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Quantitative experiments on the parametric decay instability of near-acoustic plasma waves provide
strong evidence that trapped particles reduce the instability threshold below fluid models. At low
temperatures, the broad characteristics of the parametric instability are determined by the frequency
detuning of the pump and daughter wave, and the wave-wave coupling strength, surprisingly consistent
with cold fluid, three-wave theories. However, at higher temperatures, trapped particle effects dominate,
and the pump wave becomes unstable at half the threshold pump wave amplitude with similar exponential
growth rates as for a cold plasma.
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The parametric instability is a fundamental nonlinear
process occurring in a wide range of physical systems
from solids to liquids to plasmas. Typically, three-wave
couplings are used to predict instability rates, but systems
with near-acoustic wave dispersion exhibit surprisingly
stable soliton and cnoidal wave-train solutions in the
continuum limit [1,2]. In plasmas, the parametric instability
has been widely investigated theoretically [3–8], and it has
been observed in tokamaks [9–12], non-neutral plasmas
[13–15], high-intensity laser experiments [16,17], and
other devices [18,19]. The parametric decay of ion acoustic
waves (IAWs) has been postulated [20–24] as a possible
cause for the saturation of stimulatedBrillouin scattering ob-
served in high-intensity laser experiments [16,17,25–28].
In those experiments, the IAWs are highly kinetic with
a thermal velocity v̄ near the phase velocity vϕ. However,
quantitative measurements are lacking on the stability of
near-acoustic waves and the influence of kinetic effects on
this stability.
Here we measure the parametric decay instability of near-

acoustic plasma waves in a quiescent ion column. These
waves are azimuthally symmetric standing waves discretized
by the axialwave number kz ¼ mzðπ=LpÞ.We investigate the
parametric decay of a large amplitudemz ¼ 2 pumpwave to a
longer wavelength mz ¼ 1 daughter wave, with linear
dispersion giving weak detuning Δω≡ 2ω1 − ω2.
Classical three-wave fluid theory [29,30] predicts expo-

nential growth of the daughter wave amplitude A1 above a
temperature-independent threshold. However, a more com-
plete multiharmonic fluid analysis [31] shows general
stabilization, and experiments observe exponential insta-
bility with increasing temperature and wave amplitude, in
broad correspondence with simulations and a new kinetic
theory [32]. The experiments consistently observe three
different regimes with decreasing pump wave amplitude:
(1) strong exponential growth of the daughter wave at rates

similar to three-wave coupling theory, (2) slow growth of
the daughter wave superimposed on amplitude cycling,
probably due to plasma heating, and (3) stable cyclic
oscillations of the daughter wave amplitude, quantitatively
consistent with the classical three-wave coupling strength.
The new kinetic theory [32] treats wave-particle trapping

in the Vlasov continuum framework, and instability arises
from the “negative dynamical compressibility” of a small
distribution of particles weakly trapped between solitonlike
wave peaks. This novel instability mechanism applies to
low-collisionality plasmas supporting waves with nearly-
acoustic dispersion relations such as IAWs, magnetized
Langmuir waves, and Alfven waves. Simulations show that
instability ceases if trapped particles are artificially
removed, and the experimentally observed “slow oscilla-
tory growth” regime is interpreted by this new theory as an
increasing number of particles at the wave-trapping veloc-
ity. Varying the plasma temperature in the experiments and
simulations results in instability at lower pump amplitudes
as expected from trapped particle effects.
The experiments are performed on unneutralized Mgþ ion

plasmas confined in a Penning-Malmberg trap. These plas-
mas are in a near thermal equilibrium state described by rigid
rotation and a top-hat density profile. Laser diagnostics [33]
enable radial profiles of the plasma, giving the plasma radius
Rp ∼ 0.5 cm, an ion density n0 ∼ 2 × 107 cm−3, an on axis
plasma length 12.4≲ Lp ≲ 20.3 cm, and an average radial
temperature T. The temperature is controlled over a range
10−3 ≲ T ≲ 0.62 eV through laser cooling and cyclotron
heating on 24Mgþ.
In these bounded plasmas, the dispersion relation

of Langmuir waves is near acoustic because of the shield-
ing from the radial boundary at Rw ¼ 2.86 cm. The
Trivelpiece-Gould (TG) dispersion relation [34] for
periodic waves on an infinite-length column is
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where kz ¼ mzðπ=LpÞ and ωp is the plasma frequency. The
transverse wave number k⊥ is determined by the boundary
condition that the radial wave potential be continuous at the
plasma radius [34]. For our Rw, this approximately deter-
mines k⊥ ∼ 0.9R−1

p þ 0.5kz.
The wave phase velocity vϕ ≡ ω=kz can be large

compared to the thermal velocity v̄≡ ðT=mÞ1=2, here
ranging over 90≳ vϕ=v̄ ≳ 3.5. The waves are excited from
a cylindrical electrode near the plasma end, and the
resulting charge density perturbation jAmj is detected as
a voltage Vw on a separate electrode, as shown in the Fig. 1
inset. Gauss’s Law directly relates the measured Vw to jAmj
[35], where the linear density eigenfunction of these
standing waves is

Ψm ¼ 1

2
AmðτÞn0e−iωmt cosðkzzÞJ0ðk⊥rÞ þ c:c: ð2Þ

for a top-hat density profile. Typically, a 40 cycle, ampli-
tude-rounded sine wave burst excites the pump wave A2,
and the received mode amplitudes are obtained by fitting
the digitized wall signal. The largest bursts generally heat
the plasma by ΔT ∼ 10−2 eV, and non-Maxwellian ener-
getic tails may be generated below the 1% detection
sensitivity of the laser velocity diagnostics.
Figure 1 shows frequency measurements of linear

(jAmj≲ 1%) TG modes on cold plasmas for two different
plasma lengths. Increasing the plasma length decreases the
mode frequencies 23.8≳ ω1=2π ≳ 13.65 kHz, and it
decreases the relative detunings 3.1≳ Δω=2π ≳ 0.85 kHz.

The solid curves are one-parameter fits to Eq. (1) with the
plasma length as the fit parameter.
Shown in Fig. 2 are the three types of daughter wave

evolutions observed in the experiments: exponential para-
metric decay, slow average growth, and detuned amplitude
oscillations. Each plot corresponds to a different burst and
resulting pump wave amplitude (arrows). Here, in addition
to driving the mz ¼ 2 pump wave, we have used a
concurrent 5% seed burst to excite the mz ¼ 1 daughter
wave above the noise floor.
The pump wave amplitude directly determines a non-

linear wave-wave coupling rate defined as Γ0≡
jA2jω1ð3R=8Þ, where R ∼ 0.85 is a geometric coupling
coefficient. For large pump waves (jA2j≳ 25%, Γ0=Δω≳
0.7), Fig. 2(a) shows the parametric instability. Initially, the
daughter wave amplitude grows exponentially at a rate
ΓE ¼ 8400 s−1, phase-locked with the pump wave. Here,
AmðτÞ≡ jAmðτÞj expðiθmðτÞÞ, and we observe Δθ≡ 2θ1 −
θ2 ¼ −0.75π during the exponential growth phase, con-
sistent with simple three-wave coupling theory. When
Amax
1 ∼ 0.7Amax

2 , the direction of energy exchange reverses,
and the pump and daughter wave amplitudes proceed to
oscillate as the waves exchange energy back and forth.
At this low temperature T ∼ 10−2 eV, the wave energy is

FIG. 1. Measured frequencies of standing TG waves (symbols)
for two different plasma lengths on very cold plasmas with T ∼
10−3 eV and vϕ=v̄ ∼ 90. Solid curves are one parameter fits to
Eq. (1).

(a)

(b)

(c)

FIG. 2. Amplitude evolution of the mz ¼ 1 mode (solid) for
three marginally different mz ¼ 2 amplitudes (dashed) on a
plasma with Δω=ω1 ¼ 11.6% and T ∼ 10−2 eV.
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eventually dissipated by interspecies collisional drag [36] at
a rate γ ∼ 50 s−1.
For moderate pump amplitudes (20%≲ jA2j≲ 25%), we

typically observe a slow average growth of the bouncing
mz ¼ 1 wave, as shown in Fig. 2(b). This slow average
growth rate hΓi≲ 500 s−1 is not predicted by fluid theories.
However, RZ kinetic particle-in-cell (PIC) simulations
show a similar behavior as particles slowly become trapped
in the wave potential.
In contrast, for small wave amplitudes (jA2j≲ 20%,

Γ0=Δω≲ 0.5), Fig. 2(c) shows that the pump wave is stable.
Onaverage themz ¼ 1modeamplitude remains constantwith
small excursionsAB ∝ jA2jwith a cycling rateωB ∼ Δω. This
amplitude modulation is a result of the daughter wave being
driven in-and-out of phase by the pump wave.
Fluid theory [29] characterizes this instability by two

parameters: the scaled pump amplitude Γ0 and frequency
detuning Δω. This theory keeps the nonlinear terms in the
fluid equations, and it uses a two time scale analysis for the
density perturbation

δn ¼ Ψ1ðr; z; tÞ þ Ψ2ðr; z; tÞ: ð3Þ

This gives the coupled amplitude equations

_A1 ¼ −iXA2A�
1e

iΔωt;

_A2 ¼ −iXðA1Þ2e−iΔωt; ð4Þ

where X ¼ Γ0=jA2j ¼ ð3R=8Þω1 is the nonlinear coupling
coefficient. Solving these coupled equations, assuming
A2 ≫ A1 so that _A2 ≈ 0, we find

A1ðtÞ ¼ αeðΓþiΔω=2Þt þ βe−ðΓ−iΔω=2Þt; ð5Þ

where Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ2
0 − ðΔω=2Þ2

p

, and the constants α and β are
constrained by Eq. (4).
Two different behaviors of the mz ¼ 1 amplitude are

predicted by Eq. (5). For Γ0 > Δω=2, Γ is real, and the
daughter wave amplitude is comprised of an exponentially
growing and decaying solution. This predicts the expo-
nential growth rate ΓE ¼ Γ of Fig. 2(a). In contrast, for
Γ0 < Δω=2, Γ is imaginary, and the daughter wave
amplitude oscillates, as shown in Fig. 2(c), with an
amplitude AB ¼ Γ0hA1i=ðjΓj þ Δω=2Þ, determined from
α and β, and frequency ωB ¼ 2jΓj. This predicts the
oscillatory coupling rate

ΓOCR ≡ AB

hA1i
ωB ¼ Γ0

2jΓj
jΓj þ Δω=2

: ð6Þ

Figure 3 plots both ΓOCR and ΓE at low temperatures
T ∼ 10−2 eV versus the pump wave amplitude jA2j
scaled by Δω=ω1 for a 2× range of plasma lengths and
consequent Δω=ω1. The fluid prediction depends only on

Γ0=Δω ∝ ω1=Δω, so the Δω=ω1 scaling enables all data to
be on the same axis. For Γ0=Δω < 0.4, the measured ΓOCR
(open symbols) is in quantitative agreement with three-
wave theory (solid curve) independent of Δω=ω1. For
Γ0=Δω > 0.5, the measured exponentiation rates ΓE (solid
symbols) are 10% to 50% lower than the three-wave fluid
coupling prediction. Here, the daughter wave grows out of
noise with a relative phase Δθ ∼ − arccosðΔω=2Γ0Þ, and
the rate of this exponential growth is measured by fitting
an exponentially growing sine wave to the digitized
wall signal. In general, the rates ΓE ∼ 3000–9000 s−1 are
obtained from fits over 5–10 cycles of the growing mz ¼ 1
wave, and during this growth, the mz ¼ 2 amplitude is
about 20 times themz ¼ 1 amplitude. For Γ0=Δω ∼ 0.5, the
experimental data is ambiguous, often showing slow
growth, as in Fig. 2(b). The 20% horizontal error bars of
Fig. 3 reflect systematic errors in the conversion of the
wave induced voltage on a ring Vw to the density
perturbation jA2j. The 10% vertical error bars reflect our
confidence in the amplitude fits.
This qualitative correspondence between cold fluid

theory and measured ΓE becomes untenable when the fluid
analysis is extended to include nonlinear wave harmonics.
For near-acoustic dispersion relations, the pump and
daughter waves are not single sinusoidal oscillations as
three-wave theory assumes, but instead, they contain
multiple space and time harmonics of the fundamental
waves. When these harmonics are included in the insta-
bility analysis, fluid theory [31] predicts that all of the
traveling wave eigenmodes of this near-acoustic dispersion
relation are stable to small perturbations, analogous to the
stability of solitary-wave solutions of the Korteweg-de
Vries [37] and Boussinesq [38] equations. In contrast,
for the standing waves of interest in these experiments, the

FIG. 3. Measurements of the oscillatory coupling (open sym-
bols) and exponential growth (closed symbols) rates normalized
to Δω versus the scaled pump wave amplitude for various
Δω=ω1. Solid black curve is three-wave theory.
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instability is predicted [31] to be greatly suppressed but not
eliminated by the addition of wave harmonics.
Experiments on warm plasmas further highlight the

disparity from cold fluid theory. Figure 4(a) shows mea-
surements of the decay instability at four different temper-
atures with fixed Δω=ω1 ∼ 11%. At low temperatures
(vϕ=v̄≳ 5), the instability threshold is roughly determined
by Γ0=Δω ∼ 0.6. In contrast, for a plasma with vϕ=v̄ ∼ 3.5,
we observe similar exponential growth rates as for a cold
plasma, but at half the pump wave amplitude, i.e.,
Γ0=Δω ∼ 0.3. Previous qualitative experiments [15] were
suggestive of a temperature dependent instability threshold,
and early experiments reported by us [39] missed this
temperature dependence, as those experiments were con-
ducted in a regime (Δω=ω1 ∼ 18% and a strong mz ¼ 1
seed) in which the transition from oscillatory coupling to
exponential growth was strongly obfuscated by the slow
average growth regime.
At these higher temperatures (3.5≲ vϕ=v̄ ≲ 5), particles

become trapped even at relatively small wave amplitudes.
Although this trapped particle fraction is below the sensi-
tivity for direct laser diagnostics, they are indirectly
observed through nonlinear Landau damping. Small ampli-
tude waves (jAmj≲ 0.1%) damp at the linear Landau rate
8000≳ γL ≳ 50 s−1 [36]. Whereas, at larger wave ampli-
tudes, these resonant particles are trapped in the wave
potential resulting in trapping oscillations at a frequency

ω2
T ∼ jAmjω2, and diminishing the damping rate as the

trapped particles phase mix [40]. The large amplitude
kinetic pump waves of Fig. 4(a) have weak damping
γ ∼ 100 s−1, presumably resulting from collisional repo-
pulation of the plateau in the velocity distribution.
The observed reduction in the instability threshold of

Fig. 4(a) is inconsistent with fluid theories, but it is in
qualitative agreement with a new kinetic theory [32], which
predicts exponential growth rates similar to the experiments
as due to a small fraction of these wave-trapped particles.
These trapped particles destabilize the wave because they
exhibit negative compressibility. In the 2 → 1 instability,
adjacent peaks of the wave train approach one another and
therefore recede from the next peaks. From a fluid
perspective, the density and pressure of particles trapped
between approaching peaks would increase, and would
decrease for particles trapped between receding peaks,
producing a restoring force that stabilizes these modula-
tions. Trapped particles with energies just below the
approaching wave peaks, however, gain sufficient energy
to become passing, and they are then retrapped between
receding peaks. The net effect of these marginally trapped
particles is to reverse the sign of the trapped particle density
and pressure change, which produces a force that amplifies
the modulation. The exponential instability occurs when
the trapped particle fraction is sufficiently large, here
estimated to be fT ≳ 0.1%. This trapped particle mecha-
nism is a general phenomenon that could play a role in
other nonlinear systems, such as nonlinear IAWs where
kinetic simulations [22,41] show instability thresholds
below fluid theory predictions.
To further support this trapped particle mechanism,

z-periodic ðr; z; vzÞ drift-kinetic Poisson (squares) and
finite-length, kinetic, RZ PIC (triangles) simulations of
the experiments are conducted [Fig. 4(b)]. At the lowest
temperatures achievable by these simulations (vϕ=v̄ ∼ 8.9),
exponential growth rates consistent with the experiments are
observed. However, it is the trapped particles in these
simulations that cause the instability. If the trapped particle
population is artificially eliminated, the instability ceases.
At higher temperatures, the simulations predict a lower
instability threshold than experimentally observed for a given
vϕ=v̄, suggesting that the trapped particle fraction formed
in these simulations is larger than that of the experiments.
This discrepancy might be a result of collisions or multi-
species effects, which are neglected in the simulations.
In summary, a small fraction of wave-trapped particles

apparently destabilizes the pump wave, enabling the expo-
nential growth of longer-wavelength waves. Experiments
and simulations show stronger growth with increasing
plasma temperature and decreasing vϕ=v̄. Incisively, the
simulations show the cessation of instability when particles
near vϕ are removed. Detailed measurements of the particle
velocity distribution near vϕ will be required for a quanti-
tative comparison to the new theory.

(a) Experiments

(b) Simulations

FIG. 4. Measurements (a) and simulations (b) of OCR and
exponential growth rates at different plasma temperatures. The
reduction in the instability threshold (arrows) at lower vϕ=v̄
contradicts fluid theories.
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