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The free energy of the classical one-component plasma is calculated analytically in the crystalline

phase for both fcc and bcc lattices to 0( T'), where T is the temperature. By application of thermo-
dynamic perturbation theory, we explicitly evaluate the effect of three- and four-phonon interac-
tions on the partition function. Periodic boundary conditions are applied to make contact with pre-
vious numerical work, in which the O(T ) term was assumed to be negligible. We find that it is
much larger than previously thought. This increases the thermodynamic stability of the crystal
phase over previous estimates.

I. INTRODUCTION

The infinite homogeneous one-component plasma
(OCP) is a system of like charges immersed in a uniform
neutralizing background that ensures overall electrical
neutrality. The OCP is of interest both from the stand-
point of the statistical mechanics of strongly interacting
systems and as a simple model of ionized matter, useful in
describing several systems of astrophysical importance
(such as the outer crust of neutron stars), as well as mag-
netically confined non-neutral plasmas, liquid metals,
etc. ' Particular theoretical emphasis has been placed on
the classical regime of strong correlation, in which the
correlation parameter I =—e /akT —the ratio of the ki-
netic to potential energy per charge —is larger than unity
(here e is the charge, T the temperature, and a the
Wigner-Seitz radius; ~4ma n =1 where n is the density).
In this regime theory predicts that for I ~2 the system
exhibits short-range order characteristic of a liquid, and
that for I =I „;,a first-order phase transition to a body-
centered-cubic (bcc) crystal occurs. " The current pre-
diction for I „;„based on the results of Monte Carlo
(MC) computer simulations, is I „;,= 178—180.

This paper presents an analytic calculation of the free
energy of the solid phase, asymptotically valid to 0 ( T )

in the classical regime. The calculation is motivated by
the fact that the MC-based estimates of I „;,rely on the
assumption that the 0(T ) term is very small. Indeed,
several authors have assumed that it is identically
zero. We find that this term is in fact much larger
than previously thought. At the phase transition this
term contributes over half of the anharmonic internal en-
ergy. When our calculated values for this term are added
to the simulation results for the internal energy of the
solid phase, the thermodynamic stability of the solid
phase is increased over previous estimates, leading to a
decrease in I „;,to I,„;,-172.

In order to make contact with the simulation results,
our calculation is performed for a finite number of
charges, N, in periodic boundary conditions. ("fhe simu-
lations use periodic boundary conditions in order to ap-

proximate the infinite OCP. ) The N dependence of each
term in the internal energy expansion is evaluated exact-
ly, and the N~ ~ limit is also determined.

Studies of N dependence in OCP MC simulations have
previously involved semiempirical estimates based on the
numerical data. Our calculation attempts to set the
theory of the N dependence on a more solid footing, and
also provides exact results for this N dependence in the
crystalline phase at large I. Results are presented for
both bcc and face-centered-cubic (fcc) lattices.

The 0 ( T ) term in the free energy gives the lowest-
order correction due to anharrnonicities in the lattice vi-

brations. Such anharmonic corrections have been the
subject of several interesting theoretical studies. While
most involve rather severe approximations in order to ob-
tain a tractable theory, a paper by Albers and Guber-
natis is of particular interest since it also presents an ex-
act calculation of the N ~ ~ limit of the 0 ( T ) term for
a bcc lattice. The authors also obtain a nonzero value for
this term; however, their result is approximately a factor
of 3 smaller than ours. We have carefully checked their
calculation, but the origin of the error is unknown. As
we will later argue, both results are consistent with
present MC data and more MC data are needed in order
to differentiate between the two results.

Anharmonic corrections to the free energy have also
been studied extensively through the previously men-
tioned MC computer simulations. These simulations
determine the free energy by first calculating numerical
values for the internal energy per charge, U/N, in both
the solid and liquid phases at various values of I . An in-
terpolation formula is then applied to connect these
points and the free energy F is obtained by numerical in-
tegration via the equation

F(I ) 1&d~, 1 U(I ) F
NkT "~o I ' NkT NkT

For the case of the solid phase I 0 is chosen suSciently
large so that Fo is given by the results of harmonic lattice
theory. The interpolation formula used for the internal
energy in the solid phase is based on an asymptotic ex-
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pansion of U in the small parameter 1/I

A) A2=A, r+A, + + +
NkV ' ' I

where A, is one-half of the Madelung energy per ion of
the equilibrium lattice and Ao =3—3/(2N) is the contri-
bution of harmonic lattice vibrations (i.e., phonons in the
ideal gas limit). Higher-order terms represent anharmon-
ic corrections to the energy; A, is the lowest-order
anharmonic correction. Numerical values for these
anharmonic corrections are obtained by fitting to the MC
data. However, the values are based entirely on MC data
in the range of 160 I 300, and for N~686. Within
this limited range of I it is found that the MC data can
be well fitted by keeping only A, and A2, and in fact it is
found that A, =0 is consistent with the MC data. "
However, we will argue that our nonzero A

&
values are

also consistent with present MC data and that more data
at higher I values are needed to obtain an accurate inter-
nal energy interpolation formula for the OCP solid phase.

The first part of this paper presents an analytic calcula-
tion of the first-order anharmonic coeScient A, for bcc
and fcc lattices, as well as a discussion of the N depen-
dence of the harmonic and anharmonic terms. In order
to make contact with the MC results, the calculation is
performed for N charges in a cubic cell of side L with
periodic boundary conditions. For the bcc lattice, this
limits N values to N =2M where M is any positive in-
teger; for the fcc lattice, N =4M (these values of N allow
the lattice to fit into a cube without inducing disloca-
tions). The charges are assumed to be in equilibrium with
a heat bath at temperature T. N-dependent terms are
evaluated exactly without recourse to the N ~ ~ limit, so
that results for the free energy per charge in the finite-N
system are exact (for instance, the results hold for the
M =1 case, a system of only four periodically repeating
charges in the fcc case or two charges in the bcc case).
We also determine the N~ ~ limit for A, , finding that
for the bcc lattice, limz A, =10.84, and for the fcc
lattice, lim~ „A,= 12.35.

In the second part of the paper we investigate the effect
of our new values for A, on I „„.We find that a simple
interpolation model for the free energy based on the MC
results of Ref. 3 and our analytic values for A

~
shifts the

liquid —bcc-lattice phase transition to I „;,-172 from the
previous values ' of 178—180. A similar analysis for the
fcc lattice using published MC data for the fcc internal
energy' along with our analytic points implies that the
fcc phase becomes more stable than the liquid phase at
I -182, as opposed to the previously published value of
196. However, these values are only estimates since, as
we will see, more MC data are required at large I in or-
der to obtain an accurate interpolation model for the
solid-phase internal energy.

Section II describes details of the perturbation calcula-
tion. Section III explores the liquid-solid phase transi-
tion. In Appendix A intermediate results involving lat-
tice sums are derived. In Appendix B we consider
0(1/N) corrections to our expression for A, , and in Ap-
pendix C we employ the Ewald method to obtain expres-

sions for fast convergence of sums over the Coulomb in-
teraction.

II. PERTURBATION EXPANSION
OF THE CRYSTALLINE OCP FREE ENERGY

In this section we apply the well-known formalism of
thermodynamic perturbation theory' in order to deter-
mine a power-series expansion of the free energy F in the
inverse correlation parameter I '. However, unlike past
treatments, we do not take the N ~ ac limit of the expan-
sion. The free energy may be found from the partition
function Z through the equation F = —kT lnZ. The par-
tition function is determined as a sum over a complete set
of quantum states of the density operator

Z =Tr(e -"~"') (3)

where

N p.
(xi~pl»xN~PN) g @(xl»xN) ~

i 2m
(4a)

and where 4 is the potential energy of the ions (including
the effect of the uniform neutralizing background) and x;
and p; are the position and momentum of the ith ion.
The potential can be decomposed into a sum over two-
particle interactions:

(4b)

where P is given by

2 &m /f x

f
(5)

and where v =L and the vectors f =2m(l, m, n. )/LV in-
tegers I, m, n are the reciprocal-lattice vectors for the cu-
bic cell. (The prime on the sum indicates that the f =0
term is absent due to the effect of the neutralizing back-
ground charge. ) The term U, is the Madelung
"self-energy" of the charge due to its own periodically re-
peating images in other cubic cells; U,
= —1.761 19e /(N' a).

In order to expand F/NkT in an asymptotic series in
I ', we follow the usual approach by first assuming
charges are confined to small excursions u, about equilib-
rium positions x, . We then expand H in the change in

positions, using x, =x; +u, . The result is

H=H +AV . (6)

Here H is the Hamiltonian in the "harmonic approxi-
mation":

0H (Ul, pl, . . . , U1V, plV )

=@"+g ' + —,'g V, V, @ .u, u, , (7)
pt

J

where No=4(x, . xz), V; denotes 0/Bx, , and b, Vcon-
tains anharmonic corrections:
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QO

b, V= g, U„,
3n!

where

(8a)

U = VV . . 4.uun ~ i J (8b)

F=F +&AV) — (&b V ) —&b V) )+O(b, V ),2kT

(9)

where the V and u terms are repeated n times each. Sub-
stitution of Eq. (6) into Eq. (3}and expansion in powers of
6 V yields, after some work, '

If'=+'+ 'NrnX-[Iqr ~ I'+[~(f »]'Iqr, .I']
f, s

(14)

lattice phonons in periodic boundary conditions. Here
and in the following formulas the sum runs only over
these N vectors [as opposed to the sum in Eq. (5)]. The
subscript s runs over three possible polarizations for each
f. The unit vectors v give the direction of each polariza-
tion; they are determined by the matrix V, V.N . There
are therefore a total of 3X phonon modes; of these there
are three f=0 modes corresponding to translation of the
system center of mass.

Substitution of Eq. (13}into Eq. (7) yields, after some
work, the standard form' for H in phonon coordinates:

where F is the free energy of the phonon ideal gas,

F = —kT ]n[Tr(e "
) ] (10)

where m [co(f,s)] are the eigenvalues of the matrix
A ( f },defined as

and the averages are over the variables (u„. . . , u~),
weighted by the unperturbed equilibrium distribution.
For instance,

e
—0 /kT ~ ~ ~ul uN

& U,'& & U, &

~, =r
72N(kT)' 24NkT

(12)

Here we have assumed that kT &&Ace, where co is the
plasma frequency, in order that averages are performed
in the classical limit (the vibrations are assumed to be
classical). This assumption is compatible with our as-
sumption that kT«e /a (i.e., I ))I) provided that
a))az where az=R /rn e is the Bohr radius for the
ions.

If one now substitutes Eq. (8} into Eq. (9) and compares
the resulting expression for F to the series obtained by in-
tegrating Eq. (2) via Eq. (1), one obtains the following
form for A l. '

if.(x —x )A(f)=N 'g V, V 4 e (15)

A ( f)=g'[I —cos( f p)] (t(p) .
Bp Bp

(16)

In Eq. (16), and in all following equations, the sum over p
runs over the N ions in the cube, and the prime denotes a
sum neglecting the p=0 term. This matrix may be evalu-
ated using the Ewald sum method (see Appendix C}.

Equations (10) and (14) then lead to the classical limit
of the free energy of the lattice in the harmonic approxi-
mation:

F 4 3(N —1) ~p

NkT NkT N kT
+ ln

The unit vectors v( f,s) are the corresponding eigenvec-
tors of A.

The matrix A ( f) can be written in terms of the two-
particle interaction (( by substituting Eq. (4b) for 4.
After some algebra (see Appendix A) one obtains'

In deriving this expression one also uses the fact that
averages over odd powers of u are zero (by symmetry)
and that & u ) —0 ( T).

+N- yi "' +N- l.
COp U

(17)

A. Phonon coordinates and the zeroth-order free energy

In order to perform the averages in Eq. (12), it is useful
to transform to phonon coordinates. ' We assume that
the equilibrium positions Ix } form a lattice with one
charge per unit cell, this cell repeating via lattice vectors
p. Then H can be put in a standard form through trans-
formation to phonon coordinates qr, (t):

where AD =2rrfi /(NmkT) is the thermal DeBroglie
wavelength of the system center of mass, co is the plasma
frequency, and the prime on the sum denotes a sum
neglecting the three zero-frequency translational modes.
This form for F is correct for finite X in periodic bound-
ary conditions, and approaches the standard form as
N ~ ao. The average energy U in the harmonic approxi-
mation is then given by U =d(13F )/r)P, or

3

u (t)=g g qI, (t)e' '~v(f, s) .
f s=l

(13) UO=3(N —,' )kT+4— (18)

Here, again, the vectors f are reciprocal-lattice vectors
for the cubic cell, as in Eq. (5). However, here only N of
these vectors fall within the basic reciprocal cell (the first
Brillouin zone) formed with respect to the lattice [pI;
these X vectors form the only possible f vectors for the

which also follows from the equipartition theorem.
In the limit as N~ ao, the sum over in[co( f,s)/co~] be-

comes an average over the first Brillouin zone, denoted as
&1n(co/co )). This average has been evaluated correctly
for the bcc lattice, but the published fcc value' is slight-
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ly incorrect due to numerical roundoSs. %'e have calcu-
lated more accurate values for both lattices, which are
displayed in Table I. Lattice (In(co/co~ ) )

TABLE I. Values of ( ln(co/co, ) ) for fcc and bcc lattices.

B. Evaluation of the anharmonic terms

bcc
fcc

—2.493 89(1)
—2.453 73(1)

—PH' .
Because the distribution e ~ is a multivariate Gauss-

ian, the averages in Eq. (12) can all be written in terms of
products of ( ~q&, ~

). This cumulant is easily evaluated
using Eqs. (11}and (14), yielding

(19)

We first determine ( U4 ). After substituting Eq. (13) into
Eq. (Sb) and averaging, one obtains

(U, )=

where

fl f2 f3 f4
Sl,$2,$3,$4

C ]$1 2$2 3 $3 4 $4 (qf qr, qf, qf (20)

c ( f],s» fz, sz', f3,$&,
' f4, 4$)

=NC( f» fz, f3, f4) v( f»s, )v( f2, $2 )v( f3,s3 )v( f4, $4)

and the tensor C is defined as

(21)

C( f„fz, f3, f4)=N
p I p2 p31 p4

] f, p, + f p f .p + f .p ) ])
e

])P] ])P2 ~P3 1)P4
(22)

(23)

Because of statistical independence of the q s, only those terms in Eq. (20) contribute for which the indices are equal in

pairs, for instance, f, = —f2, s, =s2, f3= —f4, s3=s4. There are three permutations of the indices which leads to the
same result; so using Eq. (19) one obtains

3kT c(fi si —f»si fz sz —f2 sz)

NkT N r, m [a](f„s])][a](f2,$&)]

There is an apparent singularity in this expression due to the three f=0 translational modes for which n]( f, s) =0.
However, translational invariance also implies c =0 for these modes so the sum converges and the f=0 modes make no
contribution.

We have neglected an 0 (1/N) term in Eq. (23) which occurs when all four modes are equal in Eq. (20)—the average
of the four q's is then a fourth-order cumulant, which is not the same as the product of two second-order cumulants.
However, we show in Appendix B that this correction in fact vanishes, so Eq. (23} is exact even for finite N.

We evaluate C in terms of the two-particle interaction ]I} in Appendix A; this yields the expression

C(f„—f, , fz, —fz)=2+' I 1 —cos(f, p) —cos(fz p)+ —,[cos(f,+f&) p+cos(f, —fz) p]) ((}(p) .8 8 a a

P P P P
(24)

Since Eqs. (21) and (24) show explicitly that c is of 0 (N), Eq. (23) then implies ( U~ ) is 0 (N), as it should be, and pro-
vides an 0 ( T2) correction to the internal energy.

Turning now to ( U3 ), a similar analysis yields the expression

(U3) gb(f] s] f2 $2 f3 $3}b(f4 $4 f5 $5 f6 $6)(qf, g qf, g qf, g qr. ,..qr. ,..qf, g (25)

where

b( f» s»fz, sz, f3 $3)

Now the statistical independence of the q's leads to two
types of terms.

Case (I).

and

=NB( f» f2, f3) v( f»s, )v( f2, $2)v(f»$3) (26}

B(f f f )
— + 1P12P23P3

Pl P2 P3

f27 S) S2$ f3 f4 S3 S4

f5 f6' s5 $6 .

Case (2).

8 8 8 p

Bp, Bp Bp
(27)

f, = —f4, s& =s4,' f2= f5, s2 =s5;

f3 f6 s3 s6
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1, f=g
b, f ='

0 otherwise, (29)

and the vectors g form the reciprocal lattice to the vec-
tors p. For case (1), the b function in B then implies that
when f&= —fz, then f3=0, which causes B to vanish by
Eq. (28). Thus, only case (2) contributes and Eq. (25) be-
comes

&U3~ 6kT ~b(fi&~1~f2&~2 f3~3)~

N(kT} N r r r m co(fi, s, ) cu(f2, s2) co(f3 $3)
$1,$2, $3

(30)

where we have used the fact that

B(—f, , —f2, —f3)=B'(f,, f2, f3) .

We have again neglected an O(1/N) term in Eq. (25)
which enters when four or more of the modes are equal.
However, this correction also vanishes (see Appendix B),
so Eq. (30) is correct for finite N in periodic boundary
conditions.

In order to evaluate the sums over normal modes ap-
pearing in Eqs. (23) and (30), we first require a simple
form for the N possible values of f for bcc and fcc sym-
metry. For bcc symmetry we choose the primitive lattice
vectors to be

[ao(1,0,0),ao(0, 1,0),ao( —,', —,', —,
' )],

where ao =L /M is the lattice constant and m is any posi-
tive integer. This implies that primitive reciprocal-lattice
vectors are g1=2m(1, 0, —I)/ao, g2=2m(0, 1, —1)/ao,
g3=4vr(0, 0, 1}/ao, and the cell volume is u, =ao/2.
Then some simple algebra implies that the N possible f
vectors are

f=(Igi+mg2+ng3/2)/M, (31)

where I and m rum from 0 to M —1, and n runs from 0 to
2M —1, for a total of N =2M vectors.

In the fcc case, we take the primitive lattice vectors to
be

jao(1,0, 0),ao( —,', —,', 0),ao(0, —,', —,')] .

The cell volume is u, =a o /4 and now gi = 2m'( 1,

In case (1) there are nine possible permutations which
give the same result; in case (2) there are six. However,
since there is only one charge per basic cell, case (1) does
not contribute. ' This is because when Eq. (27) is written
in terms of 1}}(see Appendix A), one obtains

B(f1, f2, f3)

=id(f, +f2+ f3)g'[sin(f, .p)+sin(f2 p)
P

+sin(f3 p)] P(p),
a a a

Bp Bp Bp

(28)

where the function 5( f ) is defined as

—I I)/120, g2
——4~(0, 1, —1)/ao, and g3=4m(0, 0, 1)/ao.

Now the N possible f's are

f = [Ig, +—g2+ —g3] /M, (32)

where l runs from 0 to M —1, and m and n run between 0
and 2M —1, for a total of N=4M vectors. Note that
the sum of any two vectors f gives another vector in the
set, upon suitable translation by a reciprocal-lattice vec-
tor g back to the first Brillouin zone.

In order to determine & U3 ) and & U~), we first com-

pute and store the normal mode frequencies co ( f, s ) and

polarizations u(f, s) at the 3N values of ( f,s) by solving
for the eigenvectors and values of A ( f ) at each f value of
Eqs. (31) or (32).

We next determine and store the tensors P( f ) and L( f ),
for the N values of f, where

P(f)=g'sin(f p) P(p)
8 cl 8

1}p ~p ~p
(33a)

and

y(f)=—g'cos(f p) $(p) .
8 8 cl 1}

~p ~P 1}P ~p
(33b}

+ —,'[L(f, + f2)+g(f, —f2)]] . (34b)

Since a sum of any two vectors in the set of N f's gives
another vector in the set, we can now perform the re-
quired double sums over f, and f2 (and the sums over po-
larization) in Eqs. (23) and (30) using Eqs. (21), (26), and
(34) and the stored values of co, v, P, and g; the total
computation time scales like N . Ewald sums (see Ap-
pendix C) are used to evaluate X and P. The final results
for & U4), & U3 ), and A 1 are summarized in Table II for
both fcc and bcc lattices for various N values.

We have determined that the result for A, asymptotes
to A, =10.84 for the bcc lattice and A, =12.35 for the
fcc case. This calculation was performed by noting that
in the large N limit, the sums over f in Eqs. (23) and (30)
convert to integrals. These integrals are then performed
by using the third-order "midpoint-rule" method, in
which the basic reciprocal cell formed by g&, g2, and g3,
describable as a parallelepiped whose sides are deter-
mined by the planes formed between g&, gz, and g3, is

chopped into N] XN2 XN3 geometrically similar paral-
lelepipeds. The vectors f are then chosen at the centers
of these cells. It is not diScult to show that for N„N2,
and N3 odd, any two vectors f add to another f in the
set, provided that the basic reciprocal cell is chosen so
that f=0 is a member of the set. The midpoint-rule
method converges more quickly to the N ~ ~ result than
if one simply takes M large using the f values of Eqs. (31)

In terms of these two tensors, Eqs. (24) and (28) become

B(f„f2,f3)

= i[p( f, )+p( f2)+p( f3)]h( f, + f2+ f3), (34a)

C( f
1 f1 f2 f2)

=2tx(0) —g( f, )
—g( f2)
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TABLE II. Analytic values for anharmonic terms in periodic

boundary conditions.
U UMc 3 Uo

NkT NkT 2 NkT
& U,')r

72N(kT)'

bcc

&U, &r

24Nk T
U SDD —A )I ——
NkT ' 2

(35)

2
16
54

128
250
432
686

4
32

108
256
500
864

1372

0
12.297
27.145
25.243
23.661
22.794
22.319

0
15.837
18.227
18.515
18.447
18.339
18.248

fcc

0
39.001
23.090
16.426
13.625
12.331
11.675

0.832
5.853
6.259
6.166
6.026
5.915
5.836

0
—26.704

4.055
8.817

10.036
10.463
10.645

—0.832
9.983

11.968
12.349
12.421
12.424
12.412

or (32). Table III shows the results for various values of
N] N2 and N3. The primitive lattice vectors used to
determine g„g2, and g3 are also shown in Table III.

UMC

NkT
, I

+
NkT N

The contribution to U due to anharmonic effects is

III. THE LIQUID-SOLID PHASE TRANSITION

In this section we consider the effect of our value for
A

&
on the phase transition to a bcc lattice. In order to

determine the free energy of the solid phase, we use the
MC data of Slattery, Doolen, and DeWitt for the
configurational internal energy of the solid phase at vari-
ous values of I . They have corrected their data for
center-of-mass motion, which means that the listed data,
which we call U /NkT, are related to their actual MC
results by

where we note that the average kinetic energy per charge
is 3kT/2 and we have substituted Eq. (18) for U . This
definition of U, differs from that of previous authors in
that we remove from U /N the harmonic energy per
ion for the N ion system, not the N~ ~ limit of the har-
monic energy. This is an important distinction for small
N or large I which removes spurious N dependence in

U, . The anharmonic contribution F, to the free energy F
then follows from Eq. (l):

(36)

It is therefore useful to plot (I U, )/(NkT) as a function
of I /1 for the values of I at which U was determined
in Ref. 3 (see Fig. l). From Eq. (2) this function should
be expressable as

rU. =A +A /I+.
Previous authors used a straight-line fit through the
origin (i.e., only Az was assumed to be nonzero). Instead
we have used a three-parameter polynomial fit to the
N =432 data, including the analytically determined T =0
point from Table II. This T=O point fixes A& to be
A, =10.463. The other two parameters are then deter-
mined by the fit to be A2=352. 8, A3=1.794X10, with
an error of y =7. The fit is shown in Fig. 1; it is not an
unreasonable looking curve given the present MC data
set. Indeed, any number of reasonable curves could be
drawn through the MC data; our I = &x& point is quite
useful in pinning down the large I behavior of U. Furth-
ermore, the MC data for the anharmonic energy show a

I I I

2.0

TABLE III. Analytic values for anharmonic terms in limit as
N~ oo.

N, XN, XN3
&U', &r

72N(kT)'
&U, )r
24Nk T

P/ NkT

i 0&

bcc: Primitive vectors j(1,1, —1), ( —1, 1, 1),(1,—1, 1))
11x11x 11 22.631 11.894 10.737
15 x 15 x 15 21.909 11.086 10.823
21 x 21 x 21 21.633 10.792 10.841
25 x 25 x 25 21.572 10.730 10.842
31 x 31 x 31 21.530 10.687 10.843

fcc: Primitive vectors I(1, 1,0),(0, 1, 1),(1,0, 1)(
11x11x 11 18.199 5.805 12.394
15 X 15 X 15 18.095 5.717 12.378
21x 21x 21 18.021 5.661 12.360
25 x 25 x 25 17.997 5.644 12.353
31x31x31 17.978 5.630 12.348

5

6x[O ~

FIG. 1. Anharmonic energy of the bcc lattice from MC data
of Ref. 3. T=0 points are analytic results. Squares, N =128;
circles, N =250; solid triangles, N =432; diamonds, N =686.
Solid line is the fit discussed in the text.
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general increase in U, I /NkT as X increases, consistent
with the analytic results of Table II for the bcc case. A
relatively simple model for this N dependence is a shift
upward in the entire curve as X~~, until A, = 10.84 in
the limit. Using Eq. (1), one then obtains the following
expression for the anharmonic free energy:

20-

I
lim

w- NkT
10.84 176.4 5.980X 10

I-z (37)
10

Comparison of this result for the free energy to that of
Ref. 3 for the liquid free energy implies that the liquid-
solid phase transition is shifted to I „;,-172. However,
it is clear from the data shown in Fig. 1 that more MC
data (particularly at large I') would be extremely useful in

improving this estimate for I „;,. Such higher I data
would also be useful as an independent check of the value
of A).

It should also be noted that one could determine Az
and A3 using the same perturbation techniques as were
employed in determining A &. However, the values ob-
tained probably would bear little resemblance to those
used in Eq. (37). This is because our values for Az and
A 3 are based on a numerical fit over a broad range of I
whereas values calculated from perturbation theory are
rigorously valid only in the limit I ~ ao, and the range of
convergence of Eq. (2}has not been established.

Some fcc data have also been generated for N = 108.'

A similar three-parameter fit to this data is shown in Fig.
2, using the exact N =108 value of A, =11.968. The fit

gives Az= —36.46, 33=3.051X10, with an error of
y =2. Comparison of the resulting fcc free energy to the
Quid free energy of Ref. 3 then implies that the fcc lattice
has lower free energy than the liquid at I -182. Again,
however, this value is only a rough estimate, particularly
since the available fcc data have rather large errors.
More high-accuracy MC data are required for both the
fcc and bcc cases in order to obtain sufficiently accurate
interplation curves for the solid free energy.

6xlQ &

FIG. 2. Anharmonic energy of the fcc lattice from MC data
of Ref. 12 for N = 108. The T =0 point is the analytic result for
N = 108. Solid line is the fit discussed in text.
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APPENDIX A

Here we derive formulas for sums over V, V 4&,

V;VJV(, 4, and V;V V(, v(4 in terms of the two-particle
interaction (}((; =P(x; —xj }. We require sums of the form

s= g (vvv eo)' '"'
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where the index n refers to the number of gradients and f
vectors.

From Eq. (4b),

V;4 = g V;Pq,
k (4i)

V;V, C' =5,( g V;V;(/(, q+5,', V;V, (/(;J. , .

k (Wi)

V, VJ.V(, =5; 5J(, g V;V;V.;(/P, q+5; 5'(, V;V, V(, (/(;(., +5;(,.5;'V;V;VJ. (/P;1+5 (,5,' V;V(VJ. (/(;

k (Wi)

V;VJV(, v(C 5((5J(,5(,( g —V;V;V;V;(/(, .(-, +5((5J(,5((v;V;V;V(f((
k (Wi)

+5(J5J(5p, V(V(V; V(, (/(((, +5(,(5(J5J(,V; V; V(, V(, (/(((, +5;(5((,5(~V(V(V; V((/(~

+5J(5;(,5,', V; V; VI V~. (/(;J. +5,(5 (, 5,'(.V; V; VJ VJ(/(;J. +5,(5J(,5,'(.V; V, V(VJ. (/.(;, ,

where 5,'. = 1 —5; . Then using the symmetry of P," upon interchange of indices, we obtain



42 FIRST-ORDER ANHARMONIC CORRECTION TO THE FREE. . . 4979

(f-+f) 0 0 0)
S2=+e ' ' '

Q VV(I)(1 —e
' ' '

)

i g(&i )

=N2))( f, + f2)g'( I —cosf p) (p)
a ay

Bp Bp

where we have again used the symmetry of (t, and we have performed the sum over i via the identity

ge' 't'=N)5, (f),
P

true for all vectors f reciprocal to the cubic cell. Use of this form for S2 in Eq. (15) then leads to Eq. (16) for A.
Similarly,

r(f)+f&+f3) X i(f)+f&) (X, —X ) i(f(+fq ')(X X ) ((f2+f))'(X X )

j(~i)

or

a a a
S3 =Ni g'[sinf(. p+sinf2 p+sinf3 p]h( f)+ f2+ f3) p(p),

Bp Bp Bp

which leads to Eq. (28) for B. Finally,

4
—~~e i i i i IJ

i j( «)
0 0 0 0 0 0

2 3 ! J 1 l J + 2 4 I J
—i(f +f ) (x —x ) if (x —x ) —i(f, +f ) ~ (x —x )

or

S4=Nb, (f, + f2+ f, +f4)g'[I —cosf, p
—cosf2 p —cosf3.p —cosf~ p+cos(f, +f4) p+cos(f2+ f3) p

P

+cos( f2+ f~) p] (t)(p) .
a a a a

ap ap ap ap

Substitution of S4 into Eq. (22) leads, after some simple algebra, to Eq. (24).

APPENDIX B

In this appendix we consider the corrections to ( U3 ) and ( U4) due to the appearance of fourth-order and sixth-
order cumulants in the expressions for average powers of q in Eqs. (20) and (25). To evaluate these cumulants it is easi-
est to break q into real and imaginary parts: qf, =Q„+iQf Then .it follows that

( n e n ) ((Q2 +Q2)n) (B1)

This moment may be written in terms of ( ~qf,.
~ ) by observing that Eq. (14) implies that Q2( and Q& are independent

variables with equal Gaussian distributions so that, for instance,

(Q') =(Q') =3(Q')'
and

(Q„')=(Q,') =15(Q„')-'.

However, there is an exceptional case, which occurs when 2f =g (or f= —f+g) for some reciprocal vector g. By Eq.
(13) the reality of u implies that qf, =q* f „so this implies that QI =0 for these special modes which lie on the surface
of the Brillouin zone, and thus averages involving Q& are zero. [Note, however, that Eq. (19) is still true for these
modes. ] Expansion of the polynomial on the right-hand side of Eq. (Bl) then leads to the following results for the n =2
and 3 cases of Eq. (Bl):

(q f,.q* f, ) = ( ~qf, ~
) [2+6(2f )] (B2a)

(q f,q*-', , ) =( ~qf, ~')'[6+96(2f)], (B2b)

where the 6 function takes into account the special case of modes on the surface of the Brillouin zone.
Turning now to Eq. (20), we will count up permutations of mode indices which lead to the same contribution to the
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sum over modes. We write Eq. (20) schematically as

& U4) = g c(1,2, 3,4)&q)qqq3q~) .
1,2, 3,4

(B3)

As discussed in the text, nonzero contributions occur when 2= —l and 4= —3, where the shorthand 2= —1 means
( f2, s2) =( —f, +g, s, ), for some g. There are three permutations of the indices of c which lead to the same result pro-
vided that 1&+2; these are (1,—1,2, —2), (1,2, —1 —2), (1,2, —2, —1). If 1=+2 and 1%—1 (i.e. , f,W —f, +gVg),
there are again three permutations: (1, —1, 1, —1), (1,1, —1, —1), (1,—1, —1, 1). Finally, if 1=+2 and 1=—1, there is
only one permutation, (1,1,1,1). Thus Eq. (B3) may be written as

& U~) =3 g c(1,—1,2, —2)& Iq& I ) & Iq2I ) +3 + c(1,—1, 1, —1)& Iq, I )[1—5(2f)]
1,2

14+2

+y c(1,—1, 1, —1)& lq) I'&~(2f)
I

To the first sum of this equation we add and subtract the missing cross terms to give

& U4) =3 pc(1, —1,2, —2)& Iq& I'&& Iq21'& 3 g c(1,—1, 1, —1)[2—6(2f~)]& Iq~ I'&'
1,2

+3 & c(I —1 1 —I)2& Iq~ I'&'[I —~(2f)]+&c(I —I 1 —1)3& lq~ I'&'~(2f)
1 1

where use has been made of Eq. (B2a) in the last two sums. Finally, the last three sums in this equation cancel, leaving
only the first sum in accordance with Eq. (23).

A similar argument may be put forward for & U3 ). Writing Eq. (25) schematically as

& U3) g b(1, 2, 3)b(4, 56)&q, zqqq4q, q &6,
1,2, 3
4, 5, 6

(B4)

one finds that only terms of the form (1,2, 3, —1, —2, —3) contribute, where f, + fz+ f3=g for some reciprocal lattice
vector g. If 1%2, 2W3, and 3%1, then there are six possible permutations leading to the same result, as discussed in the
text. If any two of the three modes are the same (e.g. , 3= 1), the indices take on the form (1,2, 1, —1, —2, —1) and there
are nine permutations which give the same result. [Note that 3= —1 is disallowed since the condition f&+ f2+ f3=g
then implies f2=g in this case, so by Eq. (28) b vanishes. ] Finally, if all three modes are equal, there is only one possibil-
ity, (1,1, 1, —1, —1, —1). Thus, Eq. (B4) becomes

Ib(1,2, 3) '& Iq& I'& & Iq21'& & Iq31'&+9 g lb(1, 2, 1)I'& Iq~ I'& & Iq21'&+&lb(1, 1, 1)I'& Iq~ '&
1,2, 3,

1%2,2&3,3&1
142

Note that in the last two sums no terms survive if 1=—1, so we need not worry about this special case. Adding and
subtracting the cross terms to the first sum and using Eqs. (B2) then leads to

& U3 & =6 X Ib(1,2, 3) I'& q f & &q2 & & q3 &
—6 '3 g Ib(1,2, 1)l'& Iq, I'&'& Iq,

I'&+&lb�

(I, I, I) I'& Iq, I')' '

1,2, 3 1%2 1

+9 & Ib(1,2, 1)I'2& Iq& I'&'& Iq2I'&+&lb(1, 1, 1)I'6& Iq~ I'&' .
]&2 1

Again, all sums cancel but the first, leaving Eq. (30) as the exact form for & U3 ) for finite ¹

APPENDIX C

In this appendix we consider the Ewald sum method,
useful in summing series involving the Coulomb interac-
tion. Since the sums we require are not standard, we go
into some detail. Consider the following sum:

S(f,x)=g'P(p+x)e' ~=+ P(p+x)e' ~ —P(x) . (Cl)
P P

Note that the sum over p runs only over X ions, as dis-
cussed in the text. Then we can obtain A, P, and L as
derivatives of S. For example, from Eq. (33a),

s

This sum may be carried out by substitution of Eq. (5) for

4 2 oo ik(p+x)+if p
S( f,x)=

p

—P(x),

where the k's run over a cubic lattice as in Eq. (5). The
first term may be written as
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4 2 oo
2—k t ik-(p+x)+i f pdte e

p k 0

which we break up into two terms: I, = 4—ere nR b,(f)+e
a p

fp+a+x/
2R

/p+a+x/
i f-p

and

2 00 2

gyes

J df
—k i +ik (p. +x) +if p

1

p

—4vre Xb(f) R2
1

V

00
r ~ ~ ~f ~ —k t+ik (p+x)+tf p

U k R

In the expression for I, we add and subtract the k=O
term; after performing the t integral for this term, we ob-
tain

Note that for the choices of N used in the text, the lat-
tices formed by p and a are compatible and the sum

may be replaced by a sum over p extending
through all the cubic cells.

Turning to I2, we first perform the t integral:

4 2 —k R +ik (p+x)+t f p

k p

We then perform the sum over p, obtaining

"JC —k R+ik x2

I~=+'4me'nb(f+k)
z

k

4 2 00

+ 4'fre y y J' —k t+ik (p+x)+if pdf

p k

Thus, S(f,x) becomes

p+a+ x~

2R
In order to perform the sum over k in the second term,
we use a trick, noting that

S(f,x)=e
p;a /p+a+x/

' e ' P —4fre nR b, ( f )

—g f(k)=g I d'k f(k)e""1"
(2n. )

where the vectors a form a cubic lattice; a = (1,m, n )L for
all integers (I, m, n ). Then we complete the squares in I,
and perform the integral over k, obtaining

I, = 4fre n—R A(f)

4 2 R2 —ip+a+xI /4t41re
( )3/2g g Ji( d

e ~f p

(2vr) t3n
p a

00 e
—k R +ikx2 2

(t)(x)—+4me ng'b(k +f)
k k

(C2)

In order to remove the singular term as X~0, at
p= a =0, we will add and subtract e lx, noting that as
x~0, P(x)~e /x. (Recall, however, that P includes in-
teractions with all ions on a cubic lattice. ) The results for
A, P, and g follow from derivatives of Eq. (C2) with
respect to x:

The integral can be written as a complementary error
function, so we obtain

A(f)=A(0) —A(f),
where

(C3a)

~12 1 V2

U U

e &12
2

cosf p+
6 frR

k, k2
4rre n g'—b,(k+f) e

k k 0&18x2

eP(x)—
x=0

(C3b)

P„,(f)=e'y'
p, a

612V3 13 2 623 1

2 4

F' U1V2V3F"— + F'" sin f.p
U U3

k, k2k3
4rre'n g' h(k+ f) —e

k
(C4)

and




