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ABSTRACT

A criterion for the sign of wave energy is developed by using the symmetry properties of the plasma equilibrium and the fact that Vlasov
dynamics is an incompressible flow in phase space, rather than the usual and more difficult procedure of calculating the value of the wave
energy directly. Applications are made to the case of waves excited on a non-neutral plasma in a Malmberg–Penning trap and to waves
excited on an infinitely long non-neutral beam.
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I. INTRODUCTION

A plasma wave is said to have positive energy if energy must be
added to the plasma when the wave is excited. Likewise, a wave is said
to have negative energy if energy must be removed from the plasma
when the wave is excited.1,2 Since energy is reference frame dependent,
the sign of wave energy is reference frame dependent. This paper con-
siders weakly damped, electrostatic waves that propagate on a stable
non-neutral plasma, and establishes criterion that the waves have neg-
ative energy as viewed in the laboratory reference frame.

The sign of wave energy is of interest because a negative energy
wave can become unstable when it has access to an energy sink. The
wave grows as it transfers energy to the sink. The resistive wall instabil-
ity of the diocotron wave is a well-known example.3 Also, negative
energy waves and a positive energy wave can couple nonlinearly yield-
ing a nonlinear instability, where the positive energy wave plays the
role of the energy sink.2,4 Linear instabilities, such as the beam plasma
instability, are often described as resulting from the interaction of a
negative and a positive energy wave. What is meant in this case is that
there is a negative energy wave on the beam alone and a positive
energy wave on a lab frame plasma alone, and when both the beam
and plasma are present simultaneously, the negative energy wave and
positive energy wave couple linearly forming a new unstable wave.

The usual way to calculate the sign of wave energy is to calculate
the wave energy directly using second order perturbation theory. The
calculation must be carried to second order because the wave energy is
second order in wave amplitude. For analytic tractability, the calcula-
tion often assumes a particularly simple and idealized equilibrium con-
figuration and some simplifying dynamical model.

Here, we use a different approach, which determines the sign of
wave energy without calculating the value of the wave energy. This
approach relies on the Vlasov–Poisson stability theorem of Davidson

and Krall5 and on the symmetry properties of the equilibrium configu-
ration. The stability theorem itself depends on the fact that Vlasov
dynamics is an incompressible flow in phase space.

The closest previous work to this approach is that by Sturrock,1

who focused on beam waves in a traveling wave tube. He showed that
the sign of wave energy could be determined by general considerations
rather than a direct calculation of wave energy. However, his work pre-
ceded much of modern plasma theory and did not mention a kinetic
description of the waves. The present paper can be thought of as a
modernization and extension of Sturrock’s original ideas.

As a first example, we consider weakly damped, azimuthally
propagating, electrostatic waves on a non-neutral plasma that is
confined in a Malmberg–Penning trap.6 The plasma in such a trap is
radially confined by a uniform axial magnetic field and axially
confined by electrostatic fields. The confinement geometry of a
Malmberg–Penning trap is characterized by two symmetries: invari-
ance under translations in time and invariance under translations in h,
where ðr; h; zÞ is a cylindrical coordinate system with the z-axis coinci-
dent with the axis of the trap. Using these symmetries and the fact that
Vlasov dynamics is an incompressible flow in phase space, Davidson
and Krall found that a class of rotating plasmas are stable under
Vlasov–Poisson dynamics.5 The particle distributions for these plas-
mas are monotonically decreasing functions of the Hamiltonian in
the rotating frame. Important examples of such distributions are the
thermal equilibrium distributions, where the distribution is an expo-
nentially decreasing function of the Hamiltonian.5,7,8

We assume that the plasma is in a Davidson–Krall equilibrium
characterized by rotation frequency xr ; when a weakly damped
electrostatic wave of the form w r; zð Þcos lh� xtð Þ is excited on the
plasma. The form of the wave, standing in r and z and propagating in
h; is dictated by the symmetry properties of the equilibrium. We will
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see that the wave energy, as viewed in the laboratory reference frame,
is negative if the ratio ðx� lxrÞ =x is negative. This simple criterion
applies to all of the weakly damped, electrostatic waves that can be
excited on the plasma, including diocotron waves, Trivelpiece-Gould
waves, cyclotron waves, etc.5,9,10 Also, the criterion requires no knowl-
edge of the eigenfunction w r; zð Þ:

A second example adds another symmetry: invariance under
translation in z.We consider an infinitely long, non-neutral beam that
is confined radially by a uniform axial magnetic field, a system with
invariance under translations in t, h; and z. Davidson and Krall
showed that such a beam is stable under Vlasov–Poisson dynamics if
the particle distribution is a monotonic decreasing function of the
Hamiltonian in a frame that translates axially with velocity u and
rotates with angular frequency xr :We will see that a weekly damped,
electrostatic wave on the beam has negative energy, as seen in the labo-
ratory frame, when the ratio ðx� lxr � kuÞ=x is negative. Here,
the wave propagates both azimuthally and axially, and l and k are the
azimuthal and axial mode numbers. This result is a generalization of
Sturrock’s criterion for negative energy waves on a cold beam,
ðx� kuÞ=x < 0:

A third example returns to the finite length plasma in a
Malmberg–Penning trap but simplifies the dynamics to 2D E � B drift
dynamics. For the uniform magnetic field of the Malmberg–Penning
trap, the density evolves incompressibly under 2D E � B drift dynam-
ics. When the equilibrium plasma is a monotonically decreasing
function of radius, all weakly damped, electrostatic waves described by
2D E � B drift dynamics have negative energy.

Also, there are non-neutral plasma equilibria that do not have
cylindrical symmetry but are stable under 2D E � B drift dynamics,
and we will see that all of the low frequency drift modes on these
plasmas have negative energy.

II. WAVES ON A PLASMA CONFINED IN A
MALMBERG–PENNING TRAP

The confinement region of a Malmberg–Penning trap is bounded
by a conducting cylindrical shell that is divided axially into three
sections, as shown in Fig. 1.6–8 The figure illustrates the case of a non-
neutral plasma composed of positive charges, where the central section
is held at ground potential and the two end sections are held at a
positive potential, with the resulting end electric fields providing axial
confinement. Also, there is a uniform axial magnetic field B¼ ẑ B, and
the Lorentz force J x B/c provides the radial confinement. Here, the
current J is due to plasma rotation. In equilibrium, the radially inward
Lorentz force balances the radially outward space charge force, pres-
sure gradient force, and centrifugal force. For the Lorentz force to be
radially inward for a plasma of positive charges, the rotation frequency
must be in the negative sense, relative to the magnetic field and the

z-axis. For a plasma of negative charges, the rotation is in the positive
sense.

During the wave launching process, the plasma dynamics is
assumed to be well described by the Vlasov–Poisson equations

@f
@t
þ f ;H½ � ¼ 0; (1)

r2up ¼ �4pe
ð
d3vf ¼ � 4pe

m3r

ð
dprdphdpzf ; (2)

where

H ¼ p2r
2m
þ

ph �
eBr2

2c

� �2

2mr2
þ p2z
2m

2
64

3
75
þ e/p r;h; z; tð Þ þ e/ext r; h; z; tð Þ

(3)

is the single particle Hamiltonian and the quantity f ;H½ � is a Poisson
bracket.7,8,11 The quantities ½r; pr ¼ m _r�; ½h; ph ¼ mr2 _h þ eBr2=2c�
and ½z; pz ¼ m _z � are canonically conjugate coordinate and momen-
tum pairs. The quantities e andm are the charge and mass of the
plasma particles. The plasma space charge potential, up, satisfies
Poisson’s equation and vanishes on the cylindrical conducting
wall. The quantity /ext is an external potential not produced by the
plasma charge density. For the uniform axial magnetic field of the
Malmberg–Penning trap, the vector potential is given by Ah ¼ Br2=2.

One may ask why we use the full Vlasov equation when analysis
of low frequency waves on a magnetically confined non-neutral
plasma often employs the drift-kinetic equation as an approximation
to the Vlasov equation. For the typical operating regime, the cyclotron
radius is small enough to justify the approximation. However, here
there is no added complication in retaining the full Vlasov equation.
Of course, the drift-kinetic equation is included as a limiting form of
the Vlasov equation, and also the Vlasov equation can treat higher fre-
quency modes such as cyclotron modes and is applicable near the
Brillouin limit,5 where the effective magnetic field in the rotating frame
of the plasma goes to zero, and guiding center drift theory fails
completely. In the rotating frame of the plasma, the Lorentz force and
the Coriolis force compete, and they exactly cancel at the Brillouin
limit.5

The total plasma energy is given by the integral

W ¼
ð
dCf C; tð Þ p2r

2m
þ

ph �
eBr2

2c

� �2

2mr2
þ p2z
2m

2
64

3
75

8><
>:

þ 1
2
e/p r; h; z; tð Þ þ e/ext r; h; z; tð Þ

9=
;; (4)

where the terms in the square brackets are the kinetic energy and the
remaining two terms the electrostatic energy. The factor of 1=2
appears in front of /p; but not in front of /ext ; because /p is produced
by the plasma charge itself and /ext is produced by external charge.7,8

In the integral, C is a point in the six dimensional phase space. Of
course, the energy is arbitrary up to an additive constant; for example,
changing the value of e/ext by a constant would change the value ofW
by a constant. This arbitrariness will not be a problem because we willFIG. 1. Sketch of a Malmberg–Penning trap.
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need only changes in the value of W. The total canonical angular
momentum and the total axial momentum are given by the integrals

L ¼
ð
dCf C; tð Þph; (5)

P ¼
ð
dCf C; tð Þpz: (6)

For future reference, we note that the Hamiltonian in a frame rotating
with angular frequency xr is Hxr ¼ H � xrph.

7,8 This well-known
result can be understood by noting that the square bracket in
Hamiltonian (3) is the particle kinetic energy, mv2=2, and by noting
the algebraic identity

mv2

2
� xr mvhr �

eBr2

2c

� �
¼ m v � ĥxrr

� �2
2

�mxr
2r2

2
þ eBxrr2

2
;

(7)
where the first term on the right hand side is the kinetic energy in the
rotating frame, the second term is the centrifugal potential energy, and
the third term is the electrostatic potential energy associated with the
radial electric field induced by rotating through the magnetic field.

Alternately, one can construct a canonical transformation to the
rotating frame using the generating function

F2 ¼ h� xr tð Þph þ rpr þ zpz; (8)

where the barred quantities are variables in the rotating frame and the
notation of Goldstein11 is used. Taking partial derivatives of F2 yields
the transformation

h ¼ @F2
@ph

¼ h� xrt; (9)

with all of the other variables remaining unchanged. Likewise, the
Hamiltonian in the rotating frame is given by the expression

Hxr � H ¼ H þ @F2
@t
¼ H � xrph: (10)

Subtracting xrph from the curly bracket in Eq. (4) yields the total
energy in the rotating frame

Wxr ¼
ð
dCf C; tð Þ p2r

2m
þ

ph �
eBr2

2c

� �2

2mr2
þ p2z
2m

2
64

3
75

8><
>:

þ 1
2
e/p r; h; z; tð Þ þ e/ext r; h; z; tð Þ � xrph

9=
; ¼W � xrL:

(11)

By using Eq. (1) through (6) and the boundary condition that /p is
zero on the cylindrical boundary wall, one obtains the time derivatives

dW
dt
¼
ð
dCf C; tð Þ @e/ext

@t
; (12)

dL
dt
¼ �

ð
dCf C; tð Þ @e/ext

@h
; (13)

dP
dt
¼ �

ð
dCf C; tð Þ @e/ext

@z
: (14)

Physically, the rate of change of energy, angular momentum, and
axial momentum depend only on the derivatives of e/ext because the
interaction of the plasma particles with each other through e/p con-
serves the plasma energy, angular momentum, and axial momentum.

When no wave is being launched, /ext ¼ / 0ð Þ r; zð Þ is simply the
confinement potential due to the time-independent voltage applied to
the end cylinders. When the plasma has come to an equilibrium state

in this external potential, we denote the plasma potential by / 0ð Þ
p ðr; zÞ

and the Hamiltonian by H 0ð Þ: Any distribution function of the form
f ð0Þ Hð0Þ; ph

� �
is an equilibrium of the Vlasov–Poisson equations.

Furthermore, Davidson5 found that the special class of equilibria
f 0ð Þ H 0ð Þ � xrph

� �
is stable under Vlasov–Poisson dynamics, provided

that the distribution is monotonically decreasing in its argument. The

argument Hð0Þxr ¼ Hð0Þ � xrph is simply the equilibrium Hamiltonian
in the rotating frame, so there is no shear in the rotational flow of the
plasma. Consequently, these states are often referred to as rigid rotor
states.

The most important examples are thermal equilibrium states,5,7,8

where f 0ð Þ H 0ð Þ � xrph

� �
is exponentially decreasing in its argument.

The thermal equilibrium states are routinely observed in experiments
with non-neutral plasmas and are easily used as starting equilibria for
wave launching experiments. We assume that the plasma is in a
monotonically decreasing, rigid rotor state when the wave launching
process begins.

Readers might rightly object that Vlasov dynamics cannot lead to
a thermal equilibrium state. For a case where a thermal equilibrium
state is to be the equilibrium on which waves are launched, we envi-
sion a long initial period during which weak collisions bring the
plasma to thermal equilibrium, followed by a much shorter wave
launching period during which Vlasov dynamics provides a good
approximation.

When the plasma is in a monotonically decreasing rigid rotor
state, we suppose a wave launching potential is switched on, changing
the external potential to the form /ext ¼ / 0ð Þ r; zð Þ þ / 1ð Þ r; h; z; tð Þ.
In experiments, waves are launched by applying temporally varying
potentials to electrically isolated sectors of the wall. However, the
launching potential, / 1ð Þ; then can have spatial overlap with the
eigenmodes for several waves, and when two or more of these waves
are nearly degenerate both can be launched. To avoid this compli-
cation, we envision a “theorists” launching potential, which exactly
matches the eigenmode of the weakly damped wave to be launched.
This theorists launching potential is produced by “imaginary charge
density” that is distributed appropriately in the confinement region.
Like the charge density on the electrodes that produce a wave
launching potential in experiments, the imaginary charge density is
not considered to be part of the plasma charge density, but rather
to be an external charge density. We postulate the launching
potential

/ 1ð Þ ¼ �H tð Þw r; zð Þcos lh� xtð Þ; (15)

where � is small compared to unity, H tð Þ is a step function affecting
the turn on of the launching potential and w r; zð Þcos lh� xtð Þ is the
eigenmode of the wave to be launched. Throughout the discussion l is
taken to be positive, but x can be positive or negative, allowing waves
to have positive or negative azimuthal phase velocity.
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The wave launching potential is assumed to be small (i.e., �� 1)
and to stay on for many wave cycles. The amplitude of a resonantly
driven mode grows secularly (i.e., A � � xj jtÞ, so the amplitude is
finite if xj jt � 1=�. Actually, we assume that the time t is such that the
wave amplitude is finite, but still small enough that linear theory is a
good approximation. Also, we have assumed that the Landau damping
rate for the wave is small. The secular growth of wave amplitude con-
tinues only for a time t � 1=c, where c is the damping rate, so we have
assumed that c= xj j � � is small.

Substituting /ext ¼ / 0ð Þ r; zð Þ þ / 1ð Þ into Eq. (12) yields the time
derivative

dW
dt
¼ d tð Þ

ð
dCf 0ð Þe�w rð Þcos lhð Þ

þx
ð
dCf C; tð Þe�H tð Þw rð Þsin lh� xtð Þ; (16)

where the delta function coefficient of the first integral comes from the
time derivative of the step function, and the terms in the integrand
have been evaluated at t ¼ 0. Since the wave launching potential has
not yet had time to change the distribution at t ¼ 0, the distribution
in the first integral has been set equal to the equilibrium distribution
f 0ð Þ. Since this distribution is independent of h; the integral vanishes,
and Eq. (16) reduces to the result

dW
dt
¼ x

ð
dC f C; tð Þe�H tð Þw rð Þsin lh� xtð Þ: (17)

We limit consideration to modes with l 6¼ 0: Substituting /ext
¼ / 0ð Þ r; zð Þ þ / 1ð Þ into Eq. (13) yields the time derivative

dL
dt
¼ l
ð
dC f C; tð Þe�H tð Þw rð Þsin lh� xtð Þ: (18)

As expected, both the plasma energy W and angular momentum L
change in value as the wave is driven up in amplitude.

However, by noting that the integrals in Eqs. (17) and (18) are
identical, one finds a simple relationship between the time derivatives
ofW and L

1
x
dW
dt
¼ 1

l
dL
dt
: (19)

Integrating this equation from some time before the launching poten-
tial is turned on to some time t after the wave has reached finite ampli-
tude yields the relation

DW
x
¼ DL

l
; (20)

where DW andDL are the change in plasma energy and angular
momentum during the launching process. This relation comes from
the functional form of the wave, which in turn comes from the sym-
metry of the equilibrium, that is, the invariance under translation in
t and h: We will identify DW andDL as the wave energy and angular
momentum in the laboratory frame, respectively.

Of course, one may ask how we know that all of the energy and
angular momentum produced by the launching potential goes into the
wave. In a Vlasov description, energy and angular momentum are
transferred only by the mean electric field. The launching field can nei-
ther do work nor apply a torque on the wall since the wall is assumed

to have perfect conductivity and to be cylindrically symmetric. The
launching potential can do work on and apply a torque only on the
plasma charge density and there only on the perturbed charge density.

The launching potential creates a small perturbed charge density,
the wave charge density, and then does work and exerts a torque on
that charge density, gradually building up the wave amplitude and
charge density. We assume that the buildup takes place over many
cycles so that the perturbed charge density is always close to that for
an undriven wave. The wave electric field does no net work and exerts
no net torque on the wave charge density since the wave field is pro-
duced by the charge density. In contrast, the launching field is pro-
duced by an external charge density and does do net work and does
exert net torque on the wave charge density.

By hypothesis, the wave experiences negligible damping during
the launching process, that is, the wave electric field does negligible net
work and exerts negligible net torque on any perturbed charge density
other than that of the wave. Since the lunching potential is assumed to
be of the same form as the wave potential, the launching potential
transfers negligible energy and angular momentum to any perturbed
charge density other than that of the wave.

Equation (20) has a simple interpretation in terms of wave action
or quantum number. The energy is related to the wave action through
the relation DW ¼ xJ; and the angular momentum is related to the
action through the relation DL ¼ Jl. Dividing these two equations
yields Eq. (20). Sturrock1 used this idea, postulating a quadratic
Lagrangian for waves on a fluid medium. Here, we elected to derive
Eq. (20) directly from symmetry considerations since that seems more
fundamental.

Taking the same differences in Eq. (11) and using Eq. (20) yields
the relation

DWxr ¼ DW � xrDL ¼
x� lxrð Þ

x
DW; (21)

where DWxr is the change in energy as seen in the rotating frame of
the plasma. If this quantity is positive, then the sign of DW is given by
the sign of the ratio ðx� lxrÞ =x.

Before the wave is launched, the external potential is given by

/ 0ð Þ r; zð Þ; the plasma potential by / 0ð Þ
p r; zð Þ; and the distribution by

f ð0Þ H 0ð Þ � xrph

� �
. At time t, the external potential includes the

launching potential / 1ð Þ, and the distribution and plasma potential

have evolved to f ð0Þ þ Df and / 0ð Þ
p þ D/p; respectively: By using the

integral expression forWxr in Eq. (11), one finds the change

DWxr ¼
ð
dC e/ 1ð Þf 0ð Þ þ DfH 0ð Þ

xr
þ Dfe/ 1ð Þ þ

DfeD/p

2

� �
: (22)

The integral over the first term vanishes because f ð0Þ is independent of

h and / 1ð Þ ¼ �H tð Þw rð Þcos lh� xtð Þ yields zero under h-integration.
Also, Poisson’s equation, integration by parts, and the boundary con-
dition that D/p vanishes on the conducting boundary cylinder can
been used to rewrite the last term, yielding the result

DWxr ¼
ð
dCDfH 0ð Þ

xr
þ
ð
dCDfe/ 1ð Þ þ

Ð
d3x rD/p
� �2
8p

: (23)

The third integral is positive. To show that the sum of the three inte-
grals is positive, we show that the first integral is positive and that the
second integral is small compared to the first.
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The positive value of the first integral follows from the fact that
the Vlasov equation for the evolution of f ðC; tÞ is a statement of
incompressible flow in phase space and that f 0ð Þ Cð Þ is a monotonically

decreasing function of Hð0Þxr Cð Þ: Any change in f ðC; tÞ must increase

the value of
Ð
dCf C; tð ÞHð0Þxr Cð Þ, that is, the first integral in Eq. (23)

must be positive.
A more formal demonstration utilizes techniques from the

Davidson–Krall stability theorem.5 Because f ðC; tÞ evolves in phase
space as an incompressible fluid, the integral

Ð
dCG f C; tð Þð Þ is con-

stant in time for any function G. Taylor expanding the integrand in
terms of the small quantity Df yields the result

0 ¼
ð
dC

@G

@f 0ð Þ Df þ
1
2
@2G

@f 0ð Þ2 Dfð Þ2
" #

; (24)

where only second order terms in Df have been retained. Subtracting
this integral from the integral over the first term in Eq. (23) yields the
equationð

dCDf C; tð ÞH 0ð Þ
xr

Cð Þ ¼
ð
dCDf C; tð Þ H 0ð Þ

xr
Cð Þ � @G

@f 0ð Þ

� �

�
ð
dC

1
2
@2G

@f 0ð Þ2 Dfð Þ2: (25)

Choosing the function G f 0ð Þ
� �

to be such that Hð0Þr Cð Þ ¼ @G
@f ð0Þ and

recalling that f 0ð Þ is a monotonic decreasing function of Hð0Þxr (i.e.,
@2G
@f 0ð Þ2 ¼

@Hð0Þxr Cð Þ
@f ð0Þ

< 0Þ yields the result

ð
dCDf C; tð ÞH 0ð Þ

xr
Cð Þ ¼ �

ð
dC

1
2

@H 0ð Þ
xr

Cð Þ
@f 0ð Þ Dfð Þ2 > 0: (26)

The argument that the second integral in Eq. (23) is small compared
to the first integral may be understood in terms of the ordering argu-
ment in the paragraph following Eq. (15). The quantity Df C; tð Þ is the
order of the wave amplitude A � � xj jt, so Eq. (26) shows that the first
integral in Eq. (23) is of order A2 � ð�xtÞ2. Since / 1ð Þ C; t

� �
is of

order �, the second integral in Eq. (23) is of order �2 xj jt, which is
smaller than the first term by order 1=ð xj jtÞ � �:

There is one subtle point in this ordering argument. Just looking
at the first integral in Eq. (23), one might be tempted to say that the

integral is first order in the wave amplitude A � � xj jt. However, Hð0Þxr

is h independent so the term in Df which is first order in wave ampli-
tude integrates to zero, leaving the contribution from a term that is
second order in wave amplitude, A2 � ð�xtÞ2: Eq. (26) simply makes
the second order nature of the integral explicit.

Thus, the criterion that the wave energy, as viewed in the labora-
tory frame, be negative is the inequality

0 >
x� lxrð Þ

x
¼ 1� xr

x=l

� �
: (27)

In interpreting this criterion, recall that the azimuthal wave number
l is assumed to be positive, but that xr is negative for positively
charged species and positive for negatively charged species. For either
sign, the criterion for negative energy is that the wave phase rotates in
the same sense as the plasma, but more slowly.

Let us consider two simple applications of the criterion to waves
that are excited on a long pure electron plasma column that has come
to a state of thermal equilibrium. When the thermal equilibrium
plasma is cold, the density is uniform out to some radius Rp and there
drops to zero. We assume that the density is small compared to that at
the Brillouin limit, which implies the frequency ordering xrj j � Xcj j:
In this limit, the frequency of a diocotron wave is given by the rela-

tion5,9,10 x� lxr ¼ �xr ½1� Rp=RW
� �2l�, where RW is the radius of

the conducting boundary wall. The diocotron waves have zero axial
wave number. One can see that criterion (27) is satisfied for all l, so all
of the diocotron waves have negative energy. For a realistic finite
length column, there are corrections to the frequency, but experimen-
tally the corrections are known to be relatively small for a sufficiently
long column and a sufficiently low temperature. We will return to dio-
cotron waves in Sec. III.

The frequency of a Trivelpiece-Gould wave is given by the
relation5,9,10

x� lxrð Þ2 ¼
x2

pk
2

k2 þ
R2
p

v2l;m

 ! ; (28)

where k is the axial wave number and vl;m=Rp is the m-th radial mode
number for azimuthal mode l, and we have assumed that the Doppler
shifted phase velocity (x� lxrÞ=k is large compared to the thermal
velocity. Other than the Doppler shift and the quantization of the
radial mode number, this is just the familiar dispersion relation for an

electron plasma wave in a strong magnetic field, x2 ¼ x2
pk

2

k2þk2?
; where

k? is the transverse (here, radial) wave number. For a finite length col-
umn, the axial wave number must be quantized approximately as
k � np=L0, where L0 is the length of the column. Choosing the lowest
mode numbers (i.e., l ¼ 1; m ¼ 1 and n ¼ 1), choosing the negative
sign in the factor when taking the square root, and assuming that
k� vl;m=Rp yields x� xr ¼ �xpRp=2L0, where we have set p=v1;1
� 1=2: Thus, the mode can be negative energy if xr > xpRp=2L0.

For the frequency ordering mentioned above, the cyclotron
waves have positive energy.9

Thus far, we have proceeded under the assumption that wave
damping is negligible during the launching process, so that the quan-
tity DW is all wave energy at the end of the launching process.
However, if there is small but finite Landau damping, wave energy will
gradually be transformed into resonant particle energy. Note that the
wave energy and the resonant particle energy are both part of the
energy associated with the overall wave perturbation. If the wave
energy is positive, the resonant particles receive positive energy, and if
the wave energy is negative the resonant particles receive negative
energy. Thus, we write the relation DW ¼ DWwave þ DWresð Þ, where
DWwave and DWres are of the same sign. Assuming that the wave
launching process is over and that no energy sink has been introduced,
DW is constant in time. The wave energy, DWwave; is proportional to
Aj j2; where A is the wave amplitude, and the rate of change of DWres

is proportional to Aj j2; with the sign of DWwave: Thus, we find the
relation

2

Aj j
d Aj j
dt

DWwave ¼
d
dt

DWwave ¼ �
d
dt

DWres ¼ �2cDWwave: (29)
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By canceling the factor DWwave from each side, one can recognize
the proportionality constant c as the Landau damping decrement. Of
course, the wave can only damp since the plasma is stable.

Next, we suppose that the wave energy can access an energy sink.
For sufficiently low wave amplitude, one expects the rate at which
energy is deposited in the sink to be of the form �S(xÞ Aj j2, where
S(xÞ is a positive function dependent on the details of the energy sink.
See Ref. 3 for a simple example of the function S (xÞ: The rate of the
change of wave amplitude is given by the relation

2

Aj j
d Aj j
dt
þ 2c

� �
DWwave ¼ �S xð Þ Aj j2 (30)

and the wave grows if��SðxÞ Aj j
2

DWwave
� 2c > 0:

Criterion (27) was developed for a single species plasma with an
equilibrium particle distribution that satisfies the Davidson–Krall sta-
bility criterion. In general, criterion (27) does not apply for the case of
a neutral plasma. The problem is that a neutral plasma cannot be con-
fined and also have electron and ion distributions that satisfy
Davidson–Krall criterion for the same rotation frequency. This state-
ment is a generalization of the well-known fact that a neutral plasma
cannot be confined by static electric and magnetic fields in a state of
thermal equilibrium.7,8 The confinement, that is, the spatial localiza-
tion of the plasma, comes from the requirements that the equilibrium
distribution function be monotonically decreasing in its argument,
H 0ð Þ � xrph; and that the scalar and vector potential terms in this
quantity become large for large r or large z. Since both the scalar and
vector potentials are multiplied by a factor of e, the confinement of
ions implies nonconfinement of electrons and vice versa.

However, there may be situations where one of the two species in
a confined neutral plasma is characterized by a distribution that satis-
fies the Davidson–Krall stability criterion, and then a mode which
involved only that species would be negative energy when criterion
(27) is satisfied.

Also, a two species plasma of like signed charges, for example,
electrons and negative ions, can be confined in a Malmberg–Penning
trap with distributions that satisfy the Davidson–Krall criterion for the
same rotation frequency, and then criterion (27) applies even if the
mode involves both species.

III. WAVES ON AN INFINITELY LONG BEAM

A second example adds another symmetry: namely, invariance
under translation in z. Consider a plasma beam that is confined radi-
ally by a uniform axial magnetic field in a region of space bounded by
a conducting cylinder. Again, the boundary condition on the plasma
potential, /p; is to be zero on the conducting cylinder. This configura-
tion is essentially a Malmberg–Penning trap with the end confinement
potentials moved off to z ¼ 61.

We assume that a wave launching process on this beam is well
described by Vlasov–Poisson equations (1) and (2), with the
Hamiltonian (3). The energy, angular momentum, and axial momen-
tum are given by Eqs. (4)–(6) and the time derivatives of these quanti-
ties by Eqs. (12)–(14).

When no wave is being launched, the external potential is zero
and the plasma potential is of the form / 0ð Þ

p rð Þ, so the corresponding
Hamiltonian, H 0ð Þ; is independent of t; h; and z. Thus,
H 0ð Þ; ph; and pz are constants of the motion, and any distribution of
the form f 0ð ÞðH 0ð Þ; ph; pzÞ is an equilibrium of the Vlasov–Poisson

equations. Furthermore, the Davidson–Krall theorem5 proves
Vlasov–Poisson stability for distributions of the form f ð0Þ Hð0Þð
�xrph � upzÞ, where f ð0Þ is a monotonically decreasing function of
its argument. Here the argument is simply the Hamiltonian in a frame
that rotates with angular frequency xr and drifts axial with velocity u:
Again, when f ð0Þ is an exponentially decreasing function of its argu-
ment, the distribution describes a thermal equilibrium state.

Even when a wave is being launched, the Hamiltonian in this
uniformly rotating and translating frame is given by Hxr ;u ¼ H
�xrph � upz; and likewise the energy in the frame is given by the
relation

Wxr ;u ¼W � xrL� uP (31)

again up to an additive constant.
Because the equilibrium is symmetric under translations in t; h;

and z, the wave launching potential is of the form

/ 1ð Þ ¼ �H tð Þw rð Þcos kz þ lh� xtð Þ; (32)

where w rð Þcosðkz þ lh� xtÞ is the eigenfunction of the weakly
damped mode to be launched, and the axial wave number k is taken to
be positive. Substituting this external potential into Eqs. (12)–(14)
yields the time derivative relations

1
x
dW
dt
¼ 1

l
dL
dt
¼ 1

k
dP
dt

(33)

and integrating from before the launching potential is turned on to
some time t when the wave has reached finite amplitude yields the dif-
ference relations

DW
x
¼ DL

l
¼ DP

k
: (34)

Taking the same differences in Eq. (29) and using Eq. (32) then yields
the relation

DWxr ;u ¼ DW � xrDL� uDP ¼ x� lxr � ku
x

� �
DW (35)

so the sign of DW is the same as the sign of the ratio ððx� lxr

�kuÞ=xÞ provided that DWxr ;u is positive.
That DWxr ;u is positive can be shown by the same proof used to

show that DWxr is positive. Taking differences in the integral expres-
sion for DWxr ;u leads to the same expression as that given in Eq. (23),

except that DWxr ;u replaces DWxr on the left hand side and Hð0Þxr ;u

replaces Hð0Þxr on the right hand side. Also, Hð0Þxr ;u replaces Hð0Þxr as the
argument of the equilibrium distribution f ð0Þ. With these replace-
ments, the proofs are completely parallel. Thus, the criterion that a
wave has negative energy in the laboratory frame is the inequality

0 >
x� lxr � ku

x

� �
: (36)

IV. WAVES GOVERNED BY 2D E 3 B DRIFT DYNAMICS

A third example focuses on a plasma column that undergoes 2D
E � B drift dynamics. Again, the confinement region is bounded by a
conducting cylinder on which the plasma potential vanishes. The
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continuity equation for the particle density evolving under this
dynamics can be written in the form

@n
@t
þ n;H½ � ¼ 0; (37)

where the Hamiltonian is simply

H ¼ e/p h; ph; tð Þ þ e/ext h; ph; tð Þ: (38)

Here, h; ph ¼ eBr2
2c

� 	
are a canonically conjugate coordinate and

momentum pair. Note that Eq. (37) is written in the same form as the
Vlasov equation, which reflects the fact that 2D E � B drift flow in a
uniform magnetic field is incompressible. As is expected, the 2D E � B
drift Hamiltonian is obtained from Hamiltonian (3) simply by let-
ting the particle mass approach zero and neglecting any z-depen-
dence. These same procedures reduce expressions (4) and (5) to
the form

W ¼ cL0

eB

� �ð
dhdph n

e/p

2
þ e/ext

� �
; (39)

L ¼ cL0

eB

ð
dhdphnph; (40)

where the coefficient ðcL0Þ=eB is simply a normalization to account for
the fact that n is the density. The factor L0 is the column length. In 2D
E � B drift dynamics, the total energy is simply the electrostatic
energy, and the total angular momentum comes only from the vector
potential term of the canonical angular momentum. Again, the
Hamiltonian in a frame that rotates with frequency xr is Hxr ¼
H � xrph and the energy in the rotating frame is given by the
expression

Wxr ¼
ð
dCf C; tð Þ þ 1

2
e/p r; h; z; tð Þ þ e/ext r; h; z; tð Þ � xrph


 �
¼W � xrL :

(41)

By using continuity equation (37), Poisson’s equation and the
boundary condition that /p vanish on the conducting boundary wall,
the time derivatives of Eqs. (39) and (40) can be written as the
expressions

dW
dt
¼ cL0

eB

� �ð
dhdphn

@e/ext

@t
; (42)

dL
dt
¼ cL0

eB

ð
dhdphn

@e/ext

@h
: (43)

Consider any equilibrium density profile, n 0ð Þ rð Þ; that is monotoni-
cally decreasing in radius. Let the equilibrium potential for this profile

be / 0ð Þ
p phð Þ and the Hamiltonian be H 0ð Þ ¼ e/ 0ð Þ

p phð Þ: The external

potential is zero when no launching potential is present. The equilib-
rium Hamiltonian in a frame that rotates with the angular frequency
xr is given by the expression H 0ð Þ

xr
phð Þ ¼ H 0ð Þ phð Þ � xr ph: We

intend to write the density profile as a monotonically decreasing func-
tion of H 0ð Þ

xr
phð Þ, but note at the outset that this functional form does

not mean that xr is the E � B drift rotation frequency of the plasma.

Indeed, for a typical monotonically decreasing density profile, there is
no single rotation frequency; there is shear in the E � B drift rotational
flow.

Why is it that a Vlasov distribution of the form f 0ð Þ H 0ð Þ
xr

� 	
implies that the plasma is in a shear-free flow, but a density

distribution of the form n 0ð Þ H 0ð Þ
xr

� 	
still allows shear in the E � B drift

rotational flow? The answer is that the Hamiltonian in the Vlasov case

includes velocity variables, and the functional dependence f 0ð Þ H 0ð Þ
xr

� 	
imposes constraints on the velocity dependence, whereas the
Hamiltonian for E � B drift dynamics does not contain any velocity

variables. Even for the thermal equilibrium state n 0ð Þ ¼ Cexpð� H 0ð Þ
xr
T Þ,

there is shear in the E � B drift flow. The fluid flow is shear-free for a
thermal equilibrium plasma, but the fluid flow consists of the sum of
an E � B drift flow and a diamagnetic flow. The E � B drift flow alone
is not shear-free.

The density distribution n 0ð Þ H 0ð Þ
xr

� 	
will be monotonically

decreasing inH 0ð Þ
xr

provided that the following inequality is satisfied:

0 >
@ n 0ð Þ

@H 0ð Þ
xr

¼ c
eB
@ n 0ð Þ

@r
@ph

@H 0ð Þ
xr

: (44)

The factor @n 0ð Þ=@r is negative by hypothesis, so the product of the
other factors must be positive

0 <
eB
c

@H 0ð Þ
xr

@ph
¼ eB

c
@H 0ð Þ

@ph
� xr

 !
: (45)

Here, the quantity @H 0ð Þ=@ph is the local E � B drift rotation fre-
quency and xr is a constant rotation frequency of our choice. For a
plasma of positive charges, @H 0ð Þ=@ph is negative, so the inequality is
satisfied if xr is chosen to be negative and larger in magnitude than
the largest value of @H 0ð Þ=@ph, typically the local rotation frequency at
the center of the plasma. For a plasma of negative charges, all of the
frequencies are positive, but the charge in front is negative, so the
inequality is again satisfied if xr is chosen to be larger than the rota-
tion frequency at the center of the trap.

When the column is in such an equilibrium state, we suppose
that the wave launching potential

/ext ¼ / 1ð Þ ¼ �H tð Þw phð Þcos lh� xtð Þ (46)

is switched on. Again, � is small compared to unity, H tð Þ is a step
function that effects the turn on of the potential, and wðphÞcosðlh
�xtÞ is the eigenfunction of the weakly damped wave to be
launched.

Substituting this expression for /ext into Eqs. (42) and (43) yields
the relation

1
x
dW
dt
¼ 1

l
dL
dt
; (47)

and integrating from t < 0 to some time t after the wave has reached
finite amplitude yields the difference relation

DW
x
¼ DL

l
: (48)

Finally, taking the same differences in Eq. (41) yields the result
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DWxr ¼ DW � xrDL ¼
x� lxrð Þ

x
DW: (49)

Thus, if DWxr is positive, the wave energy in the laboratory frame is
negative if the ratio ðx� lxrÞ =x is negative. That DWxr is positive
follows from the same argument as given in Sec. II [i.e., Eq. (22)
through (26)], except that f is replaced everywhere by n.

Superficially, the result in this section looks to be the same as that
in Sec. II; indeed, Eq. (49) appears to be the same as Eq. (21).
However, in Sec. II, we required the equilibrium Vlasov distribution

f 0ð Þ H 0ð Þ
xr

� 	
to be monotonically decreasing in its argument, and here

we allow any equilibrium density profile that is monotonically decreas-
ing in radius. Also, in Sec. II, the rotation frequency xr is the rotation
frequency of the plasma, not a free parameter, whereas here the only
constraint on xr is that it be larger in magnitude than the E � B drift
rotation frequency at the center of the column. Thus, for any x and l,
we can choose any value of xr such that the ratio ðx� lxrÞ =x is
negative. Thus, within the context of 2D E � B drift flow, all waves on
a monotonically decreasing density profile have negative energy when
viewed in the laboratory frame.

To help motivate the discussion in Sec. V, note that the energy in
the laboratory frame is a local maximum in the space of states that are
accessible under incompressible flow. This follows from the fact that
DW is negative for any incompressible perturbation.

V. ASYMMETRICAL EQUILIBRIA

The Davidson–Krall stability theorem5 is not applicable to
plasma equilibria that are not cylindrically symmetrical. The reason is
that the theorem requires the laboratory frame equilibrium also to be
an equilibrium in a rotating frame since the theorem proves stability
by showing that the energy is minimum in the rotating frame.

However, within the context of 2D E � B drift flow, there is an
alternate approach to stability that does not require the equilibrium to
have cylindrical symmetry.12 When no wave is being launched, the
external potential /ext is constant and the electrostatic energy W is
constant in time. In the space of states that are accessible under incom-
pressible flow, the plasma evolves along a contour of constant W.
When the initial state is a either a local minimum or a local maximum
in the space of accessible states, the contour shrinks to a point and no
evolution is possible. The plasma is in a stable equilibrium state.

The idea of proving stability at an energy maximum, rather than
an energy minimum, was part of the pioneering work on stability by
Thomson and Kelvin13 and Arnold.14 For general Vlasov dynamics, it
is not profitable to look for an energy maximum because the kinetic
energy can increase arbitrarily, but the kinetic energy does not appear
in expression (39) for the energy in the limit of 2D E � B dynamics.
More precisely, the kinetic energy is small and constant. The electric
field does not change the kinetic energy because the E � B drift veloc-
ity is transverse to the electric field. More generally, when the charac-
teristic frequencies of the drift motion are small compared to the
cyclotron frequency and the axial bounce frequency of the particles,
the cyclotron and axial bounce actions are good adiabatic invariants
under the slow drift motion. These adiabatic invariants bind up the
particle kinetic energy so that it cannot increase arbitrarily, and the

total energy, including the kinetic energy, can be a local maximum
against low frequency drift perturbations.15

Various asymmetric plasma equilibria are states of maximum elec-
trostatic energy and, hence, stable against low frequency 2D E � B drift
instabilities. For example, a cylindrical plasma on which an l ¼ 1 dioco-
tron mode has been excited can be thought of as an equilibrium state in
the rotating frame of the mode. In this frame, the plasma is simply dis-
placed off the axis of the trap. At least for modest displacements and
modest plasma radii, the equilibrium is a state of maximum electrostatic
energy in the rotating frame of the mode.15 Asymmetric equilibria that
are stationary in the lab frame can be produced by applying z-
independent asymmetric fields on the plasma using wall electrodes; such
equilibria have been observed to survive stably for seconds and are likely
states of maximum electrostatic energy.16 Also, toroidal plasmas have
been showed to have equilibria that are states of maximum electrostatic
energy15 and are observed to survive stably for seconds.17

The relation of all of this work to the present paper is that low
frequency drift modes excited on these plasmas must all be negative
energy modes. If the plasma had access to an energy sink, the modes
would have the potential to become unstable.
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