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Numerical and experimental evidence is given for the occurrence of the plateau states and

concomitant corner modes proposed in Valentini et al. [Phys. Plasmas 19, 092103 (2012)]. It is

argued that these states provide a better description of reality for small amplitude off-dispersion

disturbances than the conventional Bernstein-Greene-Kruskal or cnoidal states such as those

proposed in Schamel [Phys. Plasmas 20, 034701 (2013)]. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4794728]

Since the publication of the original Bernstein-Greene-

Kruskal (BGK) paper,1 which described ways to construct a

large class of nonlinear wave states, there has been an enor-

mous literature that speculates about which of these states

might occur in experiments, in nature, and in numerical sim-

ulations in various situations.2 In his Comment,3 Schamel

has written a broad spectrum diatribe touching on many

points; we agree with some of these points, in fact, some of

them were originally advocated by some of us. In particular,

we are in agreement that off-dispersion excitations, made

possible by particle trapping, are important. However, we

will confine our response to those of his comments that are

relevant to our paper, which is about the construction of an

appropriate linear theory that describes the small amplitude

limit. Schamel’s claim is that our lack of trapped particles

invalidates our analysis even in this limit. Rather than reiter-

ate the points made in our paper, we rebut his claim by pro-

viding further numerical and experimental evidence.

Our point is best made by a glance at Fig. 4 below that

shows late time simulation results for two runs: an off-

dispersion case (Run B), with the wide nearly x-independent

plateau that we proposed for the distribution function, and an

on-dispersion case (Run A), depicting the more conventional

BGK or cnoidal wave state. Evidently, the more conven-

tional BGK or cnoidal wave state is not the best description

of the late time dynamics of the off-dispersion simulation.

In the following, we will describe our nonlinear simula-

tions that produced Fig. 4 and give comparison to our theory

of Ref. 4. This will be followed by a discussion of some

experimental results that further provide evidence for the

validity of our theory and, in particular, the existence of cor-

ner modes.

As in Ref. 4, we make use of a Eulerian code5–7 that

solves the Vlasov-Poisson equations for one spatial and one

velocity dimension

@f

@t
þ v

@f

@x
� E

@f

@v
¼ 0;

@E

@x
¼ 1�

ð
f dv ; (1)

where f ¼ f ðx; v; tÞ is the electron distribution function and

E ¼ Eðx; tÞ is the electric field. In Eq. (1), the ions are a neu-

tralizing background of constant density n0 ¼ 1, time is

scaled by the inverse electron plasma frequency x�1
p , veloc-

ities by the electron thermal speed vth, and lengths by the

electron Debye length kD. For simplicity, all the physical

quantities will be expressed in these characteristic units.

The phase space domain for the simulations is D ¼ ½0; L�
�½�vmax; vmax�. Periodic boundary conditions in x are

assumed, while the electron velocity distribution is set equal

to zero for jvj > vmax ¼ 6. The x-direction is discretized

with Nx ¼ 256 grid points, while the v-direction with

Nv ¼ 12001.

In our previous simulations of Ref. 4, the initial equilib-

rium consisted of a velocity distribution function with a

small plateau; however, here we assume a plasma with an

initial Maxwellian velocity distribution and homogeneous

density. We then use an external driver electric field that can

dynamically trap resonant electrons and create a plateau in

the velocity distribution. This is the same approach used in

the numerical simulations of Refs. 8–10 and in the experi-

ments with nonneutral plasmas in Ref. 11.

The explicit form of the external field is

EDðx; tÞ ¼ gðtÞEDM sinðkx� xDtÞ ; (2)

where EDM is the maximum driver amplitude, k ¼ 2p=L
is the drive wavenumber with L the maximum wavelength

that fits in the simulation box, xD ¼ kv/D
is the drive

frequency with v/D
the driver phase velocity, and gðtÞ

¼ ½1þ ðt� sÞn=Dsn��1
is a profile that determines the ramp-

ing up and ramping down of the drive. The external electric

field is applied directly to the electrons by adding ED to E in

the Vlasov equation. An abrupt turn-on or turn-off of the

drive field would excite Langmuir (LAN) waves and compli-

cate the results. Thus, we choose n ¼ 10 so gðtÞ amounts to a

nearly adiabatic turn-on and turn-off. The driver amplitude

remains near EDM for a time interval of order Ds centered at
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t ¼ s and is zero for t � toff ’ sþ Ds=2. We will analyze

the plasma response for many wave periods after the driver

has been turned off.

We simulate both the excitation of an on-dispersion mode

(Run A), a mode for which ðk; v/Þ is on the thumb curve of

Fig. 1 of Ref. 4, and an off-dispersion mode (Run B), that is

off the thumb curve. The excitation of the on-dispersion mode

is obtained through an external driver with k ¼ p=10 and

v/D
¼ 1:45, while for the off-dispersion mode we set k ¼ 0:7

and v/D
¼ 1:5. The maximum driver amplitude EDM ¼ 0:01

has been chosen for each simulation in such a way that

Ds ’ 10st, with st being the trapping period.12 Finally, the

maximum time of the simulation is tmax ¼ 4000, while the

driver is zero for t � toff ¼ 2000.

Figure 1 shows the time evolution of the fundamental

spectral component of the electric field, EkðtÞ, for Run A

(top), and Run B (bottom). In both plots one can see that

after the driver has been turned off at toff (indicated by the

red-dashed lines in the figures), the electric field oscillates at

a nearly constant amplitude. Figure 2 depicts the resonance

peaks for Run A (top) and Run B (bottom), obtained through

Fourier analysis of the numerical electric signals performed

in the time interval toff � t � tmax, i.e., in the absence of the

external driver. From these two plots it is readily seen that

the on-dispersion mode propagates with phase speed very

close to the driver phase velocity v/D
, whose value is indi-

cated by the vertical red-dashed lines, while the phase speed

of the off-dispersion mode is shifted towards a lower value

with respect to v/D
. This shift is predicted by our theory of

Ref. 4 and these results provide qualitative evidence for its

validity; subsequently, we will show quantitative agreement.

The main differences between the on-dispersion and

off-dispersion modes can be appreciated by examination of

the phase space contour plots of the electron distribution

function shown at t ¼ tmax in Fig. 3. For Run A (top) a well

defined trapping region that propagates in the positive x-

direction is visible. The black-dashed and black dot-dashed

lines in the figure represent the phase speed of the driver v/D

and excited mode v/, respectively. For Run A it is easily

seen that v/D
and v/ are almost identical, meaning that the

region of trapped particles generated by the external driver

survives even when the driver is off and that this region

streams with a mean velocity close to that of the driver. The

physical scenario appears quite different for the off-

dispersion mode of Run B (bottom). Here, we observe a

rather wide nearly x-independent plateau (the orange region

of the plot) that is substantially wider than the separatrix

for the trapped particles (small dark region at velocity close

to v ’ 1:4). Moreover, here the values of v/D
and v/ are

well-separated, meaning that the excited mode oscillates

with a frequency smaller than that of the external driver.

The differences between Run A and Run B can be fur-

ther appreciated by looking at the electron distribution func-

tion surface plots of Fig. 4. For Run A (top), we observe a

trapped region modulated in the spatial direction, while for

Run B (bottom), we see a flat region whose velocity width

appears to be independent of x. The on-dispersion Run A

resembles the more conventional BGK type solution like

FIG. 1. Time evolution of the fundamental spectral component of the

electric field EkðtÞ of an on-dispersion mode (Run A at the top) and of an

off-dispersion mode (Run B at the bottom). The vertical dashed lines repre-

sent toff .

FIG. 2. Resonance peak for Run A (top) and Run B (bottom); the red-

vertical lines indicate the value of the driver phase velocity v/D
for Run A

and Run B, respectively.
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Schamel’s, while the nearly x-independent off-dispersion

plateau of Run B is very different, it being more like a quasi-

linear plateau. Since the on-dispersion case has no frequency

shift, it appears that the trapping dynamics is dominated by

a single wave and a BGK type solution is to be expected.

For the off-dispersion case, where there is a frequency shift

between the driver and the ringing wave, the trapping dy-

namics may involve multiple waves with different phase

velocities. The interaction between these waves could be

causing a band of chaotic dynamics that re-arranges phase

space to provide a more quasilinear type of plateau.

Quantitative evidence for our theory can be extracted

from Fig. 5, which shows f ðx ¼ L=2; vÞ as a function of v for

Run A (top) and Run B (bottom). Again, black dashed and

black dot-dashed lines indicate v/D
and v/, respectively.

Also here the phase velocity shift for the off-dispersion

mode is evident; by taking into account the uncertainty due

the finite time resolution of the simulations, we can estimate

the interval in which the value DvðnumÞ
/ :¼ v/ � v/D

of the

phase speed shift falls. This gives �0:095 < DvðnumÞ
/

< �0:0104. Using this we can compare the phase velocity

shift obtained for Run B to the analytical prediction using

the “rule of thumb” of Eq. (23) in Ref. 4: the theoretical ex-

pectation for the phase velocity shift of the off-dispersion

mode of Run B is DvðthÞ/ ’ �0:0946 (with a value DvðthÞ/
’ �0:0933 obtained by increasing the resolution by two

orders of magnitude in velocity), in very good agreement

with the value obtained from the simulation. Thus, our

theory not only predicts the qualitative direction of the phase

velocity shift but also it gives a very good quantitative value.

FIG. 3. Phase space contour plot of the electron distribution function at

t ¼ tmax for Run A (top) and Run B (bottom). Black dashed and black

dot-dashed lines indicate the driver phase speed v/D
and the mode phase

speed v/, respectively.

FIG. 4. Surface plot of the electron distribution function at t ¼ tmax for Run

A (top) and Run B (bottom).

FIG. 5. Velocity dependence of f ðL=2; vÞ at t ¼ tmax for Run A (top) and

Run B (bottom); black dashed and black dot-dashed lines indicate v/D
and

v/, respectively.
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To conclude, we show that there already exists pub-

lished qualitative experimental evidence (Ref. 11) for the

validity of the theory we proposed in Ref. 4. Figure 6 of

Ref. 11 depicts the plasma response to a drive at a spread of

frequencies. In Fig. 6(b) the larger peak on the right corre-

sponds to the Trivelpiece-Gould mode, which in this experi-

ment corresponds to the LAN mode of the thumb curve,

while the small peak on the right corresponds to the

Electron-Acoustic wave. Thus, frequencies between these

peaks and above the LAN peak correspond to off-dispersion

modes. In addition, at the bottom of Fig. 6(b) is given an in-

dication of the frequency shift between the plasma response,

corresponding to a ringing mode, and that of the drive. Since

k is fixed, this frequency shift is equivalent to a shift in the

phase velocity. Observe that the frequency shift is positive

within the thumb curve (between the peaks) and is negative

above the LAN peak. The directions of these shifts can be

inferred from our theory, cf. the rule of thumb, Eq. (23) of

Ref. 4. In this equation k2 ¼ M gives a frequency on the

thumb curve, while a frequency of a corner mode, an off-

dispersion excitation, is obtained by seeking a root with the

addition of the plateau contribution (the remaining term of

Eq. (23)). Because the rule of thumb gives the local shape of

the plateau contribution, it is not difficult to infer the direc-

tion of the frequency shift relative to the drive. A straight bit

of reasoning using the rule of thumb implies frequencies

within the thumb curve and those above the LAN mode

should shift in precisely the directions seen in the

experiments.

More details about the simulations discussed here and

further experimental verification of our theory will be the

subjects of future works that are presently under preparation.

Postscript: In his response to the first version of the pres-

ent Response, Schamel modified his Comment Ref. 3 in an

attempt to use our numerical and experimental results to sub-

stantiate his case. We are not convinced by his arguments

and stand by our original conclusion of Ref. 4; viz., corner

modes, under the circumstances we described, provide a bet-

ter description of computational and experimental results

than cnoidal/BGK modes.

We thank Professor Schamel for providing this opportu-

nity to further substantiate the validity of our results. The

numerical simulations were performed on the FERMI super-

computer at CINECA (Bologna, Italy), within the European

project PRACE Pra04-771. P.J.M. was supported by

Department of Energy grant DEFG05-80ET-53088. T.M.O.

was supported by National Science Foundation grant PHY-

0903877 and Department of Energy grant DE-SC0002451.
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