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ABSTRACT

Large amplitude, near-acoustic plasma waves have a temperature-dependent harmonic content and nonlinear frequency shifts. On cold
plasmas, experiments show that fluid nonlinearities dominate, and the observed harmonic content is well predicted by a recent fluid analysis.
In contrast, the measured nonlinear frequency shift is smaller than this theory prediction, suggesting the presence of other nonlinear effects
neglected in this analysis. When the plasma is heated, kinetic effects become important, and we observe an increase in both the harmonic
content and nonlinear frequency shift. Quantitative experiments on the stability of these large amplitude, near-acoustic plasma waves
strongly support the idea that trapped particles reduce the amplitude threshold for instability below fluid models. At low temperatures,
the broad characteristics of the parametric instability are determined by the frequency detuning of the pump and daughter wave and the
wave-wave coupling strength, surprisingly consistent with simple cold fluid, three-wave theories. However, at higher temperatures, the pump
wave becomes unstable at half the threshold pump wave amplitude, with similar exponential growth rates as for a cold plasma.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5129529

I. INTRODUCTION

In plasmas, waves are commonly driven to large amplitudes
either through internal or external processes where they exhibit
nonlinear behavior. Strong mode coupling creates wave harmonics,
which generally steepen the density perturbation,1–4 and the frequency
of these large amplitude waves is shifted away from the linear
frequency.4–8 A myriad of instabilities also generally make these large
amplitude waves unstable. One common type of instability, the para-
metric instability, has been widely investigated theoretically4,9–14 and
has been observed in tokamaks,15–18 non-neutral plasmas,8,19–21 high-
intensity laser experiments,22,23 and other devices.24,25 The parametric
decay of ion acoustic waves (IAWs) has been postulated26–30 as a pos-
sible cause for the saturation of stimulated Brillouin scattering
observed in high-intensity laser experiments.22,23,31–34 However, quan-
titative measurements of nonlinear, near-acoustic waves are lacking,
especially on the influence of fluid vs kinetic effects.

In this paper, we present quantitative measurements of the
harmonic content, frequency, and stability of nonlinear Trivelpiece-
Gould (TG) waves on well-controlled, laser-diagnosed, pure ion plas-
mas. These plasma waves are azimuthally symmetric standing waves
with a near-acoustic (i.e., nearly dispersion-free) linear dispersion
relation discretized by the axial wavenumber kz ¼ mzðp=LpÞ. A wide
range of temperatures and, hence, the ratio of thermal velocity �v to

phase velocity v/ are explored in order to investigate the effects of
both fluid and kinetic nonlinearities.

Due to the near-acoustic nature of these TG waves, harmonics of
the fundamental are nearly on the linear dispersion relation and thus
are driven resonantly through nonlinear mode coupling. We find that

the measured harmonic amplitude jAðjÞ
m j is proportional to the funda-

mental wave amplitude jAð1Þ
m j to the jth power, where j is the harmonic

number. At low temperatures, the harmonic amplitude increases in
rough agreement with cold fluid theory4 when the deviation from
acoustic dispersion,

Dmj � jxm � xj; (1)

is reduced. In contrast, at higher temperatures, the harmonic content
is larger than the cold fluid prediction, suggesting an influence of
kinetic effects.

The fundamental mode frequency is also observed to be shifted
away from the linear frequency as the wave amplitude is increased.
Cold fluid theory4 predicts a positive nonlinear frequency shift that is

proportional to the amplitude of the second harmonic jAð2Þ
m j. However,

experimentally, we observe a smaller nonlinear frequency shift, which
is negative in certain cases, suggesting the presence of other nonlinear
effects not included in this fluid analysis. As the plasma temperature is
increased, this nonlinear frequency shift increases.
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At these large wave amplitudes, a simple three-wave fluid
analysis35 predicts that an mz ¼ 2 pump wave will decay through a
parametric instability to two longer wavelength, mz ¼ 1 daughter
waves. At low temperatures ðv/=�v� 5Þ, the broad characteristics of
the observed instability are consistent with this simple three-wave the-
ory, parameterized by the frequency detuning between the pump and
daughter wave D12 and scaled pump wave amplitude C0. Here,

C0 � jAð1Þ
2 jx1ð3R=8Þ, where jAð1Þ

2 j is the fundamental amplitude of
the pump wave and

R � 2
k?Rp

J1ðk?RpÞ (2)

is a scaling factor4 that is dependent on the transverse wavenumber k?
and plasma radius Rp. For the plasmas discussed here, R � 0:85.
When the pump wave amplitude is above the threshold ðC0 �D12=2Þ,
the parametric instability is observed. The daughter wave amplitude
grows exponentially at a rate CE � C0 with “phase-locked” frequency
x1 ¼ x2=2 and relative phase h12 � �arccosð�D12=2C0Þ, consistent
with three-wave instability analyses.35,36 For small pump wave ampli-
tudes ðC0 �D12=2Þ, the relative wave phase varies as h12 / xBt,
causing the daughter wave amplitude to “bounce” as AB sin ðxBtÞ
with xB � D12 and AB / C0, in quantitative agreement with three-
wave theory.35,36 Experimentally, we typically observe a slow average
growth of this modulated daughter wave, which is not predicted by
fluid theory.

When harmonics of the pump and daughter wave are included
in a more sophisticated N-wave analysis of the instability,4 the
parametric instability is suppressed. This fluid theory4 predicts that
traveling pump waves of any amplitude are stable with respect to
parametric (three-wave) processes, analogous to the stability of
solitary-wave solutions of the Korteweg-de-Vries37 and Boussinesq38

equations. A recent analysis39 shows that traveling pump waves can be
weakly unstable to higher order wave processes (4-wave, 5-wave, etc.)
over narrow wavenumber bands associated with N-wave resonances
(N> 3), similar to the instabilities predicted for deep water waves.40,41

In contrast, for the standing waves of interest in these experiments, the
instability threshold is pushed to larger pump wave amplitudes with
weaker growth rates.4 Although the observed harmonics are consistent
with this N-wave fluid analysis, the predicted suppression of the para-
metric instability is not.

A recent kinetic theory42 reconciles this discrepancy by including
a novel effect of particles trapped in the wave potential. Even for these
experimentally low temperatures ðv/=�v� 5Þ, there can be a trapped
particle population if the wave amplitude is sufficiently large to reach
back into the velocity distribution. These trapped particles are pre-
dicted to destabilize the wave because they exhibit negative compress-
ibility: when compressed (or expanded) by the wave motion associated
with the instability, the trapped particle pressure and density decrease
(or increase), and this leads to a loss of the stability when the trapped
particle fraction is sufficiently large, i.e., fT � 0:1%. This trapped parti-
cle mechanism is a general phenomenon that could play a role in other
nonlinear systems, such as nonlinear IAWs where kinetic simula-
tions28,43 show instability thresholds below fluid theory predictions.

To investigate this trapped particle mechanism, experiments are
conducted at higher temperatures ðv/=�v� 5Þ where a larger fraction
of particles interact resonantly with the wave potential. For a linear
wave with phase velocity v/ � x=kz and a Maxwellian particle

distribution F(r,z,v,t), the fraction of resonant particles scales as fT
� ðv/=�vÞ4 exp ð�v2/=�v

2Þ with �v2 � T=M and fT > 10�9 for ðv/=�v
� 5Þ corresponding to T� 0:3 eV. As the plasma temperature and
thus the fraction of trapped particles are increased, a reduction in the
instability threshold is observed in qualitative agreement with recent
kinetic theory.42 Relative to cold plasmas, warm plasmas exhibit
similar exponential growth rates at half the pump wave amplitude. We
also present new (r, z, vz) drift-kinetic Poisson and (r, z) particle-in-cell
(PIC) simulations, which are unstable near the experimental pump
wave amplitudes only when trapped particles are included.

II. EXPERIMENTAL APPARATUS

Figure 1 shows a schematic of the experimental apparatus44 used
to confine and diagnose these cylindrical, predominately Mgþ ion
plasmas. To confine the ions axially, positive potentials Vc are applied
to the end rings of the Penning-Malmberg trap, and radial confine-
ment is provided by a 3 T, axial magnetic field. A weak “rotating wall”
(RW) perturbation, applied to the 8-sectored ring shown in Fig. 1,
maintains the plasma in a near thermal equilibrium state described by
“top-hat” density and rigid-rotor rotation profiles.

Radial profiles of the density n(r), plasma temperature T(r), and
rotation velocity vhðrÞ are measured at the axial location zL of the
photon viewing volume through Laser Induced Fluorescence (LIF)
techniques.44 A typical plasma has a radius Rp � 0:5 cm and a uniform
density n0 � 2� 107 cm�3 and rotates at fE � 10 kHz. Laser cooling
and cyclotron heating on 24Mgþ control the plasma temperature over
a range 10�3 �T� 0:62 eV corresponding to 90� v/=�v� 3:5.

A (r, z) Poisson-Boltzmann solver extends these measured radial
cross sections to determine the plasma length. This solver iterates the
(r, z) density n(r, z) to establish a self-consistent solution of Poisson’s
equation

r2/ðr; zÞ ¼ �4pqnðr; zÞ; (3)

subject to the boundary conditions at r ¼ Rw of the experimental con-
fining potentials. The z-boundary condition is taken to be @/=@z ¼ 0
at z ¼ 6zE , where zE is well beyond the plasma end. Local thermal
equilibrium along the magnetic field (i.e., along ẑ) is assumed, so that
the density is

nðr; zÞ ¼ GðrÞ exp �q/ðr; zÞ=TðrÞ½ �; (4)

where G(r) is constrained by the measured n(r).

FIG. 1. Schematic of the 3 T Penning-Malmberg trap used to confine and diagnose
these multispecies ion plasmas and a sketch of the first two axial modes.
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Equation (3) is solved numerically on a 512� 1024 grid using an
iterative calculation. Initially, the plasma is assumed to be a rod of
charge nðr; 0 � z � LcÞ ¼ nðrÞ extending the length of the confining
volume Lc. This initial guess is used with the boundary conditions to
determine /ðr; zÞ, which then determines a new guess of n(r, z). A
fraction of this new n(r, z) solution is added to the old solution while
maintaining the constraint that nðr; zLÞ ¼ nðrÞ. This process is
repeated until the maximum density change is less than 0.01%. The
resulting solutions are cylindrical plasmas with rounded ends.
Experimentally, the on-axis plasma length is varied over the range
12:4� Lp � 20:3 cm by changing the confinement potentials and
length of the confinement volume.

III. LINEARWAVE FREQUENCIES

In these trapped plasmas, the linear dispersion relation of
Langmuir waves is near-acoustic because of the shielding from the
radial boundary at Rw ¼ 2.86 cm. The Trivelpiece-Gould dispersion
relation45 for z-periodic waves on an infinite-length column is

xðkzÞ ¼ xp
kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þ k2?
p 1þ 3

2
�v
v/

� �2
" #

; (5)

where kz ¼ mzðp=LpÞ and xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n0=M

p
is the plasma fre-

quency. The transverse wavenumber k? is determined by the condi-
tion that the axial and radial plasma/vacuum electric fields be
continuous at the plasma radius,45 which is set by

k?Rp
J1ðk?RpÞ
J0ðk?RpÞ

¼ �kz
Srðkz;Rp;RwÞ
Szðkz;Rp;RwÞ

(6)

for axisymmetricmh ¼ 0 modes in a strong magnetic field. Here,

Sz ¼ I0ðkzRpÞK0ðkzRwÞ � I0ðkzRwÞK0ðkzRpÞ (7)

and

Sr ¼ I1ðkzRpÞK0ðkzRwÞ þ I0ðkzRwÞK1ðkzRpÞ (8)

are related to the axial and radial vacuum electric field solutions at Rp,
respectively. For long, thin plasmas with k?Rp � 1 and kzRw � 1,

Eq. (6) reduces to k? � R�1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= ln ðRw=RpÞ

p
a constant, independent

of the axial wave number. However, for the plasmas of these experi-
ments, Eq. (6) determines k? � 0:9R�1

p þ 0:5kz .
These waves are excited from a confinement ring located near

the plasma end, and the resulting wave is detected as an image charge
induced voltage Vw on an off-center ring, as shown in Fig. 1. Typically,
a 40 cycle sine wave drive with an amplitude AD � 2� 200 mVpp is
used. The drive is ramped to/from full amplitude over four cycles to
minimize the direct excitation of other waves, and the largest drives
generally heat the plasma by DT � 10�2 eV. The mode amplitudes
are obtained by fitting the digitized wall signal in time segments of
approximately five wave cycles with sine waves near the linear mode
frequencies.

Figure 2 shows the frequency measurements of several small
amplitude TG modes for two different plasma lengths. The measured
mode frequencies (symbols) are nearly acoustic (dashed lines), and the
deviation from acoustic dispersion D12=x1 is dependent on the plasma
geometry, i.e., Lp=Rp. When the plasma length is increased from
13.6 cm to 20.3 cm (blue to red data), the relative deviation from

acoustic dispersion D12=x1 is reduced by about 50%. Increasing the
plasma length 12:4� Lp � 20:3 cm decreases the mode frequencies
23:8�x1=2p� 13:65 kHz and decreases the relative detunings
3:1�D12=2p� 0:85 kHz.

Since k? is an increasing function of kz for these plasmas, the
deviation from acoustic dispersion is larger than predicted by the typi-
cal constant k? approximation. Fairly good agreement between all the
measured mode frequencies (symbols) and Eq. (5) (solid curves) is
obtained when k? is properly determined from Eq. (6), and the plasma
length is used as a fit parameter. These fits give plasma lengths within
a few percent of the lengths determined from the (r, z) Poisson-
Boltzmann solver. In contrast, the constant k? approximation of
Eq. (6) underestimates D12=x1 by about a factor of 4 for these
plasmas.

IV. NONLINEAR WAVE STRUCTURE

The near-acoustic nature of these TG waves allows for strong
mode couplings. Harmonics of the fundamental wave are nearly on
the linear dispersion relation and thus are driven resonantly by the
fundamental through nonlinear mode coupling. For large amplitude
waves, we find

VwðtÞ ¼
X
j

AðjÞ
m cos ðjxmtÞ; (9)

where j¼ 1, 2, 3, … correspond to the phase-locked frequency har-
monics of the fundamental and jAðjÞ

m j is the fractional density pertur-
bation of harmonic j with frequency jxm. Since VwðtÞ is measured on
a single axial electrode, we are unable to determine the axial mode
structure of these waves. In this work, we keep only the spatial Fourier
harmonics with the cos ðjkzzÞ axial dependence for frequency jxm and
thus a nonlinear density eigenfunction

Wm ¼
X
j

WðjÞ
m ; (10)

FIG. 2. Measured frequencies of standing TG waves (symbols) for two different
plasma lengths on very cold plasmas with v/=�v � 90. Solid curves are one param-
eter fits to Eq. (5), and dashed lines show acoustic dispersion.
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where

WðjÞ
m ¼ 1

2
AðjÞ
m ðtÞn0e�ijxmt cos ðjkzzÞJ0ðk?rÞ þ c:c: (11)

for a top-hat density profile. This assumption is supported by recent
cold fluid theory,4 which predicts that the nonlinear amplitude is dom-
inated by the near dispersion harmonics with an e�ijxmt cos ðjkzzÞ
dependence for the modes considered here.

We characterize the size of these nonlinear waves by the frac-

tional density perturbation of the fundamental Am � Að1Þ
m , which is

directly related to the measured amplitude of Vw at xm through
Gauss’s Law

Am ¼
k2z þ k2?
� �

kzCSzðkz;Rp;RwÞ
2pen0J0ðk?RpÞf̂

" #
Vw: (12)

Here, C is the capacitance of the detection ring extending axially from
position z1 to z2, and f̂ ¼ sin ðkzz2Þ � sin ðkzz1Þ is the finite overlap of
the detection ring and plasma wave. Equation (12) reduces to Eq. (2) of
Ref. 46 for long, thin plasmas. The typical uncertainty in the plasma
length dLp=Lp � 5%, radius dRp=Rp � 5%, and equilibrium density
dn0=n0 � 2% results in a 10% uncertainty in the conversion of Vw to
jA1j and a 20% uncertainty in jA2j and jA3j. By replacing kz in Eq. (12)

with jkz, the measured amplitude of Vw at jxm is converted to jAðjÞ
m j.

Shown in Fig. 3(a) is the detected temporal waveform of a large
amplitude mz ¼ 1 mode for a typical cold plasma T � 10�2 eV with
D12=x1 ¼ 11:9%. The wave density perturbation (black curve)
includes the fundamental (red curve), second (j¼ 2), and third (j¼ 3)
frequency harmonics. Higher harmonics j> 4 are not well coupled to
the wall and are typically not detectable above the experimental noise
floor. Figure 3(a) shows that harmonic generation steepens the funda-
mental density perturbation away from a sinusoid, and for this case, it
increases the peak density perturbation by about a factor of 2. Similar
steepened waveforms were observed in previous experiments investi-
gating Bernstein–Greene–Kruskal (BGK) modes and solitons in pure
electron plasmas2 and are predicted by cold fluid theory.4,39

The amplitude of these harmonics is dependent on the size of the
fundamental density perturbation and on the deviation from acoustic
dispersion. Figure 3(b) shows the amplitude measurements of the sec-
ond and third harmonics vs the fundamental amplitude as the wave

damps. The harmonic amplitude jAðjÞ
1 j is proportional to jA1j to the

jth power. We also observe a larger harmonic content for more acous-
tic dispersion relations. When D12=x1 is reduced by about 50%, the

amplitude of the second harmonic jAð2Þ
1 j increases by a factor of 2, and

the third harmonic amplitude jAð3Þ
1 j increases by a factor of 4.

These results are in agreement with cold fluid theory.4 This the-
ory keeps the nonlinear convective terms in the cold fluid equations
and solves for the nonlinear density, velocity, and frequency of these
standing waves using a perturbation expansion, assuming that the
fundamental wave amplitude jAmj is small. The predicted second and
third order corrections to the nonlinear wave density are

jAð2Þ
1 j ¼ 3

8
1

1� x2=2x1ð Þ2
� �

R jA1jð Þ2

	 3
8
x1

D12
R jA1jð Þ2 (13)

and

jAð3Þ
1 j ¼ 1

32
5þ ðx2=x1Þ2

1� ðx2=2x1Þ2
	 


1� ðx3=3x1Þ2
	 


" #
R2 jA1jð Þ3

	 27
64

x1

D12

x1

D13
R2 jA1jð Þ3; (14)

respectively, where the approximations assume that D12=x1 and
D13=x1 are small.

The measured (symbols) and predicted (solid lines) scaling
factors for jAð2Þ

1 j and jAð3Þ
1 j are shown in Fig. 4 for cold plasmas T

� 10�2 eV with a range 6:2%�D12=x1�13:0%. As the plasma
becomes more acoustic, the measured amplitudes of the second
[Fig. 4(a)] and third [Fig. 4(b)] harmonic increase linearly with
x1=D12 and ðx1=D12Þðx1=D13Þ, respectively, in qualitative agree-
ment with theory. However, theory underestimates jAð2Þ

1 j and overes-
timates jAð3Þ

1 j by about 20%.
So far, these experimental results have only considered cold

plasmas. As the plasma temperature is increased from 10�2 to 0.55 eV,
the linear dispersion relation becomes more acoustic with D12=x1 and
D13=x1 decreasing by about a factor of 1.2 for a plasma with D12=x1

¼ 11:9% at T � 10�2 eV. This decrease would suggest 1:2� and
1:4� increases in the amplitude of the second and third harmonics,

respectively. However, jAð2Þ
1 j is observed to increase by a factor of 1.6,

and jAð3Þ
1 j is increased by a factor of 2.7. These results suggest that

FIG. 3. (a) Density perturbation (black curve) of a large amplitude mz ¼ 1 TG
mode from measurements of the image charge induced wall voltage. Harmonic
generation steepens and increases the fundamental density perturbation (red
curve). (b) Measured amplitude (symbols) of the frequency harmonics j¼ 2 and
j¼ 3 of this nonlinear mz ¼ 1 mode. Fits (dashed lines) show that the amplitude of
the harmonics is proportional to fundamental amplitude to the jth power.
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kinetic effects, which are neglected in the cold fluid analysis, may cause
further steepening of the wave density perturbation.

V. NONLINEAR FREQUENCY SHIFTS

Along with the generation of harmonics, nonlinear theory4 pre-
dicts that the frequency of these large amplitude TG waves is shifted
away from the linear dispersion relation. Following the same perturba-
tion expansion of the nonlinear cold fluid equations discussed in
Sec. IV, theory predicts a second order correction to the linear stand-
ing wave frequency of

dx1

x1
¼ 1

64
1� ðx1=x2Þ2

	 

ðx2=x1Þ2 þ 8

	 

1� x2=2x1ð Þ2

" #
R2 jA1jð Þ2

	 9
64

x1

D12
R2 jA1jð Þ2; (15)

where, again, the approximation assumes that D12=x1 is small.
Previous simulations of IAWs6 have shown a similar jA1j2 scaling for
the frequency shift.

Figure 5(a) shows the measured percent change in the frequency
of a large amplitude mz ¼ 1 wave vs jA1j2 for two cold plasmas T
� 10�2 eV with different D12=x1 values. To avoid conflating thermal
and amplitude effects as the wave damps, the wave frequency is mea-
sured immediately after the driving burst is turned off (solid symbols)
or in short time segments as the wave is driven to large amplitude
(open symbols). The measured mode frequency increases as jA1j2
(dashed lines) with a larger frequency shift for more acoustic disper-
sion relations (blue to red data).

Combining Eqs. (13) and (15), theory predicts

dx1=x1 	 ð3=8ÞRjAð2Þ
1 j (16)

that the nonlinear frequency shift is proportional to the amplitude of
the second harmonic jAð2Þ

1 j. In Sec. IV, we showed that jAð2Þ
1 j is under-

estimated by cold fluid theory, so a corresponding underestimate of
dx1=x1 would be expected. However, Eqs. (15) and (16) predict non-
linear frequencies about a factor of 2 larger than the measurements.

This discrepancy suggests the presence of other nonlinear effects
that reduce the measured wave frequency. Previous fluid theory7

found that the ponderomotive force of the wave redistributes particles
axially, creating a nonlinear radial eigenfunction and causing a nega-
tive nonlinear frequency shift. Equation (15) assumes a constant radial
eigenfunction and therefore neglects this negative frequency shift.
Reference 7 predicts dx1=x1 � �0:05ðA1Þ2 for a plasma extending
radially out to the wall with no harmonic content. The addition of this
negative shift alone does not explain the observed discrepancy in
dx1=x1, but this ponderomotive effect may be enhanced by the steep-
ening of the waveform. Finite length effects may also contribute to the
smaller observed frequency shift. These theories4,7 are periodic in z
and therefore neglect a possible downward frequency shift resulting
from the elongation of the plasma due to these large amplitude waves.

These measured nonlinear frequency shifts are also temperature
dependent. Figure 5(b) shows a factor 2.5 increase in dx1=x1 as the
plasma temperature is increased from 10�2 to 0.55 eV with a corre-
sponding reduction in D12=x1 from 11.9% to 10.3%. As discussed in
Sec. IV, warm plasmas have a stronger harmonic content, so this larger
frequency shift is in qualitative agreement with cold fluid theory
predicting dx1=x1 / Að2Þ

1 . We note that for these warm plasmas,

FIG. 4. (a) The measured amplitude (symbols) of the second harmonic of a large
amplitude mz ¼ 1 wave increases linearly with D12=x1 as predicted by theory
(solid line), but it is about 20% larger in magnitude. (b) In contrast, the measured
third harmonic amplitude (symbols) is about 20% smaller than theory (solid line).

FIG. 5. Measurements of the percent change in the frequency of a large amplitude
mz ¼ 1 wave immediately after (solid symbols) or during (open symbols) the driving
burst vs the square of the fundamental wave amplitude for both cold (a) and warm
plasmas (b). Dashed lines are fits to the wave amplitude squared.
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Eq. (15) is within 10% of the measured frequency shift, but we believe
that this correspondence is merely a coincidence since cold fluid the-
ory underestimates the harmonic content of these warm plasmas.

The competition between positive and negative nonlinear fre-
quency shifts is most evident in large amplitude mz ¼ 2 waves. At low
temperatures T� 10�2 eV, the negative frequency shift dominates,
andx2 decreases with jA2j as shown in Fig. 6. However, at higher tem-
peratures T� 10�2 eV, dx2=x2 changes sign, possibly due to the
stronger harmonic content.

Previous experiments8 on pure electron plasmas observed a
similar competition between positive and negative frequency shifts.
For lower order modes mz � 3, a positive frequency shift was
observed. However, for higher order modes mz > 3, which have a
weaker harmonic content, dx=x was negative. Further experiments
and theory are required to fully understand these nonlinear frequency
shifts.

VI. THE DECAY INSTABILITY, SLOW AVERAGE
GROWTH, AND OSCILLATORY COUPLING

In this section, the stability of these nonlinear waves with respect
to small perturbations of the waveform is investigated on cold plasmas
T� 10�2 eV. We focus on the common parametric instability in
which a large amplitude pump wave decays to two longer wavelength
daughter waves each at nearly half the pump wave frequency. For this
TG dispersion relation, this near resonance condition is satisfied by a
largemz¼ 2 wave with a smallmz¼ 1 perturbation.

For large amplitudes ðjA2j� 30%; C0=D12 � 0:7Þ, Fig. 7(a)
shows that the mz ¼ 2 pump wave (dashed curve) is unstable to the
parametric instability. Again, C0 is the scaled pump wave amplitude,
which describes the strength of the nonlinear coupling between the
pump and daughter wave. The mz ¼ 1 daughter wave (solid curve)
grows exponentially out of the noise at a rate CE ¼ 7443 s�1 and
phase-locked with a relative phase h12 ¼ �0:73p. However, the pump
and daughter waves do not completely exchange energy. When
jAmax

1 j � 0:6jAmax
2 j, the direction of energy exchange reverses, and the

pump and daughter wave amplitudes proceed to oscillate as the waves
exchange energy back and forth. At late times, the daughter wave
amplitude is dominant with hA1i=hA2i � 2. Energy is removed from
both waves through collisional drag damping47 at a rate c � 50 s�1 for
T � 10�2 eV.

In contrast, moderate amplitude (20%� jA2j� 30%; C0=D12

� 0:6Þ pump waves have only a weak instability [Fig. 7(b)]. The aver-
age mz¼ 1 amplitude grows slowly hCi� 500 s�1 with amplitude
modulations AB / jA2j at a rate xB � D12. These modulations are a
result of the daughter wave being driven in-and-out of phase by the
pump wave, which we refer to as oscillatory coupling. Although this
oscillatory coupling is predicted by both three-wave and N-wave fluid
analyses, the slow average growth is not. A similar weak instability is
observed in kinetic particle-in-cell (PIC) simulations as particles slowly
become trapped in the wave potential (see Sec. IX).

For small wave amplitudes ðjA2j� 20%; C0=D12 � 0:5Þ, the
daughter wave is stable. Oscillatory coupling is still observed, but the
slow average growth mechanism is either suppressed or is at a rate
weaker than the damping rate, so the average mz¼ 1 amplitude
decreases slowly with time. This behavior has been observed in previ-
ous experiments48 by initially driving the daughter wave above the
noise floor with an additionalmz¼ 1 seed burst added to the drive.

VII. THREE-WAVE THEORY

Although harmonics of the pump and daughter waves are
ignored in a three-wave analysis, several properties of the instability
can be understood through this simpler theory. Three-wave, cold fluid
theory35 characterizes this instability by the scaled pump wave ampli-
tude C0 and frequency detuning D12. This theory keeps the nonlinear

FIG. 6. Percent change in the frequency of a large amplitude mz ¼ 2 wave for vari-
ous temperatures. The observed negative frequency shift is not predicted by current
fluid theory. Dashed lines are fits to the wave amplitude squared.

FIG. 7. (a) Above a threshold pump wave amplitude, the parametric instability is
observed. However, below threshold (b), the pump wave modulates the daughter
wave amplitude with a slow average growth not predicted by fluid analyses.
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terms in the fluid equations and uses a two time scale analysis for the
density perturbation

WðtÞ ¼ Wð1Þ
1 ðtÞ þWð1Þ

2 ðtÞ (17)

to derive the coupled amplitude equations

_A1 ¼ �iXA2A


1e

iD12t ;

_A2 ¼ �iXðA1Þ2e�iD12t ; (18)

where X ¼ C0=jA2j ¼ ð3R=8Þx1 is the nonlinear coupling
coefficient.

A. Small daughter wave approximation

In the limit jA1j � jA2j; j _A2j 	 0, and these coupled equations
can be solved analytically to find

A1ðtÞ ¼ aeðCþiD12=2Þt þ be�ðC�iD12=2Þt ; (19)

where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
0 � ðD12=2Þ2

q
, and a and b are constants. Plugging

this solution back into Eq. (18), we find

b ¼ �a

C0

jCj þ D12=2
: (20)

The constant a is set by the initial conditions.
Equation (19) predicts two different behaviors for the time evolu-

tion of the mz ¼ 1 amplitude. For C0 > D12=2, C is real, and the
daughter wave amplitude is composed of an exponentially growing
and decaying solution. This predicts the exponential growth rate
CE ¼ C of Fig. 7(a). In contrast, for C0 < D12=2, C is imaginary, and
the daughter wave amplitude is predicted to oscillate with excursions
AB ¼ C0hA1i=ðjCj þ D12=2Þ at a frequency xB ¼ 2jCj similar to the
behavior of Fig. 7(b) but around a constant average amplitude hA1i.
This modulation of the daughter wave amplitude results from the
same mode coupling that causes the exponential growth and occurs at
the oscillatory coupling rate (OCR)

COCR � AB

hA1i
xB ¼ C0

2jCj
jCj þ D12=2

: (21)

In Fig. 8(a), the measured (symbols) and three-wave theory pre-
dicted (curves) COCR and CE are plotted vs the pump wave amplitude
jA2j for two cold plasmas with different D12=x1 values. The experi-
mentally determined oscillatory coupling rates (open symbols) are cal-
culated from Eq. (21) through measurements of the amplitude AB,
frequency xB, and average hA1i of the modulated daughter wave
amplitude in short time segments during a single slow growth evolu-
tion of the daughter wave [Fig. 7(b)]. For a given pump wave ampli-
tude jA2j, COCR is weaker for the plasma with D12=x1 ¼ 6:2%, in
agreement with three-wave theory.35 This smaller COCR results from
the reduction of x1 and hence C0 as the plasma aspect ratio is
increased (see Fig. 2).

Above a threshold pump wave amplitude (arrows), a transition
to exponential growth (closed symbols) is observed. These exponential
growth rates are measured by fitting an exponentially growing sine
wave to the digitized wall signal [Fig. 7(a)] as the daughter wave grows
out of the noise. In general, the rates CE � 3000� 9000 s�1 are

obtained from fits over 5� 10 cycles of the growingmz ¼ 1 wave, and
during this growth, themz ¼ 2 amplitude is about 20 times themz ¼ 1
amplitude. The measured exponential growth rates are about 30%
lower in magnitude than the three-wave theory prediction. As the
plasma becomes more acoustic (blue to red), the mz ¼ 2 amplitude
required for exponential growth is reduced in rough agreement with
three-wave theory.35

This three-wave theory35 predicts that the COCR and CE depen-
dence on D12=x1 is removed by expressing the pump wave amplitude
in terms of the dimensionless parameter C0=D12 / jA2jx1=D12 and
scaling the rates C by the detuning D12. The measured (symbols) and
predicted (black curve) rates shown in Fig. 8(b) reflect this scaling for
four cold plasmas with different degrees of acoustic dispersion. For
C0=D12 < 0:4, COCR is in quantitative agreement with three-wave
theory35 (black curve) independent of D12=x1. The predicted reduc-
tion in COCR near C0=Dx � 0:5 reflects xB ! 0 as the infinitesimal
daughter wave becomes phase-locked with the pump. It is unclear
whether the larger measured COCR near the decay threshold is a result
of the finite amplitude of the daughter waves or of the observed
harmonic content, which is ignored in this three-wave analysis.35 For
C0=D12 � 0:7, the measured CE in Fig. 8 is about 30% lower in

FIG. 8. (a) Measurements of the oscillatory coupling (open symbols) and exponen-
tial growth (closed symbols) rates vs the pump wave amplitude jA2j for two cold
plasmas with different D12=x1 values. (b) Rates normalized to D12 vs the scaled
pump wave amplitude for four different D12=x1 values. Solid curves are three-
wave theory.
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magnitude than the three-wave theory (black curve) for the various
D12=x1 values.

B. Phase space analysis

In this section, a phase space analysis35,36 is used to study the
time evolution of the coupled amplitude equations. Using
AmðtÞ ¼ jAmðtÞjei/mðtÞ, Eq. (18) can be written in terms of the wave
amplitude and phase difference as

j _A1j ¼ �XjA1jjA2j sin ðh12Þ; (22a)

j _A2j ¼ XjA1j2 sin ðh12Þ; (22b)

_h12 ¼ � 2XjA2j � X
jA1j2

jA2j

" #
cos ðh12Þ � D12; (22c)

where h12 ¼ 2/1 � /2 � D12t is the phase difference between the
pump and daughter wave. Combining Eqs. (22a) and (22b) to elimi-
nate the sin ðh12Þ term, the Manley-Rowe relation

jA1j2 þ jA2j2 � A2 (23)

is obtained, where A is a constant. Equation (23) is equivalent to the
conservation of wave energy. Of course, damping is neglected in this
theory, and experimentally, the waves lose energy through collisional
drag.47

Normalizing the time by the maximum coupling strength
�t ¼ XAt, and substituting in Eq. (23) to eliminate jA1j, Eq. (22c) sim-
plifies to

_h12 ¼
1
x
� 3x

� �
cos ðh12Þ � g; (24)

where x � jA2j=A is the fraction of energy in the pump wave and
g � D12=XA is the detuning normalized to the maximum coupling
strength. In the limit jA1j � jA2j; A 	 jA2j, and g 	 D12=C0. The
daughter wave amplitude jA1j is also eliminated from Eq. (22b)
through the substitution of Eq. (23) to obtain

_x ¼ 1� x2½ �sin ðh12Þ: (25)

Equations (24) and (25) describe the time evolution of the phase space
ðh12; xÞ, where g determines the topology.

Figure 9 (top) shows a schematic of the phase space in the oscilla-
tory coupling regime ðg > 2Þ. The phase space is characterized by two
jump points located at J1 ¼ ð�p=2; 0Þ and J2 ¼ ðp=2; 0Þ and a center
fixed point at ð0; x0Þ, where

x0 ¼ � g
6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
6

� �2

þ 1
3

s
: (26)

The red curve connecting J1 and J2 is a separatrix contour. For x � 1,
the pump wave is stable and only undergoes small oscillations (blue
contours) as the phase difference oscillates through 2p. The size of
these oscillations is increased when the pump and daughter wave are
of comparable amplitude x � 1=

ffiffiffi
2

p� �
. Again, this theory assumes

that the wave energy is conserved [Eq. (23)], so a decrease in x (i.e.,
jA2j) reflects an increase in jA1j and vice versa. Within the separatrix
(red contour), jA1j > jA2j, and the pump wave undergoes the domi-
nant amplitude modulations.

The gray symbols of Fig. 9 (Top) correspond to phase space
measurements in the oscillatory coupling regime for the data shown in
Fig. 7(b). For each amplitude oscillation, the phase space measure-
ments are in rough agreement with three-wave theory. However, the
unexpected, weak instability [Fig. 7(b)] slowly transfers energy to the
daughter wave, and the measured phase space contours spiral toward
the center fixed point located at ð0; x0Þ. For clarity, we have only plot-
ted the measured contours for a few values of x. The three-wave pre-
dicted topology shown if Fig. 9 (top) is for the average measured g,
since experimentally g is not a constant due to damping of the waves.

In the exponential growth regime ðg < 2Þ, the phase space topol-
ogy changes, as shown in Fig. 9 (bottom). Two new center fixed points
are located at ð6p; xpÞ, where

xp ¼ g
6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
6

� �2

þ 1
3

s
: (27)

Around these center fixed points are two new separatrix contours
described by

x ¼ � g
2
cos ðh12Þ (28)

for 2 > �2 cos ðh12Þ > g with saddle points located at S6 ¼ ð6hs; 1Þ,
where cos ðhsÞ ¼ �g=2. In this phase space, a pump wave with a small

FIG. 9. A schematic of the phase space describing the coupled amplitude equa-
tions of the parametric instability in both the oscillatory coupling (top) and exponen-
tial growth (bottom) regimes. Solid curves are theory, and gray symbols are
experimental measurements.
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mz ¼ 1 perturbation ðx � 1Þ decays with a nearly constant phase dif-
ference as S� is approached along the separatrix contour. This is the
exponential decay instability discussed in Sec. VIIA. During this pro-
cess, the pump wave continues to exchange energy with the daughter
wave until ð�p; g=2Þ at which point the direction of energy exchange
reverses along the Sþ separatrix contour, and the process repeats.
Within the lower separatrix of this phase space, the solutions are char-
acterized by large modulations of the pump wave amplitude with an
average amplitude centered around x0.

The experimental measurements of the phase space in the expo-
nential growth regime [Fig. 7(a)] are shown as the black and gray sym-
bols of Fig. 9 (Bottom). The black symbols correspond to the initial
exponential growth of the daughter wave. Here, the theory contours
correspond to the measured gmax to better capture the initial exponen-
tial growth behavior. Like in the oscillatory coupling regime, the mea-
sured phase space contours (gray symbols) spiral toward the center
fixed point at ð0; x0Þ. This behavior is not predicted by three-wave
theory but explains the observation that at late times, hA1i � 2hA2i
since this ratio of amplitudes is roughly x0.

Figure 10 shows a more detailed analysis of the decay instability.
For jA1j � jA2j, exponential growth occurs at the S� saddle point, so
the daughter wave is predicted to be phase-locked to the pump wave
with a phase difference

h12 � hs ¼ �arccos
�D12

2C0

� �
(29)

[black curve of Fig. 10(a)]. The magnitude of the measured h12 is ini-
tially larger than the three-wave theory prediction for various D12=x1,
but approaches three-wave theory at large pump amplitudes.

This phase space analysis35,36 also shows that the frequency
detuning D12 moderates the amount of energy exchanged between the
unstable pump and growing daughter wave. When the pump wave
decays, it only exchanges part of its energy with the daughter wave.
Three-wave theory predicts that the daughter wave reaches a maxi-
mum amplitude of

jAmax
1 j
A

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D12

2C0

� �2
s

(30)

[black curve of Fig. 10(b)] before the direction of energy exchange
reverses. That is to say, the instability threshold is predicted to be a
gradual transition with a majority of energy transfer jAmax

1 j� 0:9jAmax
2 j

only for C0=D12 � 1:1. Experimentally, we find near complete energy
exchange ðjAmax

1 j=jAmax
2 j � 1Þ at pump wave amplitudes smaller than

the three-wave prediction even though the measured decay threshold is
slightly suppressed.

VIII. N-WAVE THEORY

This rough but broad correspondence between the experiments
and simple three-wave theory of the instability is surprising. We
showed in Sec. IV that these waves are not single sinusoidal oscilla-
tions as three-wave theory assumes but instead contain harmonics of
the fundamental waves. When these harmonics are included in the
instability analysis, fluid theory4 predicts that the three-wave paramet-
ric instability is eliminated in traveling pump waves, analogous to the
stability of solitary-wave solutions of the Korteweg-de-Vries37 and
Boussinesq38 equations. In contrast, for the standing waves of interest
in these experiments, the parametric instability is predicted4 to be
suppressed but not eliminated by the addition of wave harmonics.

For a plasma with D12=x1 ¼ 7:6% (k? ¼ 6 in the notation of
Ref. 4), this N-wave, cold fluid theory predicts an exponential instabil-
ity for C0=D12 � 1:5 with growth rates a factor of 5 weaker than the
three-wave theory prediction. These results are in stark contrast to
the experimentally measured growth rates, which are only about
30% weaker than three-wave theory and occur for C0=D12 � 0:7
[Fig. 8(b)]. Also, this N-wave analysis predicts further suppression of
the instability as the dispersion relation becomes more acoustic.
However, experimentally we observe little dependence on D12=x1

beyond the predicted three-wave theory behavior. Fluid simulations
have been conducted to include the effects of finite length, pressure,
and radial dependence to closely match the experimental conditions.
However, these fluid effects alone seem to be unable to match the
observed instability.

IX. DESTABILIZATION FROM TRAPPED PARTICLES

However, recent kinetic theory42 and simulations are able to pro-
duce growth rates similar to the experiments when a small fraction of
trapped particles are included. These trapped particles destabilize the
wave because they exhibit negative compressibility. In the instability,
adjacent peaks of the wave train approach one-another and therefore
recede from the next peaks. Normally, the density and pressure of

FIG. 10. Measurements (symbols) and theory (black curves) of the relative phase
difference (a) between the pump and daughter wave at the start of exponential
growth, and the maximum daughter wave amplitude (b) reached at the end of this
energy exchange.
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particles trapped between approaching peaks would increase and
would decrease for particles trapped between receding peaks, produc-
ing a restoring force that stabilizes these modulations. Trapped par-
ticles with energies just below the approaching wave peaks, however,
gain sufficient energy to become passing and are then retrapped
between receding peaks. The net effect of these marginally trapped
particles is to reverse the sign of the trapped particle density and pres-
sure change, which produces a force that amplifies the modulation
when the trapped particle fraction is sufficiently large fT � 0:1%. For
a more detailed explanation of this process, we refer the reader to
Ref. 49 in which the theory of the parametric instability mechanism
caused by particles that are weakly trapped is discussed.

For these cold plasmas ðv/=�v� 5Þ, this trapped particle fraction
has not yet been experimentally observed; however, the presence of a
small fraction of trapped particles is not unreasonable. Near the decay
threshold ðjA2j � 25%), the trapping region is large with a half-width
vT ¼ v/

ffiffiffiffiffiffiffiffiffiffi
2jA2j

p
� 20�v for v/=�v � 30. Also, finite length (r, z) PIC

simulations49 predict that the driver used to excite these waves creates
a small population of highly energetic, trapped particles. In these PIC
simulations, these trapped particles cause the anomalous slow average
growth [Fig. 7(b)] as the trapped particle population gradually
increases. However, to obtain the strong exponential growth [Fig. 7(a)]
observed experimentally, these PIC simulations require a larger fraction
of trapped particles than produced by the driver alone.

To investigate this trapped particle mechanism, experiments are
conducted at higher temperatures ð3:5� v/=�v� 5Þ, where trapped
particles are ubiquitous. At these high temperatures, small amplitude
waves ðjAmj� 0:1%Þ damp at the linear Landau rate50 8000� cL
� 50 s�1. However, at large wave amplitudes, resonant particles are
trapped in the wave potential resulting in trapping oscillations at a
frequency x2

T � jAmjx2 and diminishing the damping rate as the
trapped particles phase mix producing a BGK state.46,51 The large
amplitude kinetic pump waves of these experiments have weak damp-
ing c � 100 s�1, presumably resulting from the collisional repopula-
tion of the plateau in the velocity distribution.

Experimentally, we find that these kinetic pump waves are more
unstable with respect to decay to longer wavelength, consistent with
recent kinetic theory42 of the trapped particle mechanism. Figure 11(a)
shows the measurements of the decay instability at four different tem-
peratures. At low temperatures ðv/=�v� 5Þ, the instability threshold is
roughly determined by C0=Dx � 0:6. In contrast, for a plasma with
v/=�v � 3:5, we observe similar exponential growth rates as for a cold
plasma but at half the pump wave amplitude, i.e., C0=Dx � 0:3. This
reduction in the instability threshold is inconsistent with fluid theories
but is in qualitative agreement with kinetic theory that includes the
effect of trapped particles. Previous qualitative experimental work21

investigating the decay instability of higher axial modes on hot elec-
tron plasmas observed a similar temperature dependent reduction of
the instability threshold, and we note that preliminary experiments52

presented by us missed this temperature dependence as these early
experiments were conducted in a regime (large detuning and a strong
mz ¼ 1 seed) where the instability threshold was obfuscated by slow
average growth.

Shown in Fig. 11(b) are periodic (r, z, vz) drift-kinetic Poisson
(squares) and (r, z) PIC (triangles) simulations of the decay. At low
temperatures ðv/=�v � 8:9Þ, these kinetic simulations observe both
OCR and exponential growth rates near cold fluid, three-wave theory,

consistent with the experiments. However, it is the trapped particles in
these simulations that cause the instability. The pump wave is stable if
the trapped particle population is artificially eliminated by setting
Fðr; z; vz; tÞ ¼ 0 for jvzj > 4:5�v at every r, z, and time step t.
However, when the fraction of trapped particles is increased in these
simulations by increasing the plasma temperature, the pump wave
goes unstable at even lower amplitudes than experimentally observed.

X. CONCLUSION

At large wave amplitudes, harmonics of the fundamental TG
wave are generated. For cold plasmas, the amplitude of the jth har-
monic is proportional to the fundamental amplitude to the jth power,
and the proportionality factor increases as the dispersion relation
becomes more acoustic, in qualitative agreement with cold fluid
theory.4 These harmonics are predicted to cause a positive nonlinear
frequency shift of the fundamental.4 However, experimentally, the
frequency shift is smaller than the current theory prediction, even
negative for some cases, suggesting another nonlinear mechanism. At
higher temperatures, both the harmonic content and nonlinear
frequency shift are observed to increase. Further experiments and
theory will be needed to understand this temperature dependence.

When these harmonics are included in a fluid analysis of the sta-
bility of these nonlinear waves, the parametric instability is suppressed
compared to a standard three-wave theory. However, the experiments
show a rough but broad correspondence to this simpler three-wave
analysis. Oscillatory coupling rates are in quantitative agreement with

FIG. 11. Measurements (a) and simulations (b) of OCR and exponential growth
rates at different plasma temperatures. The reduction in the instability threshold
(arrows) at higher temperatures (lower v/=�v) contradicts fluid theories.
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three-wave theory, and the exponential growth rates are only slightly
reduced.

This discrepancy between the N-wave analysis and experiments
is resolved by the inclusion of weakly trapped particles. Recent kinetic
theory and simulations show that a small fraction of wave-trapped
particles destabilizes the pump wave, enabling the exponential growth
of longer wavelength waves. Experiments and simulations show stron-
ger growth with increasing plasma temperature and decreasing v/=�v.
Incisively, the simulations show the cessation of instability when par-
ticles near v/ are removed.

These experiments have focused on nonlinear processes for a
particular system, i.e., TG waves. However, the observed fluid nonli-
nearities should be generally applicable to waves with a similar linear
dispersion relation, such as cold magnetized plasma waves in a uni-
form plasma, IAWs, and shallow water waves in the Boussinesq
approximation. The instability resulting from weakly trapped particles
may also be active in IAWs, where kinetic simulations28,43 show insta-
bility threshold reduced from standard fluid theory predictions.
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