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An effect called rotational pumping by the authors (by analogy with magnetic pumping) causes a 
slow damping of the m = 1 diocotron mode in non-neutral plasmas. In a frame centered on the 
plasma and rotating at the diocotron mode frequency, the end confinement potentials are 
nonaxisymmetric. As a flux tube of plasma undergoes EXB drift rotation about the center of the 
column, the length of the tube oscillates about some mean value, and this produces a corresponding 
oscillation in TII. In turn, the collisional relaxation of TII toward T, produces a slow dissipation of 
electrostatic energy into heat and a consequent radial expansion (cross-field transport) of the plasma. 
Since the canonical angular momentum is conserved, the displacement of the column off axis must 
decrease as the plasma expands. In the limit where the axial bounce frequency of an electron is large 
compared to its EXB drift rotation frequency theory predicts the damping rate 
y= -2~v,,ll(r~lRZ,)(X~~~)I(I -rilRi.), where K is a numerical constant, X, is the Debye length, 
R,. is the radius of the cylindrical conducting wall, rp is the effective plasma radius, L, is the mean 
length of the plasma, and V~,II is the equipartition rate. A novel aspect of this theory is that the 
magnetic field strength enters only through ~~41. As the field strength is increased, the damping rate 
is nearly independent of the field strength until the regime of strong magnetization is reached [i.e., 
R,>tilb=(kT)3’2/&&2], and then the damping rate drops off dramatically. This signature has 
been observed in recent experiments. For completeness, the theory is extended to the regime where 
the bounce frequency is comparable to the rotation frequency, and bounce-rotation resonances are 
included. 0 I995 American Institute of Physics. 

1. INTRODUCTION 

Recent experiments have involved the confinement of 
pure electron plasmas in Penning traps.lm4 A schematic dia- 
gram for such a trap is shown in Fig. 1. A conducting cylin- 
der is divided axially into three sections, the two end sections 
being held at a negative potential relative to the central sec- 
tion. There is a uniform magnetic field, B, directed along the 
axis of the cylinder. The electron plasma resides in the cen- 
tral section, with axial confinement provided by the nega- 
tively biased end sections and radial confinement by the 
magnetic field. The Larmor radius is typically small, so the 
cross-field motion may be described by EXB drift 
dynamics.“*5 

The most commonly observed excitation of such a 
plasma is the diocotron mode of azimuthal wave number 
m = 1 .3*6-8 One can think of this mode as a rigid displace- 
ment of the plasma column away from the central axis of the 
trap. The image charges induced in the conducting wall 
cause the column as a whole to EXB drift about the central 
axis of the trap, while the space charge field causes the col- 
umn to rotate about an axis through its center of charge. The 
main reason that this mode plays such a prominent role in the 
dynamics of pure electron plasmas is that it is damped only 
weakly; in typical experiments, it is observed to survive lo5 
periods. In spite of this, Cluggish and Driscoll have been 
able to measure the damping rate and characterize its param- 
eter dependence over a wide range.’ In this paper we present 

a theory of the damping that agrees with the parameter de- 
pendence observed in the experiments. This theory is closely 
related to the work of Ryutov and Stupukov on transport in 
magnetic mirror traps. lo 

Diocotron modes of azimuthal wave number m>l typi- 
cally damp due to a wave-particle resonance.” The reso- 
nance is spatially localized at the resonant radius, rs , defined 
by moR( r,) =o, where o, is the single-particle EXB rota- 
tion frequency and w is the mode frequency. For a monotoni- 
cally decreasing density profile, the m = 1 diocotron mode is 
special because rs = R, , the radius of the conducting wall.” 
There are no resonant particles, because the density is zero at 
the wall, and therefore a different mechanism is required to 
explain the observed damping of the m = 1 diocotron mode. 

Since the damping time scale is characteristic of colli- 
sional transport time scales, we look for an explanation that 
involves collisional transport. It is convenient to work in a 
frame that rotates with the mode so that the off-axis column 
is a stationary state (an equilibrium), except for the slow 
evolution on the transport time scale. The connection be- 
tween damping and transport follows from the conservation 
of angular momentum. In guiding center theory, the canoni- 
cal angular momentum of the plasma is approximately12 

N 

Pp g 2 R;, 
j=l 

(1) 

where Rj is the position of the jth particle measured from the 
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FIG. I. The confinement geometry. 

trap axis (see Fig. 2), and e carries a sign. If D is the dis- 
placement of the center of charge and rj is measured from 
the center of charge (Rj=D+rj), the canonical angular mo- 
mentum can be written as 

Note that the cross-term, Cj2rjeD, vanishes because D de- 
fines the center of charge. Since the apparatus is cylindrically 
symmetric, PO is conserved. This implies a relation between 
plasma expansion and mode damping. Differentiating Eq. (2) 
with respect to time yields the relation 

&(D2)=-$ kg rj’ =-&(rZ,. l 1 j=l 
Given a transport theory that describes the radial expansion 
of the plasma, Eq. (3) can be used to calculate the damping 
rate. 

The angular momentum calculated about an axis through 
the center of charge is not conserved. If it were, (r2) would 
be constant in time, and the mode would not damp. We there- 
fore restrict our attention to transport processes that depend 
on the nonaxisymmetric nature of the confining fields in a 
frame centered on the plasma. In particular, we consider the 
effect of the end confinement potentials. 

- 
Yz- 

FIG. 3. Length of the off-axis plasma. 

When the Debye length is small, the plasma has a weli- 
defined edge. A displaced column sees nonaxisymmetric end 
potentials, and these cause the end shape of the plasma to be 
nonaxisymmetric. This asymmetry can be characterized by 
the length of the plasma parallel to the magnetic field, 

L(r,8)=Lo(r)+SL(r,f9), (4) 

where (r&J) is a cylindrical coordinate system centered on an 
axis through the center of charge (see Fig. 3). A simple ana- 
lytic theory, as well as numerical studies,13 indicate that the 
asymmetric component is well represented by a uniform tilt 
at an angle proportional to DIR,, where R, is the radius of 
the conducting cylinder and D is the displacement of the 
center of charge off axis. Therefore, the asymmetric part may 
be written as 

SL( r, 0) = K e r sin 8, 
W ’ 

(5) 

where K is a numerical constant, 
A simple transport equation can be derived by consider- 

ing a single flux tube of plasma, as shown in Fig. 4. The flux 
tube has length L(r, Q), as given by Eq. (4), cross-section 
area SA, and contains SN particles. The dominant cross-field 
motion of the flux tube is the EXB drift y,=(clB)iXV@. 
Assuming that the plasma column has a circular cross sec- 

-4 
e 
--w-w- 

) 

FIG. 2. Coordinate system for the off-axis plasma (end view). FIG. 4. (a) Side view of flux tube. (b) End view of flux tube. 
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tion, the electric potential is of the form Q=@(r), and the crease in the electrostatic energy. The particle flux is found 
flux tube drifts in a circular orbit about the center of the by equating the increase in the thermal energy to local Joule 
column, with the frequency heating. That is, 

c aQ, 
OR=G z. (6) 

Setting 8=w,t in Eq. (4) then implies that the length of the 
flux tube varies temporally as L(r,t) = L,( r) + SL( r,~~t). 
From Eq. (5), it then follows that the length of the flux tube 
undergoes a sinusoidal variation about the length L,,(r). The 
cyclic axial compression and expansion produces a cyclic 
variation in the parallel temperature, and this is coupled col- 
lisionally to the perpendicular temperature. The full tempera- 
ture evolution is governed by the equations 

dTll _ 2 dL 
~~--TII ~~+~~&‘,-TI~) 

and 

where ~~~11 is the collisional equipartition rate. We have used 
the fact that SN is constant in deriving these equations. The 
first term on the right-hand side of Eq. (7) describes the 
compressional heating (or expansion cooling) of the parallel 
degrees of freedom, and the second term describes the colli- 
sional coupling to the perpendicular degrees of freedom. The 
perpendicular degrees of freedom are not directly affected by 
the change in length, so the right-hand side (RHS) of Eq. (8) 
contains only the collisional coupling term. The factor of 2 
difference in the collisional coupling term for Eq. (8) relative 
to Eq. (7) simply reflects the fact that there are two perpen- 
dicular degrees of freedom and one parallel. 

A two time scale analysis of Eqs. (7) and (8) based on 
the frequency ordering mR+‘vL,II yields the result 

ml) -=8v 
dt I, ,, (TII) (6L2(r t))+2v 

LO 
, J-3 II((T,)-(T,,)) 7 

(9) 

d(Td -= - Q,II((T,)-(TII)), dt 

where (s) indicates an average over the fast time scale, that 
is, over one rotation period. In addition to the energy con- 
serving terms, the first term on the right-hand side of Eq. (9) 
represents a secular increase in TII. Physically, this term 
arises because collisions cause a small phase shift in the 
parallel temperature fluctuations, so that the parallel tem- 
perature and pressure are slightly larger in the compression 
stage than in the expansion stage. More work is done on the 
plasma during compression than is done by the plasma dur- 
ing expansion. The result is that the plasma in the flux tube is 
heated. This effect is similar to magnetic pumping,14 and, by 
analogy, we refer to it as rotational pumping. 

Since the confinement potentials are time independent, 
the total energy in the plasma is conserved, and the increase 
in thermal energy must be balanced by a corresponding de- 

n g 
i 

i(TI$+(T,) 
1 

=--e $rr, 

where lYr is the radial particle flux and n is the density. The 
RHS of this equation is the Joule heating per unit volume, 
and again we have used the fact that SN=const. Equations 
(9)-(11) are solved for the flux, and yield 

T 
rr=4v&r) 

( SL2> 
-e d@ldr y’ 

where 

(6L2)= &- l,ZIdS SL2(r,B). 

(12) 

Finally, the damping rate is calculated by using the con- 
servation of angular momentum. After introducing the par- 
ticle flux, Eq. (3) becomes 

J d3 r 2rI’,. (14) 

Using Eq. (12) and the assumed form of the asymmetry from 
Eq. (5), we find the result 

& (D)=( -k 1 d3r 2v,,lp(r) 

x 

The quantity in parentheses is y, the damping rate of the 
mode. In this equation, it should be remembered that 0 is the 
potential in a frame rotating at the mode frequency oo .6 It is 
related to the potential in the lab frame through 

(16) 

where the second term, (BR2/2c)o,, arises from the motion 
of the plasma column through the magnetic field. The poten- 
tial in the lab frame, QL, is composed of two parts: the space 
charge potential, $,, and the potential due to the image 
charges induced on the conducting wall, Cp, . Changing vari- 
ables to a coordinate system centered on the plasma using 
R=D+r yields the result 

Br2 
@=Qo- - tiD+ 

2c 

The two terms in parentheses cancel (this condition may be 
used to determine %), and the last term may be dropped as 
it is just an additive constant. This leaves 

(18) 

Of course, Q. is related to the density through Poisson’s 
equation. 
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For simplicity, we consider an isothermal, constant den- 
sity plasma of radius rP . The integral in Eq. (15) is then 
trivial, and yields the result 

h2r2 
y=-2K2VI,,, 2” ; 

1 
LoR, ( 1 -i-i/R:) ’ (19) 

where ho = d- is the Debye length. It is striking 
that y depends on the magnetic field strength only through 
vL,ll, In the regime of weak magnetization (i.e., r,Sb, where 
r,=U/!Cl, and b=e2/mfi2), this dependence is very weak, 
v,,jlaln( r,lb). In th e regime of strong magnetization (i.e., 
r,@b), vI,~l becomes exponentially sma11,‘5*16 and our theory 
predicts that y becomes exponentially small. These unusual 
scalings agree with the observations of Cluggish and 
Drisc011.~ In particular, the dramatic decrease in the observed 
damping rate when r, becomes small compared to b is rather 
convincing evidence that our theory focuses on the relevant 
damping mechanism. 

In Sec. II, we present a more rigorous calculation of the 
transport by solving the drift-kinetic Boltzmann equation in 
the limit that wB+zwR, where wB is the single-particle 
bounce frequency parallel to the magnetic field and @R is the 
rotation frequency. In Sec. III we consider the effect of 
bounce-rotation resonances, and show that in some regimes 
resonant particles enhance the damping rate. 

II. KINETIC TREATMENT IN THE ADIABATIC LIMIT 

In this section and in Sec. III, we assume the following 
frequency ordering: 

i-k,B WR ,w,%- + y, (20) 
where 0, is the cyclotron frequency, o, is the axial bounce 
frequency, WR is the rotation frequency, v is the collision 
frequency, and y is the damping rate. Since tic is the largest 
frequency, we may describe the collisionless single-particle 
dynamics with a guiding center Hamiltonian of the form16 

H=p~/2m+~B+e@(p&+e@,(B,p~,z), (21) 

where p 8= ( eB/2c)r2 is the canonical angular momentum 
conjugate to 19, and (r,B) is a cylindrical coordinate system 
centered on axis through the center of charge. We break up 
the potential into two parts: @I$,) is the space charge poten- 
tial in a frame rotating at the diocotron frequency and 
@,( B,pe,z) is the Debye-screened end potential. Since the 
Debye length is small, we let 

lzl+L(~,Pd~ 

, otherwise, (221 

where Z,( @,p,) is the length of the plasma parallel to the 
magnetic field, as discussed in the Introduction. The term 
pB= &mu: is the perpendicular kinetic energy of the par- 
ticle. In the guiding center limit, p=const, and since the 
magnetic field is assumed to be uniform, pB enters the 
Hamiltonian as an additive constant. We retain this term in 
the Hamiltonian because it is useful to write Maxwellian 
distribution functions as a function of H. 

In the experiments, it is typically the case that the 
bounce frequency, oB=2rr[v,l/2L, is much larger than the 

rotation frequency, wR= dldpe( e@), for the vast majority of 
the particles. In this section, we assume that this is true for 
all the particles. (In Sec. III we allow for bounce-rotation 
resonances.) In the limit o,P @R, the bounce action, 

I=& P pz dz 

1 =---- 
2rr 

jh d2m(H-BP-e@-e@,)dz, (23) 

is a good adiabatic invariant. As noted by Taylor,17 an equa- 
tion of this form implicitly defines H in terms of I, 0, and p @. 
Given the simple form of the end potential, this equation is 
easily inverted to give 

,rr212 
~(1, e,pe) = 2mL2( 04 fBp+eQ,(pe). (24) 

We represent the plasma with a distribution of guiding 
centers, 

f=.fudhd,~lt)~ (25) 

where (Iris the angle conjugate to I and indicates the phase of 
a particle in its bounce motion (i.e., its position along the 
magnetic field). This distribution function evolves according 
to the drift-kinetic Boltzmann equation, 

;+[f,Hl=C(s). (26) 

where C( .) is the collision operator, and the Poisson bracket 
is given by 

(27) 

In the adiabatic limit, 06= dHld1 is large, and so dfla$ must 
be small Otherwise, aflat would be large, and the distribu- 
tion would evolve rapidly along the magnetic field. Physi- 
cally, this corresponds to the fact that any initially large $ 
variations are rapidly phase mixed by the bounce motion. 
The small (lr variations are uninteresting from the standpoint 
of cross-field transport, and may be eliminated by integrating 
Eq. (26) over @. The result is 

where 

(28) 

.w,PdLw)= 
s 

02~d~f(r,~.p,,s.~,t). 

Rewriting Eq. (28) as 

(2% 

f+-g~+&(~~)=c@,, (30) 

and integrating over I, p, and 8 yields the transport equation 

dN(Pe) 8 -=- 
dt ee 

(311 

where 
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N(pe) = dl dp j. (32) 

The integral over the collision operator vanishes because col- 
lisions conserve the number of particles. 

To obtain a transport equation accurate to second order 
in dHld0, we must obtain f accurate to first order in dH/de. 
Thus, we look for the solution to Eq. (28) in the form 

f=foWi,pe)+ ~~U,pe,k4, (33) 

where Sj/fu- SLIL, and 

~o=N(pe)(2~Tlm)-3’2ee~‘Te-H’T. (34) 

Written in velocity variables, f,, is just a Maxwellian times 
the f&averaged two-dimensional (2-D) density. Taking f0 in 
this form makes use of the frequency ordering, v%>Y. Colli- 
sions are assumed to occur more rapidly than transport, so 
the zeroth-order distribution is a Maxwellian along the mag- 
netic field. 

Here 6” is obtained from Eq. (28) written to first order in 
SLILO, 

~ R-&$) ;g(~+;-)Fo d(@J+L;I WJ‘) 
at 

=cuo+ s-1, 

where 

(35) 

dH de cf, Tr212 2 dL 0 -- 
OR=ig= ape 2mL2Zdps (36) 

is the total bounce-averaged rotation frequency, and 

1 @o IdN 316’T --= 
fo ape Nape 2Td~s 

(37) 

In general, the solutions to Eq. (35) consist of a sum of a 
driven response and free oscillations of the form 

Since the system has finite shear (&%R/@O#O), these free 
oscillation terms become rapidly oscillating functions of pe 
at large t, and are rapidly damped by any diffusive transport 
processes. Since the driving terms vary on the slow transport 
time scale, the term d6fldt may be dropped from Eq. (35), 
leaving 

=C&+Sf]. (39) 

Given the frequency ordering v<oR, this equation may 
be solved perturbatively in the effective collision frequency. 
Dropping the collision operator term and integrating yields 

where the superscript indicates the ordering in collisions. 
The collisional response is obtained by inserting Sf”’ into 
the collision operator on the RHS of Eq. (39). This yields 

x( ;+;Z)]]. (41) 

Substituting f=fo + 6”“’ + 67” into the transport equa- 
tion [Eq. (31)] yields 

7?z2 -=- dIdP= 

(42) 

where the collisionless terms have vanished in the integral 
over 8. Integrating by parts and substituting from Eq. (41) 
results in 

&I2 2 SL 1 
dldp--- 

(43) 

After changing variables of integration from &,I) to 
(uZ ,u,), this equation may be written as 

~N(P B) 
---g---=&( 1 g Jd3v(imui) F& 

xC(.i,[ 1-t (imu:) z 
’ 

where 

(44) 

(45) 

(46) 

and 

(47) 

with fM a Maxwellian distribution. An expression very simi- 
lar to the second term on the RHS of Eq. (45) was previously 
derived by Peurrung and Fajans.” 
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The velocity integral in this equation is simplified by 
assuming that the Debye length is small. This is typically the 
case in the experiments, and is consistent with our assumed 
form of the end potential. The ratio of the two terms in Eq. 
(45) scales as 

itmug) 2 dLo T A:, -P-P- 
(de @Plf3pe) LO ape e43 $’ (48) 

where rP is the radius of the plasma. We therefore neglect the 
velocity-dependent term in the rotation frequency, and take 

(49) 

the usual ExB rotation frequency. Similarly, the ratio of the 
two terms inside the collision operator in Eq. (43) scales as 

1 1 afo T h; 
-----mm 
(OR/T) .Fo UPS e9 t-i’ 

(50) 

and therefore we will neglect the term, I/f0 dfoldp *. 
We take the collision operator in the general form 

WI= 1 d3v, d~lvre,l[f(v;)f(U’)-f(v)f(U,)l, (51) 

where du is the differential cross section and v,t=v -v, . 
Using this form and the small Debye length approximation, 
we obtain 

WP~) 
-=-$( 1 $(~]2-$N~d3v(fmv~] 

at 

x 

- 

To evaluate the velocity integral in this equation, it is 
instructive to consider the collisional relaxation of an aniso- 
tropic Maxwellian distribution, 

(53) 

The change in the parallel temperature due to collisions is 
given by 

-fA(Ul)fA(v)l=“l.~~(T~-Tl~)r (54) 

and may be used as a definition of the equipartition rate, ~~,li. 
Consider the case T,, = T and TII = ( 1 - a) T. Substituting this 
into Eq. (53) and taking the limit m--+0, one can easily show 

N/ d3v(k rnv:] i d3vl drlu,,l[ (k mvif+ k mvi2] 

xfh$b- i!j mu:,+ i mui 
i 

-T*q. (55) 
This is preciseIy the integral that appears in the transport 
equation. Equation (52) can now be written in the simple 
form 

Changing variables from (Pe,O) to (r,8) yields the result 

aN(r) 1 d 
-=-;;;i;r at 

T 
-e d@ldr 

(57) 
The quantity in brackets is the radial particle flux, and is 
identical to the flux given by Eq. (12) in the introduction. 

III. RESONANT PARTICLE TRANSPORT 

In the previous section, we derived a transport equation 
in the adiabatic limit by assuming that oB%>oR for every 
particle in the system. This approach neglects the effect of 
particles that satisfy the resonance condition, IoR= 2n oB, 
where n and 1 are small integers. When the bounce fre- 
quency for a thermal particle, Bs = (v/Lo) 6, is com- 
parable to the rotation frequency, and collisions are suffi- 
cientIy weak, resonant particle transport dominates. In this 
regime, the damping rate of the m = 1 diocotron mode is 
larger and scales differently than the damping rate given in 
Eq. (19). A similar effect occurs for transport in tandem mir- 
rors in the “resonant-plateau” regime.19**’ 

The basic idea behind resonant particle transport is easy 
to understand. When a particle is reflected off the nonaxi- A 
symmetric end potential it experiences a force in the 6’ direc- 
tion, causing its angular momentum, p e= (eB/2c) r2, and ra- 
dial position to change. The magnitude and direction of the 
radial step depends on the particle’s azimuthal position at the 
point of reflection. In addition, fast particles take larger steps, 
because a larger force is required to reflect them. Consider a 
particle satisfying the lowest-order resonance condition 
wR= 2 os. Such a particle reflects off each end of the plasma 
at the same 0 position for many bounces and consequently 
takes many radial steps in the same direction. For nonreso- 
nant particles, the radial steps tend to cancel. 

When collisions are sufficiently weak resonant particle 
transport is always present. The size of the transport is de- 
termined by the relative number of resonant particles and by 
the contribution from each resonant particle. In the adiabatic 
limit low-order bounce-rotation resonances are at low veloci- 
ties. Although there are a large number of resonant particles, 
the contribution from each particle is smaI1 because the ra- 
dial steps are small and infrequent. In this regime, resonant 
particle transport is negligible. In the opposite limit where 
o,%>c;i,, and the resonance is located at a large velocity, the 
contribution from each particle is large, but there are few 
particles on the tail of the Maxwellian, which interact reso- 
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nantly. We will see from the formal treatment that resonant 
particle transport is important when ii)B=oR. 

Our starting point is again the drift-kinetic Boltzmann 
equation, 

where 
2 

H= ~+e~(pe)+B~+e~,(B,ps,z). (59) 

The calculation is simplified by considering a system that 
consists of only one-half of the plasma, that is, we take 

o-Q+L( 8,p,), 
? otherwise. (60) 

Since the particles specularly reflect off a plane at z, =0 with- 
out changing 0, p 0, z, or 1 u,I , the transport equation will be 
the same for this system as for the full length system. 

Writing the Poisson bracket in Eq. (58) as 

and integrating over all variables except pe gives the result 

where 

N(p,)=/ gJd%,j-du;ldzf. (63) 

Solutions to Eq. (58) are assumed to take the form 

f=fo(H,pbl,t)+Sf(p,,z,pB,e,t), (64) 

where Sflfe- 6LIL, and 

fo= 
N(pe) 

(;~&2~~/,,,)3/2 ee@PITe-HiT’ (65) 

In velocity variables, this is a Maxwellian distribution. As in 
Sec. II, we neglect terms higher order in A$; by assuming 
Lo, T, and N are constant in pe. 

To first order in 6LILo, the drift-kinetic Boltzmann 
equation is 

where Ho is the Hamiltonian with SL=O. The first two terms 
on the left-hand side can be thought of as a derivative along 
the unperturbed orbit, 

d(6f) d(o) 
,,+Ff,Hol= dt (V 1. (67) 

We approximate the collision operator by 

c(fo+sf )=-v Sf, (68) 

where v is an effective collision frequency. Clearly, this over- 
simplifies the transport problem in the adiabatic limit, be- 
cause there is no reason to expect V= ZQ,II . For resonant par- 
ticle transport, however, we will let v-+0 at the end of the 
calculation, and the effective collision frequency drops out. 
We do not expect this transport to depend sensitively on the 
detailed nature of the collision operator. 

Evaluating the RHS of Eq. (66), and using Eqs. (67) and 
(68) gives 

The solution to this equation is 

(69) 

where the prime indicates evaluation along the unperturbed 
orbit. To this order in SL, f. is constant along the unper- 
turbed orbit and may be factored out of the integral, so that 

Q-(t)= !?fof) ,-+-I’) t!.$d. (71) 

Consider Eq. (62), the transport equation. Since dHl 
de=0 everywhere except at the end of the plasma, we need 
to find Sf only at the end of the plasma, where the particles 
are reflected. Therefore, it is convenient to write Eq. (71) as 

(72) 

where to indicates the time just before the reflection. The first 
term consists of a sum of many reflections, and the second 
term is due to a single partial reflection. 

We delay evaluation of the second term until Sf is in- 
serted into the transport equation. We evaluate the first term 
by calculating the effect of a single reflection and then sum- 
ming over many reflections. The axial impulse exerted by the 
end potential on a particle during reflection is 

-2lp;I= - j-mdt’ 9. (73) 

Since the end potential is only a function of the quantity 
[z - iL( 8,p @)I, this may be rewritten as 

-‘4~,01= -j&j I 
de a, 

turn 
dt’ do’. (74) 

Since -d(e@,,)ldtI=@e, the change in ps due to the reflec- 
tion is 

Ape=- 
ate+,,) 

dt’ dB’= 
a( SL) 

flPPl 7’ 

This equation has a simple physical interpretation. The force 
that reflects a particle is normal to the surface at the end of 
the plasma. Due to the asymmetry, there is a small compo- 
nent of this force in the 8 direction, which exerts a torque on 
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the particle causing pe to change. A larger force is needed to 
reflect fast particles, and therefore these particles take larger 
steps in p @. 

The first term in Eq. (72) can now be written as 

'fi= T 
~fo/oro&~ e-Vktt); lp;l !!$? 

j=l 

x S(t’-tj), (76) 

where the index j is summed over past reflections. The time 
at the jth reflection is given simply by 

and along unperturbed orbits, 

e’= e-WR(t-t’). (78) 

After substituting in a Fourier series for SL, Eq. (76) be- 
comes 

N 
sf 1 =IJ$ folp~I C il aLl(p,)eil@C e-i(i%+ v)~04~$a 

1 j=l 

(79) 
This contribution to Sf arises from a series of discrete 
“kicks” acting on fo. Note that those kicks that occurred in 
the distant past (large j) are collisionally damped. 

The sum over j can be evaluated exactly, so that 

Sf 1 =T folp:IC il SLleiLe 
i 

,-(ilw,+ v)t0fv~N- 1 

I ei(loR- iv& /IvT)l_ * 
i 

* 

(80) 
The exponential in the numerator can be dropped because 

Lo yjiJN 
z 

-vt+. 

Using the mathematical identity 

1 -=-&i,iZ, &, e’i- 1 

the full fluctuation distribution is written as 

8f(t)= 7 fo]pPlC il SLleite 
I 

f 
f a(@@,,) +$ dt’p 

10 ae’ * 

Inserting f =fo+ Sf into Eq. (62) gives 

(81) 

(82) 

(83) 

f=+-& gfd2ul/dvZ/dzSfG), 

(84) 

where f. has vanished in the integral over t?. Since we have 
calculated Sf as a function of time, it is useful to transform 
this integral into an integral over unperturbed orbits. First, 
note that the integrand is nonzero only at the end of the 
plasma, and so the transformation need only be valid for the 
short turning time. If a particle has phase space coordinates 
( B”,p: ,z’,pf) at time to at some position just before the end 
of the plasma, the unperturbed orbits valid during the turn 
are 

e= e”, (854 

PO”& 

PZ=Pz(PfrZoJ), 

z=z(p~,zO,t). 

We change variables in the integral using 

(8W 

635~) 

(854 

dz dp;=l~$$dt dp;=i$s-$$ldt dP$ 

ow 
The equations of motion are derived from the unperturbed 
Hamiltonian, Ho, and therefore this may be written as 

dz dpz= 3 dpL + dHo di dt dp;. 
JP, JPZ 3~ ap, 

(87) 

The quantity in absolute value bars is just JHo13p~, and 
therefore 

dz dp,= $ dt dp;=fv;ldt dpz. 
I I z 

(88) 

The transport equation can now be written in the form 

$= $ (1 g 1 d’u,~~dv~b~~~t~’ s-f’ $j, 
(8% 

where the primes indicate evaluation along the unperturbed 
orbit, and tf is the time just after the turn. 

Using Sf from Eq. (83), this becomes 

;=$-I j- ~fd2u~/;d&$~t q 

To this order, f. is constant along the orbit and may be pulled 
out of the integrals. In velocity variables, fo<t= to) is given 
by 

(91) 

where fM is a Maxwellian. 
The time integrals can be expressed in terms of Ape as 
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(92) 

and 

ate@,) 1 
‘dt” de,, -=zlip;. (93) 

Using Ape from Eq. (75), Eq. (90) becomes 

$=-&( j- ~ld’u,/;d+n2(~;)3fo 

XT C il &!,le”eC il’ GLjte”” 
1 1’ 

XC 
i 

It (ifdR-iv)Lo/v5)-2m ’ 
i 

(94) 

After integrating over vI and 8 and dropping the imaginary 
part of the integral, this becomes 

duf rr~~(v;)~f, 

xc p I”“:” lJ 
L, (luR-2nwB)“+v2 (95) 

1.n 

where we have introduced wa= ~lv,llLo. 
First, consider the n =0 term in the sum. This may be 

thought of as the transport due to a resonance located at 
v:=m, and corresponds physically to transport in the adia- 
batic limit. Evaluating the integral over v, for this term 
yields 

dNadiabatic 

at =-&[3v9(+‘J(p,)]. (96) 

Identifying v with !v,J, we have the same result obtained in 
Sec. II. If we had kept v as an operator, we would have 
recovered vl ~1. 

Now consider the terms in the sum for n>O. Since we 
are working in the small v limit, we approximate 

V 

(ZoR-2nwB)2+ v2 
=7r8(loR-2nwB). (97) 

The factor of 2 appears because particles are reflected at both 
ends of the plasma. Particles with wg= wR, for example, 
may step radially outward at one end of the plasma, but will 
step inward at the other end. 

Using the approximation of Eq. (97), the transport equa- 
tion becomes 

(98) 

where 6, = w&%/Lo is the mean bounce frequency in 
the plasma. The size of the resonant particle transport is de- 

termined by two competing effects. Consider the case where 
the resonance is located at large v, . The resonant particles 
take large radial steps as the end potential must exert a large 
force in order to reflect them. Furthermore, these fast moving 
particles are reflected very frequently. While these effects 
tend to increase the transport, the location of the resonance 
on the tail of the Maxwellian ensures that there are relatively 
few resonant particles. Similarly, when the resonance is lo- 
cated at small v, , the contribution from each particle is 
small, but there are many particles that interact resonantly. 

For moderate temperature plasmas, the rz = 1 term in Eq. 
(98) is largest. To determine which terms in the sum over I 
are largest we estimate the size of the Fourier components 
SL/. The end shape of the plasma is axisymmetric about the 
central axis of the trap and by considering the shape of the 
vacuum equipotential contours we expect the radius of cur- 
vature of the end shape to be proportional to R, , the radius 
of the conducting wall. If we model the end of the plasma as 
the intersection of a cylinder and a hemisphere of radius R, , 
we find that the length of the plasma parallel to the magnetic 
field is 

L(r,8)=Lo- JRi-(D2+2 Dr cos 8+r2), (99) 

where D is the displacement of the center of charge off axis 
and (r-,8) is a cylindrical coordinate system centered on an 
axis through the center of charge. Taylor expanding this ex- 
pression in the limit Dr+ZR$ we find that 

Note that this agrees with the scaling given by Eq. (5) for a 
flat end (I=+l). In the experiments DIR, and r/R,,, are 
typically very small, and therefore the terms in Eq. (98) with 
lf + 1 are negligible, despite the coefficient -16. Keeping 
only the n = 1 and I = C I terms and changing variables from 
(p s,B) to (r,8), the transport equation can be written as 

T 
-e dQ,ldr 

6 
(101) 

This result may be understood physically by considering 
the orbit of a single resonant particle. In one reflection, the 
particle takes a radial step as given by Eq. (75) [recall 
p,=(eB/2c)r2]. The particle takes approximately wa/v of 
these steps before being converted to a nonresonant particle, 
so that the fundamental step size governing the transport is 

One can estimate the size of the diffusion coefficient as the 
average of the step size squared times the rate at which par- 
ticles take steps, that is, 

D= v((Ar)2)0. (103) 

The radial particle flux is given by 
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(104) 

where the distribution function and the diffusion coefficient 
are to be evaluated at the resonant velocity; AV is the width 
of the resonance in velocity space and (along with the distri- 
bution function) indicates the relative number of particles 
that participate in the resonant interaction. For the case n = 1, 
I= t 1, the resonance condition is 

2w$wR+iv=o, (105) 

so the width of the resonance may be estimated to be 

A”=;Aw,=$v. 

After some algebra, the estimate for the flux can be written 
as 

1 
6 2 

r= & \jldzexp -$ i 11 B 

(107) 

Except for a numerical coefficient, this expression agrees 
with the flux given in Eq. (101). 

To find the damping rate of the m = 1 diocotron mode, 
we would again use conservation of angular momentum [Eq. 
(14)]. The ratio of the resonant particle damping rate to the 
adiabatic damping rate is given by 

-$=& $&enp( -f$-). (108) 

When this ratio becomes larger than 1, we expect that reso- 
nant particle damping will dominate. In typical experiments, 

i$+ OR, and therefore resonance effects are negligible. 
Even when yrl y’>l, we must be sure that the frequency 
ordering HwB strictly holds. Even moderate collisionality 
will destroy the resonance effect. In the limit v>wB, a fluid- 
like treatment is more appropriate. 
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