action. As the mode grows sec-
ularly, the increasing angular momentum of the mode
is associated with a radial expansion of the plasma, and
this degrades the plasma confinement in various ways.
If the mode amplitude becomes large enough, elec-
trons may be driven into the wall by coherent wave
motion. In addition, the large amplitude modes can
produce an enhanced level of resonant particle trans-
port.

It is important to consider nonlinear generalizations
of this linear process, since a zero frequency eigen-
mode will not generally appear in a bounded plasma
for arbitrarily chosen values of density, magnetic field
strength, column length, etc. The first generalization
treats the field asymmetry as a pump which excites two
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daughter modes via the decay instability. The
daughter modes (one positive energy and one nega-
tive) have zero net energy and nonzero net angular
momentum. The existence of negative energy modes
(or of zero energy modes) is due to the column rota-
tion.

For the basic interaction between a particular error
component of amplitude A3 and two collective modes
A~(t), A2(t), which satisfy resonance conditions co&

+ co2+ hen = 0 and it + l2 = l3, we can anticipate dy-
namics of the form, 6

IS&A t
—IS]ytA ] + V3 2 ]2332 &
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where A t 2
= dA ti2/dt and (') denotes complex conju-

gation. In Eq. (2) yt 2 represents the linear damping,
and a possible detuning from exact resonance (i.e. ,
Acoe0) has been absorbed into the dynamics of A2.
+3 2 $ is the three-wave coupling which involves over-

lap integrals for the mode wave functions, and
possesses the usual symmetries. s 9 (These symmetries
permit the coupling terms to be written as shown. ) St
and S2 are energy sign factors, defined in terms of the
real part of the dielectric function, e'(co), by S
= sgn(Be'/Bcu I„),where a = 1, 2. The amplitudes are

normalized such that the mode energy is H'

=See IA

To determine the threshold of the decay instability,
we solve Eq. (2) holding A3 fixed. The linear eigen-
values, A t, A2 —e"', satisfy (A. —y~) (A. —y2
+inca) = StS2I V3 2 &A3I . The threshold condition,
Re%. = 0, defines a critical pump amplitude, I A 3 I

„'
yiy2 1+ I~~/(yi+y2) j'

(3)

For damped modes (yty2 & 0), StS2= + 1 is a neces-
sary condition for the instability. St= S2, together
with the resonance condition cut = —co2, implies one
daughter is positive energy, and the other negative en-
ergy.

As in the case of linear resonance, the angular
momentum of the column changes due to the
daughter wave momentum, Ptt = St l~ I & ) I'+ S2l2I ~ z I

Neglecting the damping, which simply transfers this
angular momentum to the resonant particles, Eq. (2)
implies dP~/dt = S, (l&+ lz) d IA & I /dt Obvi. ously the
sign of Pe depends on S& which may be evaluated
from simple physical considerations. The rotation cor-
responds to a beam in the azimuthal direction, and we
expect waves traveling more slowly than the column
but in the same direction to carry negative energy,
W & 0." For such modes, the angular phase velocity
(0= co/l) satisfies catt & 0 ) 0, and the energy sign is
sgn( 8') = sgn[(co —

lcutt )co]; thus S = sgn(cu —lcutt ).
This prescription for S may be verified analytically.
The sign of dPtt/dt is then given by

S, (l, +l, ) = —S, (~, —l,~„+~,—l,~„)/~, = —(I~, —l,~„I+I~, —lzco, I)/~, & 0, (4)

where St= S2, cot+cu2=0 have been used. Thus, the
angular momentum of the column is reduced, APz
& 0, which implies that 5 (gj rj2) & 0 from Eq. (1).

In a second generalization, one of the daughter
modes is in effect replaced by resonant particles. The
field asymmetry acts as a mode which undergoes in-
duced scattering off of resonant particles into another
mode, or equivalently, the field error and the other
mode undergo nonlinear Landau damping by the
resonant particles. For finite columns, which neces-
sarily have discrete frequencies, this second mechan-
ism can occur more generally than the decay instability
because the resonance condition co&+ co2 = 0 is not re-
quired. These two processes are not exhaustive
(higher-order analogs are obvious), but are illustrative
of the kind of nonlinear effects that can degrade plas-
ma confinement.

To analyze quantitatively such nonlinear effects, we
have modeled the experimental plasma which was
used to demonstrate the linear resonance between a
field error and a mode. 2 For this model, we consider a
cylindrically symmetric, quiescent electron column of
length 2L. The radial variation of the plasma occurs
on a scale which is much larger than a Larmor radius,

but is otherwise arbitrary. The column ends (at
z = + L) are assumed to be flat, that is, at right angles
to the applied field B= Bz. Consistent with the order-
ing co, » co~ && au~, the electron motion perpendicu-
lar to B is an ExB drift. Along field lines, the elec-
trons stream freely subject to specular reflections at
the ends of the column.

Prasad and O' Neil calculated the low-frequency
(co ~ co~) electrostatic modes of this model by use of
an expansion in R/L where R is the radius of the con-
tainment vessel. ' Because the equilibrium is invariant
under z —z and with respect to v, —v„ the
modes may be assumed to be either even or odd func-
tions of z. The e component of the dielectric tensor
is of order (co~/co&) )& 1, and this large response
parallel to B forces the z component of the mode elec-
tric field to satisfy B@/BzI~,~=t, —0 as e 0. In
zeroth order, the even (odd) modes take the form,
P Ik„(r) e" coskz (sinkz), appropriate to an infinite
length column (varying n changes the number of radial
nodes). The only effect of finite column length is the
restriction of allowed k values required by the dielec-
tric response, i.e., for m = 0, 1, 2, . . . , k = m m/L for
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coskz modes and k= (m+ ,' )—7r/L for sinkz modes.
Thus to analyze the nonlinear couplings between these
zero-order modes, or between these modes and exter-
nal field asymmetries, it is necessary to discretize the k
values correctly, but otherwise the column may be re-
garded as infinite.

Treating both field asymmetries and nonlinear cou-
plings as perturbations of the linear modes, we have
derived the resulting dynamics for the wave ampli-
tudes. This derivation will be given in a longer publi-
cation. s In brief outline, we have followed earlier
theories'3'" by iteratively solving the electron drift
kinetic equation to obtain the perturbed guiding center

distribution function as an expansion in the electro-
static potential. When this distribution is used in
Poisson s equation, a nonlinear equation is obtained
for the potential. The solution of this nonlinear equa-
tion for the mode amplitudes is facilitated by expand-
ing the radial dependence of the potential in the radial
eigenfunctions of the plasma, denoted P Ik„(r, co )
above. In Poisson's equation, the presence of electro-
static field errors is included through the boundary
condition on the potential at the wall. The dynamics
of the slowly varying amplitudes of the even and odd

modes, Alk„+ (r) and AIk„(t), respectively, may be
cast into the form of Eq. (2)

iS 3 t+-~=iS y 2 ~ —+~ + X exp[i(o) —o) —cu „)t]7i, „V, „(2,+ 2,+-, +3, 3,+-, )

where n denotes the triplet of indices (Ikn) labeling the even or odd mode. In writing Eq. (5), the conversion
from plane waves e'~ to even and odd modes has introduced the combinatorial factor

, &„„,,„„(I+ n„, ,) (I+n„„,)/2( I + a„,).
The three-wave coupling is

r
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The matrix element is

t R dviM', „=—,
'

J~ rdrQ Jl (I, +I,. ),

where

I i Ii:k Q ri + l'
A «X 'v rQl rC

—l"P «
r

and X,—= [k'B„Fo—(l'/r~, )B,Fo]. Fo(r, v) is the guiding center equilibrium distribution (v—= v, ), d —= kv—(cu —leo& ), and the contour C is defined by co+ i 0. The dielectric function e = e' + i e", where

t
A

e„=J rdr
t By

' ' iz, 4~, 2 ~ » [k B„Fo (i/r ~, )B,Fo] '—
Br m

generalizes the previous result of Keinigs, and determines co, y, and S by e (cu + i y ) = 0 and
f 1

B~.' ." »Fo(r, v)S =sgn =sgn P J +0
B (co~ ildg k v ) (10)

From this result for S, for Jo monotonically decreas-
ing in ~v ~, we recover the relation S =sgn(co —lcm~)
proposed earlier on physical grounds. We omit here
the lengthy formulas for the four-wave and induced
scattering couplings. s Numerical investigations of the
dispersion relation for this model in the cold fluid limit
indicate that the resonance conditions for the decay

instability can be satisfied at experimentally relevant
parameters.

We have argued that nonlinear effects allow field
asymmetries to exert torques on a rotating electron
plasma column by exciting collective modes. The
resulting transfer of angular momentum allows a bulk
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radial expansion of the column. As the physical basis
of these mechanisms is quite general, they may be
relevant to other forms of rotating plasma such as the
central cell plasma of a tandem mirror.

This material is based upon work supported by the
Department of Energy under Contract No. DEAT03-
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