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Collisional drag between a bound positron and a background positron plasma is considered as a
mechanism for guiding-center antihydrogen atoms to relax to deeply bound states. Contrary to
previous assessment, an adiabatic cutoff to the drag is predicted at deep binding, when the bound
positron’s EÃB drift speed vd exceeds the plasma positron thermal speed. In this regime,
small-impact parameter collisions neglected in the drag calculation become the dominant 3-body
recombination mechanism. At shallow binding, whenj5vd / v̄!1, the atom’s energy loss rate due
to drag scales likej3/2 log2 j. When j@1 the adiabatic cutoff takes over and the rate scales as
j7/6exp(23

2(2j)2/3). The adiabatic cutoff implies that collisional drag can only assist positron–
antiproton recombination up to a finite binding energy. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1646392#

Current attempts to produce antihydrogen1,2 employ
nested Penning traps to immerse antiprotons in a cold posi-
tron plasma. At the cryogenic temperatures used in the ex-
periments, the plasma is in the regime of strong magnetiza-
tion, where the dimensionless parameterx[ v̄/Vcb5r c /b
!1. Here, v̄, Vc , and r c are the positron thermal speed,
cyclotron frequency, and cyclotron radius, respectively, and
b5e2/kBT is the distance of closest approach. In this re-
gime, three-body recombination is predicted to be the rate-
limiting recombination mechanism. The recombination rate
R3 is dominated by a kinetic bottleneck at binding energies
U of order 4kBT.3 At this weak binding energy, the
positron–antiproton pair form a ‘‘guiding-center atom,’’
where the positronEÃB drifts around the antiproton at a
distancer of orderb, and oscillates along the magnetic field
in the antiproton’s potential well~Fig. 1!. Assuming for sim-
plicity that the antiproton is stationary, O’Neil and Glinsky
calculated thatR350.07n2v̄b5, wheren is the plasma posi-
tron density. The drift orbit frequencyv'ec/Br3 for small
parallel bounce motion and is slower than oscillations paral-
lel to the field.

Here, we consider a different rate: the energy loss rateg.
The above-quoted theoretical rateR3 is actually the rate at
which atoms form with binding energies greater than 4kBT.
Beyond this bottleneck, atoms have a good chance of even-
tually falling to the ground state without being reionized.
However, 4kBT is still relatively shallow binding. The en-
ergy loss rateg is the average rate at which guiding-center
atoms move to deeper bindingonce they are past the bottle-
neck. This rate is of interest because in current experiments,
various effects limit the time available to the atoms to com-
pletely recombine to the ground state: for example, atoms
can drift out of the plasma where they may encounter strong
electric fields that reionize them unless they are deeply
bound.

The energy loss due to three-body collisions is due to
two processes: close collisions with impact parametersr less
than the atom sizer , and distant collisions withr.r . Each
process has been considered previously. In Ref. 3, the close

collisions with r,r were shown to produce an energy loss
rate that scales as

gclose'
nv̄b2

e2 , ~1!

where e5U/kBT is the scaled binding energy. This rate
clearly decreases as the atom falls to tight binding because
the cross section for close collisions is reduced as the atom
becomes smaller.

The energy loss rate due to distant collisions withr.r
was considered by Men’shikov and Fedichev,4,5 and it is this
work which we re-examine here. These authors found that
distant collisions create a drag force on the bound positron
that causes it to move to deeper binding. Furthermore, they
observed that the more tightly bound the positron, the faster
it moves, and the larger the drag force, leading to an energy
loss rate that monotonically increases with binding energy,
eventually dominating over the rate due to close collisions.

However, these authors neglected the effect of the bound
positron’sEÃB drift motion on the collisional drag coeffi-
cient. Here, we show that when this motion is included, an
adiabatic cutoff of the drag force is encountered at tight bind-
ing. When the drift speed of the bound positron becomes
larger than the plasma positron thermal speed, the plasma
positrons can no longer respond to the bound positron’s ro-
tational EÃB drift motion. As a result, we find that colli-
sional drag due to distant collisions is no longer important at
deep binding, but can play an important role at shallow bind-
ing energies, depending on the specific parameters of the
experiment~i.e., the value ofx, which depends on plasma
temperature and magnetic field strength!. In particular, we
find that the adiabatic cutoff occurs for scaled energiese near

ecutoff5A1

x
5Ab

r c
.

Plasma positrons streaming past the atom along the mag-
netic field impart random kicks to the bound positron and
give it diffusive mobility in the potential well of the antipro-
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ton. If the diffusion tensorD is known, then the ensemble
averaged fluxG of positrons bound in a potential fieldf is
given by the Einstein relation6

G[Gd1Gm52D•S ¹n1
en

kBT
¹f D .

The mobility fluxGm to lower binding energy is given by the
second term. Thus, a single positron will, on average, move
to deeper binding with velocity

v5
Gm

n
52D•

e

kBT
¹f.

Let us assume cylindrical coordinates centered on the
antiproton with the magnetic field oriented alongẑ, the unit
vector in thez direction ~Fig. 1!. For simplicity, we neglect
the bound positron’s bounce motion along the magnetic field
and consider only the cross field drift motion. In this limit,
binding energy takes the point particle form

U5
e2

r
.

~Note that the positron’s perpendicular kinetic energy is ne-
glected in the guiding-center approximation.! Since we ex-
pect the diffusion tensor to be diagonal in cylindrical coor-
dinates, we can letDr be the diffusion coefficient in the
radial direction. Becauser̂ is parallel to¹f, Dr represents
the positron’s mobility in the background potential well of
the antiproton. The change in binding energyU is given by

]U

]t
52ev•¹f5

Dre
2

kBT
~¹f!2. ~2!

Recalling that the positronEÃB drifts in the potential
field f, we can use

vd5
c

B
ẑ3¹f

to rewrite Eq.~2! in terms of the drift velocity magnitudevd ,

]U

]t
5

Dre
2

kBT S vdB

c D 2

.

The energy loss rate due to drag,gdrag, is

gdrag[
1

U

]U

]t
5

rD r

kBT S vdB

c D 2

. ~3!

With a known diffusion coefficient and drift velocity, Eq.~3!
gives us the rate at which a bound positron moves to deeper
binding. The diffusion coefficient depends on relative motion
between plasma positrons and the bound positron. The adia-
batic cutoff mentioned above manifests through this diffu-
sion coefficient.

To calculate the diffusion coefficient, we employ the col-
lisional definition

Dr5
1
2^nDr 2&, ~4!

where n is the frequency of collisions between the bound
positron and passing plasma positrons andDr is the dis-
placement alongr experienced during each collision. Con-
sider a guiding-center atom immersed in a magnetized posi-
tron plasma. The bound positron orbits the antiproton with
frequencyv5vd /r . To first order, plasma positrons are con-
fined to move along magnetic field lines at a constant veloc-
ity vz . As each plasma positron travels by the atom, its elec-
tric field perturbs the drift velocity of the bound positron by

v1~ t !5
ce

B

~r ~ t !2r p~ t !!3 ẑ

ur ~ t !2r p~ t !u3 .

Here r (t) is the position of the bound positron, andr p(t) is
the position of the passing plasma positron~Fig. 1!. Without
loss of generality, we can let the passing positron pass
through thez50 plane att50 when the bound positron is at
u50 in its orbital cycle. We therefore write

r ~ t !5r ~cosvt x̂1sinvt ŷ!,

r p~ t !5xpx̂1ypŷ1vzt ẑ.

If r p@r , the radial component of the bound positron’s veloc-
ity perturbation is

vr5v1• r̂5
ce

B

~xp sinvt2yp cosvt !

~xp
21yp

21vz
2t2!3/2 .

Integrating over all time gives the radial displacement from
one collision,

Dr 522
ce

B
yp U v

r pvz
2UK1S Uvr p

vz
U D , ~5!

whereK1 is the first modified Bessel function of the second
kind. For a positron plasma in thermal equilibrium, Eq.~4!
takes the form

Dr5
1
2E d2r pdvzf euvzuDr 2, ~6!

wheref e(vz)5(n/A2p v̄)e2vz
2/2v̄2

is the thermal equilibrium
distribution at densityn. Using this distribution with Eqs.~5!
and~6! and integrating over the spatial variableu, we obtain

FIG. 1. A guiding center atom. The positronEÃB drifts in the electric field
of a stationary antiproton while oscillating back and forth along the mag-
netic field in the potential well of the antiproton. The drift orbit frequency
v'ec/Br3 for small bounce motion and is slower than oscillations parallel
to the field.
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Dr52pE
2`

`

dvzE
r min

`

drpr pS ce

B D 2 v2

uvzu3
K1

2S vr e

uvzu
D f e . ~7!

The lower bound of the radial integralr min is on the order of
the atom radiusr . Collisions occuring at smaller radii are no
longer accurately modeled by unperturbed passing positron
orbits, and are neglected in this drag calculation. The addi-
tive contribution to the energy loss rate from close collisions
is estimated by Eq.~1!.

If we let r min5r and switch to scaled variabless
[vr p / v̄ andx[vz / v̄,

Dr5
1

A8p
S c

BD 2 mevp
2

v̄
F~j! ~8!

with

F~j![E
j

`

sdsE
2`

`

K1
2S s

uxu D e2x2/2

uxu3 dx. ~9!

Here vp
254pe2n/me is the square of the positron plasma

frequency and

j[
vr

v̄
5

vd

v̄
~10!

is the ‘‘adiabaticity parameter.’’ The functionF~j! has the
limiting forms

F~j!' ln2 j for j!1 ~11!

and

F~j!'Ap3

6
j21/3e2~3/2!~2j!2/3

for j@1. ~12!

Thus, as the positron drift speedvr increases above the av-
erage thermal speedv̄, the adiabatic cutoff manifests through
a drop in the positron’s diffusion coefficient.

To write the energy loss rategdrag in terms of the posi-
tron drift frequency, we use Eq.~3! and replacevd5vr :

gdrag5
r

A8p
S vr

v̄ D 2 vp
2

v̄
FS vr

v̄ D .

For small bounce motion, the drift frequencyv can be ex-
pressed as

v'
ec

Br3 .

Using this scaling, we can write an expression forgdrag in
terms of the adiabaticity parameterj:

gdrag5 A2pxnv̄b2 j3/2F~j!. ~13!

The energy loss rate is plotted in Fig. 2~the solid line!, and
compared to the asymptotic forms~11! and ~12! at large
~dashed! and small~dotted! adiabaticity parameterj. While
our form for gdrag agrees with Ref. 4 forj!1, our loss rate
cuts off exponentially whenj*1. Consequently, energy loss
due to distant collisions becomes unimportant whenj.1.

Over a range of binding energies, collisional drag can be
an important mechanism for relaxation to deeper binding in a
guiding center atom. However, we have seen that the effect

cuts off at a finite binding energy. To compare with the close
collisions studied by Glinsky and O’Neil, we shift to scaled
variables:

e5U/kBT,

t5tnv̄b2.

Using the small bounce motion scalingv'ec/Br3, the adia-
baticity parameter is given by

j5
vr

v̄
'e2x.

Now we can write Eq.~13! in terms ofx and binding energy
e:

ĝdrag[
gdrag

nv̄b2 5A2pe3x2F~e2x!. ~14!

From Eq.~1!, the scaled energy loss rate due to close colli-
sions is

ĝclose5
1

e2 . ~15!

Figure 3 shows both energy loss rates. The drag is given for
the parameters of the Athena (B533104 G and T

515 K⇒x50.0257) ~Ref. 2! and ATRAP (B55.43104 G
and T54.2 K⇒x52.1131023) ~Ref. 1! experiments. At
deep binding, energy loss due to drag mobility cuts off ex-
ponentially. Thus, short range collisions dominate at deep
binding.

Both rates shown in the figure are calculated in the
guiding-center-atom regime. When binding becomes very
deep, the positron cyclotron motion becomes coupled to the
orbital drift motion and the atom becomes chaotic. This oc-
curs when

v'Vc . ~16!

In the chaotic regime, the positron’s motion can no longer be
described by guiding center drift dynamics. Its motion is fast,
enabling energy loss through radiation and a correspondingly

FIG. 2. The normalized recombination rategdrag/A2pxnv̄b2 5j3/2F(j)
due to distant collisions~solid line! plotted against the adiabaticity param-
eterj5vr / v̄. We have assumedv5ec/Br3. The limiting forms forj!1
~dotted line! andj@1 ~dashed line! are also shown. The drop ing at highj
comprises the adiabatic cutoff.
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fast transition to Kepler style orbits. We can write Eq.~16! in
terms of the normalized binding energye and the parameter
x,

v

Vc
5e3x251.

The approximate binding energyec at which the atom be-
comes chaotic is given by

ec5x22/3.

For the Athena parametersec'11.5 and for ATRAPec'61
~gray areas in Fig. 3!. For these experiments,gdrag cuts off
close to where the positron orbit becomes chaotic.

The normalized timet relax required for an atom to relax
to the chaotic regime is given by

t relax5E
1

x22/3S ]e

]t D 21

de, ~17!

where the total energy loss rate due to collisions is given
approximately by adding the rates due to large impact pa-
rameter~drag! collisions and close~replacement! collisions:

]e

]t
'e~ĝdrag1ĝclose!.

Table I shows the relaxation timet relax compared to the
estimated timetesc that a bound pair takes to escape the
positron cloud for the Athena and ATRAP parameters. Each
time is normalized by the collision frequencynv̄b2, esti-
mated from Refs. 1 and 2. For ATRAP, antiprotons were
assumed to be at 10 meV. For Athena, the antiprotons were
assumed thermal~15 K!. The escape timetescwas estimated
as the transit time for an atom traveling at the antiproton
velocity to reach the plasma edge. For Athena, escape paths

both transverse to the field, a maximum distance of roughly
0.5 cm, and parallel to the field, a maximum distance of 3
cm, were considered. Atoms escaping parallel toB would
remain in the plasma longer, evolving to deeper binding. For
ATRAP, the path was chosen on axis, a maximum distance of
0.1 cm. These estimates indicate that, on average, guiding-
center atoms remain in the plasma about one-tenth to one-
half the length of time required to relax to the chaotic re-
gime. More accurate calculations are currently underway.

Figure 3 shows that small impact parameter collisions
dominate at very shallow and at very deep binding, but that
long range collisions can be important at intermediate bind-
ing energies. However, note that the precise location of the
adiabatic cutoff in Fig. 3 depends on our choice forr min in
Eq. ~7!. We assumedr min5r, but taking r min larger would
move the cutoff to lower energy, further reducing the effect
of long-range collisions. Also, a Vlasov wake calculation to
be presented in a future paper suggests an even steeper func-
tional form for the adiabatic cutoff. While the existence of an
adiabatic cutoff atj'1 is incontestable, its precise form and
location are not known. To fully answer this important ques-
tion, one must consider short and medium range collisions
with a computer simulation and graft that result onto our
drag calculation. This work is currently underway.
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FIG. 3. The rateĝ at which energy is lost from the bound charge system due
to mobility drag ~for Athena and ATRAP parameters!; and for Glinsky–
O’Neil small impact parameter collisions~dashed line!. Drag dominates
over a finite range in binding energy, depending on the factorx.

TABLE I. The normalized time~number of collision times! t relax required
for a guiding-center atom to collisionally relax to the chaotic orbit regime
~see text!. Bound pairs escape the positron cloud in approximatelytesc col-
lision times.' and i refer to escape transverse and parallel toB, respec-
tively.

Athena ATRAP

x 0.0257 2.1131023

t relax '390 '18
tesc ''40 i'250 i'1.5
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